Advancing Drug Discovery via Artificial Intelligence

Trends in Pharmacological Sciences 40, 592-604

DOI: 10.1016/j.tips.2019.06.004

Citation Report

#	Article	IF	CITATIONS
1	Artificial Intelligence Approach To Investigate the Longevity Drug. Journal of Physical Chemistry Letters, 2019, 10, 4947-4961.	2.1	10
2	40 Years of Trends in Pharmacological Sciences: Blending Man and Machine. Trends in Pharmacological Sciences, 2019, 40, 541-542.	4.0	O
3	Advances and Challenges in Rational Drug Design for SLCs. Trends in Pharmacological Sciences, 2019, 40, 790-800.	4.0	40
4	Predicting drug–disease associations through layer attention graph convolutional network. Briefings in Bioinformatics, 2021, 22, .	3.2	186
5	Al-driven drug discovery: A boon against COVID-19?. Al Open, 2020, 1, 1-4.	9.1	23
6	Natural outbreaks and bioterrorism: How to deal with the two sides of the same coin?. Journal of Global Health, 2020, 10, 020317.	1.2	7
7	Machine Learning Methods in Drug Discovery. Molecules, 2020, 25, 5277.	1.7	182
8	Generative Model for Proposing Drug Candidates Satisfying Anticancer Properties Using a Conditional Variational Autoencoder. ACS Omega, 2020, 5, 18642-18650.	1.6	19
9	A machine-learning-assisted study of the permeability of small drug-like molecules across lipid membranes. Physical Chemistry Chemical Physics, 2020, 22, 19687-19696.	1.3	17
10	Digital Pharmaceutical Sciences. AAPS PharmSciTech, 2020, 21, 206.	1.5	50
11	The Role of Norrish Type-I Chemistry in Photoactive Drugs: An ab initio Study of a Cyclopropenone-Enediyne Drug Precursor. Frontiers in Chemistry, 2020, 8, 596590.	1.8	3
12	AlloSigMA 2: paving the way to designing allosteric effectors and to exploring allosteric effects of mutations. Nucleic Acids Research, 2020, 48, W116-W124.	6.5	57
13	Design and regulation of the surface and interfacial behavior of protein molecules. Chinese Journal of Chemical Engineering, 2020, 28, 2837-2847.	1.7	2
14	Drug discovery technologies: <i>Caenorhabditis elegans</i> as a model for anthelmintic therapeutics. Medicinal Research Reviews, 2020, 40, 1715-1753.	5.0	26
15	Exploring different approaches to improve the success of drug discovery and development projects: a review. Future Journal of Pharmaceutical Sciences, 2020, 6, .	1.1	81
16	Allosteric drugs and mutations: chances, challenges, and necessity. Current Opinion in Structural Biology, 2020, 62, 149-157.	2.6	80
17	Strategies for targeting the cardiac sarcomere: avenues for novel drug discovery. Expert Opinion on Drug Discovery, 2020, 15, 457-469.	2.5	3
18	A patent review of discoidin domain receptor 1 (DDR1) modulators (2014-present). Expert Opinion on Therapeutic Patents, 2020, 30, 341-350.	2.4	11

#	Article	IF	Citations
19	Discovering Anti-Cancer Drugs via Computational Methods. Frontiers in Pharmacology, 2020, 11, 733.	1.6	148
20	More Twins in the Scientific Literature of the 21st Century. Angewandte Chemie - International Edition, 2021, 60, 544-548.	7.2	1
21	More Twins in the Scientific Literature of the 21st Century. Angewandte Chemie, 2021, 133, 552-556.	1.6	0
22	Artificial intelligence in drug discovery and development. Drug Discovery Today, 2021, 26, 80-93.	3.2	501
23	Uncertainty quantification in drug design. Drug Discovery Today, 2021, 26, 474-489.	3.2	39
24	Optimal dynamic empirical therapy in a health care facility: AÂMonte-Carlo look-ahead method. Computer Methods and Programs in Biomedicine, 2021, 198, 105767.	2.6	3
25	Advanced machine-learning techniques in drug discovery. Drug Discovery Today, 2021, 26, 769-777.	3.2	78
26	Artificial intelligence and machine learningâ€aided drug discovery in central nervous system diseases: Stateâ€ofâ€theâ€arts and future directions. Medicinal Research Reviews, 2021, 41, 1427-1473.	5.0	120
27	Drug design targeting active posttranslational modification protein isoforms. Medicinal Research Reviews, 2021, 41, 1701-1750.	5.0	33
28	\hat{a} €œFeasibility test and application of Al in healthcare \hat{a} € \hat{a} €"with special emphasis in clinical, pharmacovigilance, and regulatory practices. Health and Technology, 2021, 11, 1-15.	2.1	7
29	Artificial Intelligence Effecting a Paradigm Shift in Drug Development. SLAS Technology, 2021, 26, 3-15.	1.0	12
30	Artificial Intelligence for Healthcare: Roles, Challenges, and Applications. Advances in Intelligent Systems and Computing, 2021, , 141-156.	0.5	1
31	Graph Neural Networks in Cheminformatics. Advances in Intelligent Systems and Computing, 2021, , 823-837.	0.5	2
32	Hypergraph-based persistent cohomology (HPC) for molecular representations in drug design. Briefings in Bioinformatics, 2021, 22, .	3.2	22
33	Introduction to drug discovery. , 2021, , 1-13.		3
34	A Review of Technologies in Emergency Medicine and Sophisticated Collective Decision-Making in the Era of the Fight Against the Pandemic. Advances in Data Mining and Database Management Book Series, 2021, , 1-15.	0.4	0
35	Automated and enabling technologies for medicinal chemistry. Progress in Medicinal Chemistry, 2021, 60, 191-272.	4.1	4
36	Human iPSC-Based Modeling of Central Nerve System Disorders for Drug Discovery. International Journal of Molecular Sciences, 2021, 22, 1203.	1.8	26

#	Article	IF	CITATIONS
37	Editorial: Computational Approaches in Drug Discovery and Precision Medicine. Frontiers in Chemistry, 2020, 8, 639449.	1.8	3
38	High-Throughput Screening Platforms in the Discovery of Novel Drugs for Neurodegenerative Diseases. Bioengineering, 2021, 8, 30.	1.6	98
39	Advances in De Novo Drug Design: From Conventional to Machine Learning Methods. International Journal of Molecular Sciences, 2021, 22, 1676.	1.8	131
40	Recent investigations into synthesis and pharmacological activities of phenoxy acetamide and its derivatives (chalcone, indole and quinoline) as possible therapeutic candidates. Journal of the Iranian Chemical Society, 2021, 18, 1839-1875.	1.2	23
41	Ollivier Persistent Ricci Curvature-Based Machine Learning for the Protein–Ligand Binding Affinity Prediction. Journal of Chemical Information and Modeling, 2021, 61, 1617-1626.	2.5	29
42	On the role of Brain Imaging in drug development for psychiatry. Current Clinical Pharmacology, 2021, 16, 46-71.	0.2	O
43	Target2DeNovoDrug: a novel programmatic tool for <i>in silico</i> deep learning based <i>de novo</i> drug design for any target of interest. Journal of Biomolecular Structure and Dynamics, 2022, 40, 7511-7516.	2.0	5
44	Machine Learning for Biologics: Opportunities for Protein Engineering, Developability, and Formulation. Trends in Pharmacological Sciences, 2021, 42, 151-165.	4.0	94
45	Accelerated antimicrobial discovery via deep generative models and molecular dynamics simulations. Nature Biomedical Engineering, 2021, 5, 613-623.	11.6	157
46	A Cascade Graph Convolutional Network for Predicting Protein–Ligand Binding Affinity. International Journal of Molecular Sciences, 2021, 22, 4023.	1.8	18
47	Use of artificial intelligence to enhance phenotypic drug discovery. Drug Discovery Today, 2021, 26, 887-901.	3.2	30
48	Artificial intelligence to deep learning: machine intelligence approach for drug discovery. Molecular Diversity, 2021, 25, 1315-1360.	2.1	423
49	An effective self-supervised framework for learning expressive molecular global representations to drug discovery. Briefings in Bioinformatics, 2021, 22, .	3.2	55
50	Prediction of in vivo supersaturation and precipitation of poorly water-soluble drugs: Achievements and aspirations. International Journal of Pharmaceutics, 2021, 600, 120505.	2.6	4
51	Reusable Fluorescent Nanobiosensor Integrated in a Multiwell Plate for Screening and Quantification of Antidiabetic Drugs. ACS Applied Materials & Interfaces, 2021, 13, 25624-25634.	4.0	7
52	Application of Machine Learning in Translational Medicine: Current Status and Future Opportunities. AAPS Journal, 2021, 23, 74.	2.2	35
53	İLAÇ KEÅžFİ VE GELİŞTİRİLMESİNDE YAPAY ZEKÃ,. Ankara Universitesi Eczacilik Fakultesi Dergisi, 0, ,	170.127.	0
54	Taking the leap between analytical chemistry and artificial intelligence: A tutorial review. Analytica Chimica Acta, 2021, 1161, 338403.	2.6	75

#	Article	IF	CITATIONS
55	Mathematical Multidimensional Modelling and Structural Artificial Intelligence Pipelines Provide Insights for the Designing of Highly Specific AntiSARS-CoV2 Agents. Mathematics in Computer Science, 2021, 15, 877-888.	0.2	5
56	Graph neural networks for automated de novo drug design. Drug Discovery Today, 2021, 26, 1382-1393.	3.2	71
57	Smart financial policy adjustment system based on multiple game theory and artificial intelligence. , 2021, , .		0
58	Applications of artificial intelligence to drug design and discovery in the big data era: a comprehensive review. Molecular Diversity, 2021, 25, 1643-1664.	2.1	16
59	Alkaloids in Contemporary Drug Discovery to Meet Global Disease Needs. Molecules, 2021, 26, 3800.	1.7	28
61	Evolving scenario of big data and Artificial Intelligence (AI) in drug discovery. Molecular Diversity, 2021, 25, 1439-1460.	2.1	38
62	Validating ADME QSAR Models Using Marketed Drugs. SLAS Discovery, 2021, 26, 1326-1336.	1.4	16
63	Microarrays and NGS for Drug Discovery. , 0, , .		0
64	Implementation of the FAIR Data Principles for Exploratory Biomarker Data from Clinical Trials. Data Intelligence, 2021, 3, 631-662.	0.8	4
65	A Machine Learning Model to Predict Drug Transfer Across the Human Placenta Barrier. Frontiers in Chemistry, 2021, 9, 714678.	1.8	9
66	Machine Learning Uncovers Adverse Drug Effects on Intestinal Bacteria. Pharmaceutics, 2021, 13, 1026.	2.0	26
68	Quantum computing's potential for drug discovery: Early stage industry dynamics. Drug Discovery Today, 2021, 26, 1680-1688.	3.2	25
69	Artificial Intelligence and Cancer Drug Development. Recent Patents on Anti-Cancer Drug Discovery, 2021, 16, .	0.8	8
70	Stable Parallel Algorithms for Interdisciplinary Computer-Based Online Education with Real Problem Scenarios for STEM Education. Complexity, 2021, 2021, 1-12.	0.9	1
71	Optimizing blood–brain barrier permeation through deep reinforcement learning for <i>de novo</i> drug design. Bioinformatics, 2021, 37, i84-i92.	1.8	13
72	Al-Based Drug Discovery of TKIs Targeting L858R/T790M/C797S-Mutant EGFR in Non-small Cell Lung Cancer. Frontiers in Pharmacology, 2021, 12, 660313.	1.6	7
73	The role of artificial intelligence in business transformation: A case of pharmaceutical companies. Technology in Society, 2021, 66, 101629.	4.8	38
74	The Combined Treatment With the FLT3-Inhibitor AC220 and the Complex I Inhibitor IACS-010759 Synergistically Depletes Wt- and FLT3-Mutated Acute Myeloid Leukemia Cells. Frontiers in Oncology, 2021, 11, 686765.	1.3	10

#	ARTICLE	IF	Citations
75	Screening of anti- <i>Acinetobacter baumannii</i> phytochemicals, based on the potential inhibitory effect on OmpA and OmpW functions. Royal Society Open Science, 2021, 8, 201652.	1.1	12
76	An Overview of COVID-19 and the Potential Plant Harboured Secondary Metabolites against SARS-CoV-2: A Review. Journal of Pure and Applied Microbiology, 2021, 15, 1059-1071.	0.3	0
77	A Novel Machine Learning Model to Predict the Photo-Degradation Performance of Different Photocatalysts on a Variety of Water Contaminants. Catalysts, 2021, 11, 1107.	1.6	16
78	Blockchain and artificial intelligence technology in e-Health. Environmental Science and Pollution Research, 2021, 28, 52810-52831.	2.7	75
79	Guided structure-based ligand identification and design via artificial intelligence modeling. Expert Opinion on Drug Discovery, 2022, 17, 71-78.	2.5	5
80	Comprehensive strategies of machine-learning-based quantitative structure-activity relationship models. IScience, 2021, 24, 103052.	1.9	58
81	Artificial intelligence and machine learning assisted drug delivery for effective treatment of infectious diseases. Advanced Drug Delivery Reviews, 2021, 178, 113922.	6.6	34
82	Translational research in drug discovery: Tiny steps before the giant leap. , 2021, , 347-369.		0
83	Artificial intelligence in preventive and managed healthcare., 2021,, 675-697.		1
84	Applications of Blockchain Technologies in Health Services: A General Framework for Policymakers. Accounting, Finance, Sustainability, Governance & Fraud, 2021, , 201-232.	0.2	2
87	Role of pharmaceutical sciences in future drug discovery. Future Drug Discovery, 2021, 3, .	0.8	3
88	Artificial intelligence and machine learning approaches for drug design: challenges and opportunities for the pharmaceutical industries. Molecular Diversity, 2022, 26, 1893-1913.	2.1	35
89	Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions. , 2021, , .		0
90	Role of artificial intelligence in chemistry. Materials Today: Proceedings, 2022, 48, 1527-1533.	0.9	6
91	Next-generation business models for artificial intelligence start-ups in the healthcare industry. International Journal of Entrepreneurial Behaviour and Research, 2023, 29, 860-885.	2.3	20
92	Potential of artificial intelligence to accelerate diagnosis and drug discovery for COVID-19. PeerJ, 2021, 9, e12073.	0.9	5
93	De novo design of novel protease inhibitor candidates in the treatment of SARS-CoV-2 using deep learning, docking, and molecular dynamic simulations. Computers in Biology and Medicine, 2021, 139, 104967.	3.9	55
94	3D-Scaffold: A Deep Learning Framework to Generate 3D Coordinates of Drug-like Molecules with Desired Scaffolds. Journal of Physical Chemistry B, 2021, 125, 12166-12176.	1.2	30

#	Article	IF	Citations
95	Artificial Intelligence and Computer Vision in Low Back Pain: A Systematic Review. International Journal of Environmental Research and Public Health, 2021, 18, 10909.	1.2	32
96	Computational Approaches in Drug Development and Phytocompound Analysis. , 2020, , 529-548.		2
98	Structure Enhanced Protein-Drug Interaction Prediction using Transformer and Graph Embedding. , 2020, , .		5
99	Marine-Derived Biologically Active Compounds for the Potential Treatment of Rheumatoid Arthritis. Marine Drugs, 2021, 19, 10.	2.2	7
100	Artificial Intelligence and Quantum Computing as the Next Pharma Disruptors. Methods in Molecular Biology, 2022, 2390, 321-347.	0.4	7
101	An Open Drug Discovery Competition: Experimental Validation of Predictive Models in a Series of Novel Antimalarials. Journal of Medicinal Chemistry, 2021, 64, 16450-16463.	2.9	8
103	Computational approaches in drug designing. , 2022, , 207-217.		17
104	Artificial intelligence and machine learning in drug discovery and development. Intelligent Medicine, 2022, 2, 134-140.	1.6	45
105	High-dimensional role of AI and machine learning in cancer research. British Journal of Cancer, 2022, 126, 523-532.	2.9	21
106	Using in vitro ADME data for lead compound selection: An emphasis on PAMPA pH 5 permeability and oral bioavailability. Bioorganic and Medicinal Chemistry, 2022, 56, 116588.	1.4	20
107	The applications of deep learning algorithms on in silico druggable proteins identification. Journal of Advanced Research, 2022, 41, 219-231.	4.4	14
108	Drug repositioning based on multi-view learning with matrix completion. Briefings in Bioinformatics, 2022, 23, .	3.2	9
109	Advancing pharmacy and healthcare with virtual digital technologies. Advanced Drug Delivery Reviews, 2022, 182, 114098.	6.6	45
110	Design and Analysis of Pharmacokinetics, Pharmacodynamics and Toxicological Analysis of Cannabidiol Analogs using In Silico Tools. Letters in Drug Design and Discovery, 2022, 19, 897-904.	0.4	0
113	Drug Design—Past, Present, Future. Molecules, 2022, 27, 1496.	1.7	24
114	ARTIFICIAL INTELLIGENCE IN PHARMACY DRUG DESIGN. Asian Journal of Pharmaceutical and Clinical Research, 0, , 21-27.	0.3	2
115	Ligand and Structure-Based In Silico Determination of the Most Promising SARS-CoV-2 nsp16-nsp10 2′-o-Methyltransferase Complex Inhibitors among 3009 FDA Approved Drugs. Molecules, 2022, 27, 2287.	1.7	34
116	Role of Artificial Intelligence in Cancer Diagnosis and Drug Development. Combinatorial Chemistry and High Throughput Screening, 2022, 25, 2141-2152.	0.6	2

#	Article	IF	Citations
117	STAT3 pathway in cancers: Past, present, and future. MedComm, 2022, 3, e124.	3.1	43
118	Can anti-parasitic drugs help control COVID-19?. Future Virology, 2022, 17, 315-339.	0.9	5
119	Targeting key proteins involved in transcriptional regulation for cancer therapy: Current strategies and future prospective. Medicinal Research Reviews, 2022, 42, 1607-1660.	5.0	20
120	Multi-Phase In Silico Discovery of Potential SARS-CoV-2 RNA-Dependent RNA Polymerase Inhibitors among 3009 Clinical and FDA-Approved Related Drugs. Processes, 2022, 10, 530.	1.3	29
121	Integrated bioinformatics–cheminformatics approach toward locating pseudoâ€potential antiviral marine alkaloids against <scp>SARSâ€CoVâ€2â€Mpro</scp> . Proteins: Structure, Function and Bioinformatics, 2022, 90, 1617-1633.	1.5	18
122	Discovery of Multiâ€Targets Neuraminidase Inhibitor Lead Compound Against Influenza H1N1 Virus A/WSN/33 Based on QSAR, Docking, Dynamics Simulation and Network Pharmacology. ChemistrySelect, 2022, 7, .	0.7	1
123	COVID-19 Diagnosis: A Review of Rapid Antigen, RT-PCR and Artificial Intelligence Methods. Bioengineering, 2022, 9, 153.	1.6	20
124	Drug Repurposing for Newly Emerged Diseases via Networkâ€based Inference on a Geneâ€diseaseâ€drug Network. Molecular Informatics, 2022, 41, .	1.4	3
125	Deep learning tools for advancing drug discovery and development. 3 Biotech, 2022, 12, 110.	1.1	39
126	Artificial intelligence-based decision support model for new drug development planning. Expert Systems With Applications, 2022, 198, 116825.	4.4	9
127	Target-less Drug Discovery Pipeline using Feature Driven Development (FDD) model., 2021,,.		0
128	Artificial intelligence in clinical research of cancers. Briefings in Bioinformatics, 2022, 23, .	3.2	14
129	Predicting Drug-miRNA Resistance with Layer Attention Graph Convolution Network and Multi Channel Feature Extraction. , 2021 , , .		1
130	Medication Revelation Utilizing Neural Network. Learning and Analytics in Intelligent Systems, 2022, , 37-49.	0.5	0
131	BERT-Based Natural Language Processing of Drug Labeling Documents: A Case Study for Classifying Drug-Induced Liver Injury Risk. Frontiers in Artificial Intelligence, 2021, 4, 729834.	2.0	10
132	Practical Aspects of the Use of Telematic Systems in the Diagnosis of Acute Coronary Syndrome in Poland. Medicina (Lithuania), 2022, 58, 554.	0.8	2
134	Bioactivity assessment of natural compounds using machine learning models trained on target similarity between drugs. PLoS Computational Biology, 2022, 18, e1010029.	1.5	10
135	Artificial Intelligence and Machine Learning in Medicinal Chemistry and Validation of Emerging Drug Targets. Advances in Bioinformatics and Biomedical Engineering Book Series, 2022, , 27-43.	0.2	7

#	Article	IF	CITATIONS
136	Allostery and Missense Mutations as Intermittently Linked Promising Aspects of Modern Computational Drug Discovery. Journal of Molecular Biology, 2022, 434, 167610.	2.0	8
137	3D cell cultures toward quantitative high-throughput drug screening. Trends in Pharmacological Sciences, 2022, 43, 569-581.	4.0	32
138	Application of Artificial Intelligence in Discovery and Development of Anticancer and Antidiabetic Therapeutic Agents. Evidence-based Complementary and Alternative Medicine, 2022, 2022, 1-16.	0.5	5
139	DeepNC: a framework for drug-target interaction prediction with graph neural networks. PeerJ, 2022, 10, e13163.	0.9	11
140	Application of novel framework based on ensemble boosted regression trees and Gaussian process regression in modelling thermal performance of small-scale Organic Rankine Cycle (ORC) using hybrid nanofluid. Journal of Cleaner Production, 2022, 360, 132194.	4.6	64
141	Development of Anticancer Peptides Using Artificial Intelligence and Combinational Therapy for Cancer Therapeutics. Pharmaceutics, 2022, 14, 997.	2.0	19
142	Artificial intelligence-aided discovery of prolyl hydroxylase 2 inhibitors to stabilize hypoxia inducible factor- $1\hat{1}$ ± and promote angiogenesis. Chinese Chemical Letters, 2023, 34, 107514.	4.8	2
143	History and Present Scenario of Computers in Pharmaceutical Research and Development., 2022, , 1-38.		1
145	Role of Licochalcone A in Potential Pharmacological Therapy: A Review. Frontiers in Pharmacology, 0, 13, .	1.6	15
146	Perspectives on the Technological Aspects and Biomedical Applications of Virusâ€Like Particles/Nanoparticles in Reproductive Biology: Insights on the Medicinal and Toxicological Outlook. Advanced NanoBiomed Research, 2022, 2, .	1.7	23
147	A Deep Learning-Based Method forÂUncovering GPCR Ligand-Induced Conformational States Using Interpretability Techniques. Lecture Notes in Computer Science, 2022, , 275-287.	1.0	1
148	Graph-Based Neural Collaborative Filtering Model for Drug-Disease Associations Prediction. Lecture Notes in Computer Science, 2022, , 556-567.	1.0	1
149	Artificial intelligence-based drug screening and drug repositioning tools and their application in the present scenario., 2022,, 379-398.		4
150	Guidelines for Artificial Intelligence in Medicine: Literature Review and Content Analysis of Frameworks. Journal of Medical Internet Research, 2022, 24, e36823.	2.1	33
151	Artificial intelligence and machine-learning approaches in structure and ligand-based discovery of drugs affecting central nervous system. Molecular Diversity, 2023, 27, 959-985.	2.1	11
152	Recent progress on vascular endothelial growth factor receptor inhibitors with dual targeting capabilities for tumor therapy. Journal of Hematology and Oncology, 2022, 15, .	6.9	45
153	An emerging paradigm to develop analytical methods based on immobilized transmembrane proteins and its applications in drug discovery. TrAC - Trends in Analytical Chemistry, 2022, 157, 116728.	5.8	11
154	OMICs Technologies for Natural Compounds-based Drug Development. Current Topics in Medicinal Chemistry, 2022, 22, 1751-1765.	1.0	8

#	Article	IF	CITATIONS
155	Application of random forest based on semi-automatic parameter adjustment for optimization of anti-breast cancer drugs. Frontiers in Oncology, $0,12,.$	1.3	0
156	Small Molecular Drug Screening Based on Clinical Therapeutic Effect. Molecules, 2022, 27, 4807.	1.7	0
157	Holistic Approach for Artificial Intelligence Implementation in Pharmaceutical Products Lifecycle: A Meta-Analysis. Applied Sciences (Switzerland), 2022, 12, 8373.	1.3	3
158	Viral informatics: bioinformatics-based solution for managing viral infections. Briefings in Bioinformatics, 2022, 23, .	3.2	10
159	Artificial Intelligence in Accelerating Drug Discovery and Development. Recent Patents on Biotechnology, 2023, 17, 9-23.	0.4	6
160	Knowledge-guided deep learning models of drug toxicity improve interpretation. Patterns, 2022, 3, 100565.	3.1	13
161	Toward drug-miRNA resistance association prediction by positional encoding graph neural network and multi-channel neural network. Methods, 2022, 207, 81-89.	1.9	3
162	Gaining Insight into SARS-CoV-2 Infection and COVID-19 Severity Using Self-supervised Edge Features and Graph Neural Networks. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35, 4864-4873.	3.6	6
163	Screening strategies for drug discovery-focus on ocular hypertension., 2022,, 91-117.		0
164	New opportunities and challenges of natural products research: When target identification meets single-cell multiomics. Acta Pharmaceutica Sinica B, 2022, 12, 4011-4039.	5.7	125
165	Potential Benefits of Artificial Intelligence in Healthcare. Intelligent Systems Reference Library, 2023, , 225-249.	1.0	3
166	Implementation of deep learning in drug design. , 2022, 1, .		5
169	REDDA: Integrating multiple biological relations to heterogeneous graph neural network for drug-disease association prediction. Computers in Biology and Medicine, 2022, 150, 106127.	3.9	20
170	Application of Artificial Intelligence in Applied Biology and Health Sciences. Asian Journal of Engineering and Applied Technology, 2022, 11, 21-24.	0.3	0
171	Multiple Instance Learning Based on Mol2vec Molecular Substructure Embeddings for Discovery of NDM-1 Inhibitors. Lecture Notes in Networks and Systems, 2023, , 55-66.	0.5	0
172	Drug-Disease Association Prediction Using Heterogeneous Networks for Computational Drug Repositioning. Biomolecules, 2022, 12, 1497.	1.8	3
173	Computational Approaches in the Discovery and Development of Therapeutic and Prophylactic Agents for Viral Diseases. Current Topics in Medicinal Chemistry, 2022, 22, 2190-2206.	1.0	5
174	A machine learning model trained on a high-throughput antibacterial screen increases the hit rate of drug discovery. PLoS Computational Biology, 2022, 18, e1010613.	1.5	4

#	ARTICLE	IF	CITATIONS
175	Advancing health care via artificial intelligence: From concept to clinic. European Journal of Pharmacology, 2022, 934, 175320.	1.7	6
176	Ferroptosis-related small-molecule compounds in cancer therapy: Strategies and applications. European Journal of Medicinal Chemistry, 2022, 244, 114861.	2.6	17
177	Contemporary challenges in the European pharmaceutical industry: a systematic literature review. Measuring Business Excellence, 2022, ahead-of-print, .	1.4	2
178	e-TSN: an interactive visual exploration platform for target–disease knowledge mapping from literature. Briefings in Bioinformatics, 2022, 23, .	3.2	3
179	Machine Learning Models to Predict Protein–Protein Interaction Inhibitors. Molecules, 2022, 27, 7986.	1.7	4
180	A Comprehensive Review on Machine Learning and Deep Learning Methods in Drug Discovery. International Journal on Recent and Innovation Trends in Computing and Communication, 2022, 10, 01-08.	0.4	0
181	The search for new efficient inhibitors of SARS-COV-2 through the <i>De novo</i> drug design developed by artificial intelligence. Journal of Biomolecular Structure and Dynamics, 2023, 41, 9890-9906.	2.0	0
182	3D-Pharmacophore and Molecular Docking Studies for AcrAB-TolC Efflux Pump Potential Inhibitors from DrugBank and Traditional Chinese Medical Database. Open Access Macedonian Journal of Medical Sciences, 2022, 10, 1659-1667.	0.1	0
183	Nanoliter Scale Parallel Liquid–Liquid Extraction for Highâ€Throughput Purification on a Droplet Microarray. Small, 2023, 19, .	5.2	4
184	Review on QSAR using Anticancer Drug. , 2022, 2, 59-63.		0
185	Molecular Docking Studies of Estrone-Coumarin Derivatives as Aromatase and 17 <i>β</i> -HSD1 Inhibitors Related to Hormone Receptor Positive (HR+) Breast Cancer. Advances in Enzyme Research, 2022, 10, 83-100.	0.7	0
186	Intelligent Computing: The Latest Advances, Challenges, and Future. , 2023, 2, .		26
187	Persistent Path-Spectral (PPS) Based Machine Learning for Protein–Ligand Binding Affinity Prediction. Journal of Chemical Information and Modeling, 2023, 63, 1066-1075.	2.5	5
188	Artificial Intelligence in Pharmaceutical and Healthcare Research. Big Data and Cognitive Computing, 2023, 7, 10.	2.9	22
189	Workshop on Computer Vision for Bioanalytical Chemists: Classification and Detection of Amoebae Using Optical Microscopy Image Analysis with Machine Learning. Journal of Chemical Education, 2023, 100, 539-545.	1.1	6
190	Alternative Methods as Tools for Obesity Research: In Vitro and In Silico Approaches. Life, 2023, 13, 108.	1.1	1
191	MilGNet: A Multi-instance Learning-based Heterogeneous Graph Network for Drug repositioning. , 2022, , .		1
192	Al and Big Data for Drug Discovery. Integrated Science, 2022, , 121-138.	0.1	0

#	Article	IF	Citations
193	Mapping interaction between big spaces; active space from protein structure and available chemical space., 2023,, 299-332.		O
194	Intelligent Drug Design and Use for Cancer Treatment: The Roles of AI and Precision Oncology in Targeting Patient-Specific Splicing Profiles. , 2023, , 217-238.		0
195	Artificial Intelligence and Machine Learning Technology Driven Modern Drug Discovery and Development. International Journal of Molecular Sciences, 2023, 24, 2026.	1.8	30
196	Employing Al-Powered Decision Support Systems in Recommending the Most Effective Therapeutic Approaches for Individual Cancer Patients: Maximising Therapeutic Efficacy., 2023,, 259-275.		1
197	Drug-disease association prediction based on end-to-end multi-layer heterogeneous graph convolutional encoders. Informatics in Medicine Unlocked, 2023, 37, 101177.	1.9	2
199	Role of Artificial Intelligence and Machine Learning in Drug Discovery and Drug Repurposing. Advances in Computer and Electrical Engineering Book Series, 2023, , 182-197.	0.2	0
200	Drawbacks of Artificial Intelligence and Their Potential Solutions in the Healthcare Sector. , 2023, 1, 731-738.		47
201	DoubleSG-DTA: Deep Learning for Drug Discovery: Case Study on the Non-Small Cell Lung Cancer with EGFRT790M Mutation. Pharmaceutics, 2023, 15, 675.	2.0	5
202	Nifuroxazide inhibits the growth of glioblastoma and promotes the infiltration of CD8 T cells to enhance antitumour immunity. International Immunopharmacology, 2023, 118, 109987.	1.7	3
203	Improving drug response prediction based on two-space graph convolution. Computers in Biology and Medicine, 2023, 158, 106859.	3.9	6
204	Advances in immunomodulatory strategies for host-directed therapies in combating tuberculosis. Biomedicine and Pharmacotherapy, 2023, 162, 114588.	2.5	1
205	Artificial intelligence-assisted selection and efficacy prediction of antineoplastic strategies for precision cancer therapy. Seminars in Cancer Biology, 2023, 90, 57-72.	4.3	11
206	Guiding Drug Repositioning for Cancers Based on Drug Similarity Networks. International Journal of Molecular Sciences, 2023, 24, 2244.	1.8	3
209	Virtual Screening and Multi-targets Investigation of Novel Diazine Derivatives as Potential Xanthine Oxidase Inhibitors Based on QSAR, Molecular Docking, ADMET Properties, Dynamics Simulation and Network Pharmacology. Medicinal Chemistry, 2023, 19, 704-716.	0.7	2
210	The Epidemiology of Infectious Diseases Meets Al: A Match Made in Heaven. Pathogens, 2023, 12, 317.	1.2	2
211	An extensive survey on the use of supervised machine learning techniques in the past two decades for prediction of drug side effects. Artificial Intelligence Review, 2023, 56, 9809-9836.	9.7	4
212	Medication Discovery Using Neural Networks. Advances in Computational Intelligence and Robotics Book Series, 2023, , 404-418.	0.4	0
213	Development, validation, and evaluation of a deep learning model to screen cyclin-dependent kinase 12 inhibitors in cancers. European Journal of Medicinal Chemistry, 2023, 250, 115199.	2.6	1

#	Article	IF	CITATIONS
214	LC-MS Analysis, Computational Investigation, and Antimalarial Studies of <i>Azadirachta indica </i> Fruit. Bioinformatics and Biology Insights, 2023, 17, 117793222311549.	1.0	1
215	Applications and prospects of cryo-EM in drug discovery. Military Medical Research, 2023, 10, .	1.9	2
216	Computer Simulation for Effective Pharmaceutical Kinetics and Dynamics: A Review. Current Computer-Aided Drug Design, 2023, 19, .	0.8	0
217	Basics of the Drug Development Process. , 2023, , 68-104.		0
218	Predicting Potential Drug–Disease Associations Based on Hypergraph Learning with Subgraph Matching. Interdisciplinary Sciences, Computational Life Sciences, 2023, 15, 249-261.	2,2	1
219	Model of an Artificial Blastula for Assessing Development Toxicity. , 0, , .		0
220	Drug discovery: Chaos can be your friend or your enemy. , 2023, , 417-511.		2
221	TCMFP: a novel herbal formula prediction method based on network target's score integrated with semi-supervised learning genetic algorithms. Briefings in Bioinformatics, 2023, 24, .	3.2	5
222	Optimization Modeling of Anti - breast Cancer Candidate Drugs. Biotechnology and Genetic Engineering Reviews, 0, , 1-19.	2.4	0
223	Computational Approaches for the Structure-Based Identification of Novel Inhibitors Targeting Nucleoid-Associated Proteins in Mycobacterium Tuberculosis. Molecular Biotechnology, 0, , .	1.3	0
224	Comprehensive Two-Dimensional Gas Chromatography as a Bioanalytical Platform for Drug Discovery and Analysis. Pharmaceutics, 2023, 15, 1121.	2.0	2
225	Convergence of artificial intelligence and nanotechnology in the development of novel formulations for cancer treatment., 2023,, 499-529.		0
227	3D bioprinting tumor models mimic the tumor microenvironment for drug screening. Biomaterials Science, 2023, 11, 3813-3827.	2.6	5
228	A Review on Deep Learning-driven Drug Discovery: Strategies, Tools and Applications. Current Pharmaceutical Design, 2023, 29, 1013-1025.	0.9	2
229	Identification of thrombopoiesis inducer based on a hybrid deep neural network model. Thrombosis Research, 2023, 226, 36-50.	0.8	2
230	Identification of Potential p38γ Inhibitors via In Silico Screening, In Vitro Bioassay and Molecular Dynamics Simulation Studies. International Journal of Molecular Sciences, 2023, 24, 7360.	1.8	2
231	Decoding Connectivity Map-based drug repurposing for oncotherapy. Briefings in Bioinformatics, 2023, 24, .	3.2	9
232	Electromagnetic Metamaterials: From Classical to Quantum. , 2023, 1, 1-33.		6

#	ARTICLE	IF	Citations
233	Technology entrepreneurship in healthcare: Challenges and opportunities for value creation. Journal of Innovation & Knowledge, 2023, 8, 100365.	7.3	4
239	Embracing Digital Technologies in the Pharmaceutical Industry. , 2023, , 141-165.		1
246	Reinforcement learning: A novel approach towards drug discovery. AIP Conference Proceedings, 2023,	0.3	0
255	A Conceptual Framework for Impact of Artificial Intelligence and Machine Learning (AIML) in Drug Development Within Pharmaceutical Industry. , 2023, , 291-307.		0
257	Artificial Intelligence–Enhanced Drug Discovery and the Achievement of Next-Generation Human-Centered Health System., 2023, , 155-177.		0
269	Accelerating Scientific Applications with the Quantum Edge: A Drug Design Use Case. Lecture Notes in Computer Science, 2023, , 134-143.	1.0	1
271	Using Explainable Artificial Intelligence in Drug Discovery: A Theoretical Research., 2023,, 181-190.		0
274	Deep Neural Networks and Applications in Medical Research. Artificial Intelligence, 0, , .	2.0	0
277	Role of artificial intelligence in optimization of drug formulation. AIP Conference Proceedings, 2023, ,	0.3	0
279	Artificial Intelligence (AI) and Machine Learning (ML): An Innovative Cross-Talk Perspective and Their Role in the Healthcare Industry. , 2023, , 9-38.		0
280	A Multidisciplinary Explanation of Healthcare Al Uses, Trends, and Possibilities., 2023,, 87-99.		0
281	Recent trends and perspectives of artificial intelligence-based machine learning from discovery to manufacturing in biopharmaceutical industry. Journal of Pharmaceutical Investigation, 2023, 53, 803-826.	2.7	0
290	Artificial Intelligence and Machine Learning in Drug Discovery and Development. Advances in Computational Intelligence and Robotics Book Series, 2023, , 42-61.	0.4	0
295	Deep learning algorithms applied to computational chemistry. Molecular Diversity, 0, , .	2.1	0
307	Artificial Intelligence Applications in Healthcare. Synthesis Lectures on Engineering Science and Technology, 2024, , 175-192.	0.2	0
312	The synergy of Al and biology. , 2024, , 13-34.		0
315	Role of Artificial Intelligence and Machine Learning in Drug Discovery and Drug Repurposing. , 2023, , 1394-1405.		0
316	Al's Double-Edged Sword. Advances in Human Resources Management and Organizational Development Book Series, 2024, , 44-59.	0.2	O