Finding Needles in a Haystack: Determining Key Molect Bloodâ€brain Barrier Entry of Chemical Compounds Us

Molecular Informatics 38, e1800164 DOI: 10.1002/minf.201800164

Citation Report

#	Article	IF	CITATIONS
1	Towards Deep Neural Network Models for the Prediction of the Blood–Brain Barrier Permeability for Diverse Organic Compounds. Molecules, 2020, 25, 5901.	1.7	22
2	Artificial intelligence and machine learningâ€aided drug discovery in central nervous system diseases: Stateâ€ofâ€theâ€arts and future directions. Medicinal Research Reviews, 2021, 41, 1427-1473.	5.0	120
3	Neighborhood degree sum-based molecular descriptors of fractal and Cayley tree dendrimers. European Physical Journal Plus, 2021, 136, 303.	1.2	18
4	Comparing the Pfizer Central Nervous System Multiparameter Optimization Calculator and a BBB Machine Learning Model. ACS Chemical Neuroscience, 2021, 12, 2247-2253.	1.7	9
5	Anticancer Activity of Natural and Synthetic Chalcones. International Journal of Molecular Sciences, 2021, 22, 11306.	1.8	64
6	A curated diverse molecular database of blood-brain barrier permeability with chemical descriptors. Scientific Data, 2021, 8, 289.	2.4	38
7	<i>In Silico</i> Approaches for Addressing Challenges in CNS Radiopharmaceutical Design. ACS Chemical Neuroscience, 2022, 13, 1675-1683.	1.7	6
8	Chemoinformatics and bioinformatics by discrete mathematics and numbers: an adventure from small data to the realm of emerging big data. , 2023, , 3-35.		0
9	Benzoquinoline Chemical Space: A Helpful Approach in Antibacterial and Anticancer Drug Design. Molecules, 2023, 28, 1069.	1.7	0