Natural products for glycaemic control: Polyphenols as

Trends in Food Science and Technology 91, 262-273 DOI: 10.1016/j.tifs.2019.07.009

Citation Report

#	Article	IF	CITATIONS
1	Impact of different extraction solvents and techniques on the biological activities of Cirsium yildizianum (Asteraceae: Cynareae). Industrial Crops and Products, 2020, 144, 112033.	5.2	14
2	Inhibition of α-amylase by polyphenolic compounds: Substrate digestion, binding interactions and nutritional intervention. Trends in Food Science and Technology, 2020, 104, 190-207.	15.1	99
3	Integrated phytochemistry, bio-functional potential and multivariate analysis of Tanacetum macrophyllum (Waldst. & Kit.) Sch.Bip. and Telekia speciosa (Schreb.) Baumg. (Asteraceae). Industrial Crops and Products, 2020, 155, 112817.	5.2	30
4	Caffeoyl substitution changes the inhibition mode of tartaric acid against α-amylase: Analysis of the enzyme inhibition by four caffeic and tartaric acid derivates. LWT - Food Science and Technology, 2020, 133, 109942.	5.2	13
5	So Uncommon and so Singular, but Underexplored: An Updated Overview on Ethnobotanical Uses, Biological Properties and Phytoconstituents of Sardinian Endemic Plants. Plants, 2020, 9, 958.	3.5	16
6	Screening and identifying of αâ€amylase inhibitors from medicine food homology plants: Insights from computational analysis and experimental studies. Journal of Food Biochemistry, 2020, 44, e13536.	2.9	10
7	Polyphenol Profile and Biological Activity Comparisons of Different Parts of Astragalus macrocephalus subsp. finitimus from Turkey. Biology, 2020, 9, 231.	2.8	17
8	A systematic review of <i>inÂvitro</i> studies evaluating the inhibitory effects of polyphenol-rich fruit extracts on carbohydrate digestive enzymes activity: a focus on culinary fruits consumed in Europe. Critical Reviews in Food Science and Nutrition, 2021, 61, 3783-3803.	10.3	13
9	In Vitro Bioaccessibility of Extractable Compounds from Tannat Grape Skin Possessing Health Promoting Properties with Potential to Reduce the Risk of Diabetes. Foods, 2020, 9, 1575.	4.3	13
10	Facile in situ synthesis of silver nanoparticles on tannic acid/zein electrospun membranes and their antibacterial, catalytic and antioxidant activities. Food Chemistry, 2020, 330, 127172.	8.2	39
11	Chemical Composition, Antioxidant and Enzyme Inhibitory Properties of Different Extracts Obtained from Spent Coffee Ground and Coffee Silverskin. Foods, 2020, 9, 713.	4.3	46
12	Potential anti-diabetic properties of Merlot grape pomace extract: An in vitro, in silico and in vivo study of α-amylase and α-glucosidase inhibition. Food Research International, 2020, 137, 109462.	6.2	42
13	Number of galloyl moieties and molecular flexibility are both important in alpha-amylase inhibition by galloyl-based polyphenols. Food and Function, 2020, 11, 3838-3850.	4.6	27
14	A new benzofuran glycoside from the fruit of <i>Clausena lansium</i> . Natural Product Research, 2022, 36, 501-507.	1.8	3
15	Designing food structure to slow down digestion in starch-rich products. Current Opinion in Food Science, 2020, 32, 50-57.	8.0	53
16	Qualitative Phytochemical Fingerprint and Network Pharmacology Investigation of Achyranthes aspera Linn. Extracts. Molecules, 2020, 25, 1973.	3.8	20
17	Interactions between phenolic compounds, amylolytic enzymes and starch: an updated overview. Current Opinion in Food Science, 2020, 31, 102-113.	8.0	101
18	Maltoheptaoside hydrolysis with chromatographic detection and starch hydrolysis with reducing sugar analysis: Comparison of assays allows assessment of the roles of direct α-amylase inhibition and starch complexation. Food Chemistry, 2021, 343, 128423.	8.2	15

#	Article	IF	Citations
19	In vitro and in silico inhibition of α-amylase, α-glucosidase, and aldose reductase by the leaf and callus extracts of Vernonia anthelmintica (L.) Willd Advances in Traditional Medicine, 2022, 22, 125-139.	2.0	2
20	Potential of Red Winemaking Byproducts as Health-Promoting Food Ingredients. Food Engineering Series, 2021, , 205-248.	0.7	1
21	Rapid qualitative profiling and quantitative analysis of phenolics in <i>Ribes meyeri</i> leaves and their antioxidant and antidiabetic activities by HPLCâ€QTOFâ€MS/MS and UHPLCâ€MS/MS. Journal of Separation Science, 2021, 44, 1404-1420.	2.5	24
22	Investigation of phytochemical composition and enzyme inhibitory potential of Anagallis arvensis L Natural Product Research, 2021, , 1-6.	1.8	2
23	Bound Polyphenols from Insoluble Dietary Fiber of Defatted Rice Bran by Solid-State Fermentation with <i>Trichoderma viride</i> : Profile, Activity, and Release Mechanism. Journal of Agricultural and Food Chemistry, 2021, 69, 5026-5039.	5.2	27
24	Seaweed Components as Potential Modulators of the Gut Microbiota. Marine Drugs, 2021, 19, 358.	4.6	52
25	Anticancer and biological properties of leaf and flower extracts of Echinacea purpurea (L.) Moench. Food Bioscience, 2021, 41, 101005.	4.4	16
26	In Vitro Bioaccessibility of Bioactive Compounds from Citrus Pomaces and Orange Pomace Biscuits. Molecules, 2021, 26, 3480.	3.8	15
27	Catechin-grafted arabinoxylan conjugate: Preparation, structural characterization and property investigation. International Journal of Biological Macromolecules, 2021, 182, 796-805.	7.5	17
28	Antidiabetic potential of dietary polyphenols: A mechanistic review. Food Research International, 2021, 145, 110383.	6.2	41
29	Plant cellular architecture and chemical composition as important regulator of starch functionality in whole foods. Food Hydrocolloids, 2021, 117, 106744.	10.7	23
30	Shedding Light into the Connection between Chemical Components and Biological Effects of Extracts from Epilobium hirsutum: Is It a Potent Source of Bioactive Agents from Natural Treasure?. Antioxidants, 2021, 10, 1389.	5.1	8
31	Understanding phenolic acids inhibition of α-amylase and α-glucosidase and influence of reaction conditions. Food Chemistry, 2022, 372, 131231.	8.2	91
32	Starch-digesting product analysis based on the hydrophilic interaction liquid chromatography coupled mass spectrometry method to evaluate the inhibition of flavonoids on pancreatic α-amylase. Food Chemistry, 2022, 372, 131175.	8.2	5
33	Can starch-polyphenol V-type complexes be considered as resistant starch?. Food Hydrocolloids, 2022, 124, 107226.	10.7	30
34	Essential moieties of myricetins, quercetins and catechins for binding and inhibitory activity against α-Glucosidase. Bioorganic Chemistry, 2021, 115, 105235.	4.1	30
35	Caffeoyl substitution decreased the binding and inhibitory activity of quinic acid against α-amylase: The reason why chlorogenic acid is a relatively weak enzyme inhibitor. Food Chemistry, 2022, 371, 131278.	8.2	14
36	Structure-activity relationship and interaction mechanism of nine structurally similar flavonoids and α-amylase. Journal of Functional Foods, 2021, 86, 104739.	3.4	6

#	Article	IF	CITATIONS
37	Determination of nutritional constituents, antioxidant properties, and α-amylase inhibitory activity of Sechium edule (chayote) shoot from different extraction solvents and cooking methods. LWT - Food Science and Technology, 2021, 151, 112177.	5.2	4
38	Number of galloyl moiety and intramolecular bonds in galloyl-based polyphenols affect their interaction with alpha-glucosidase. Food Chemistry, 2022, 367, 129846.	8.2	19
39	Comparison of quercetin and rutin inhibitory influence on Tartary buckwheat starch digestion in vitro and their differences in binding sites with the digestive enzyme. Food Chemistry, 2022, 367, 130762.	8.2	33
40	Role of Natural Bio-active Compounds as Antidiabetic Agents. Advanced Structured Materials, 2021, , 535-561.	0.5	2
41	Purple onion in combination with garlic exerts better ameliorative effects on selected biomarkers in high-sucrose diet-fed fruit fly (Drosophila melanogaster). Comparative Clinical Pathology, 2020, 29, 713-720.	0.7	5
42	The mechanism of delaying starch digestion by luteolin. Food and Function, 2021, 12, 11862-11871.	4.6	8
43	Both Acidic pH Value and Binding Interactions of Tartaric Acid With α-Glucosidase Cause the Enzyme Inhibition: The Mechanism in α-Glucosidase Inhibition of Four Caffeic and Tartaric Acid Derivates. Frontiers in Nutrition, 2021, 8, 766756.	3.7	5
44	Effect of polyphenolic compounds on starch retrogradation and in vitro starch digestibility of rice cakes under different storage temperatures. Food Biophysics, 2022, 17, 26-37.	3.0	3
45	Advance in dietary polyphenols as dipeptidyl peptidase-IV inhibitors to alleviate type 2 diabetes mellitus: aspects from structure-activity relationship and characterization methods. Critical Reviews in Food Science and Nutrition, 2023, 63, 3452-3467.	10.3	17
46	Cabbage (<i>Brassica oleracea</i> var. <i>capitata</i>): A food with functional properties aimed to type 2 diabetes prevention and management. Journal of Food Science, 2021, 86, 4775-4798.	3.1	16
47	α-Amylase inhibition, cytotoxicity and influence of the in vitro gastrointestinal digestion on the bioaccessibility of phenolic compounds in the peel and seed of Theobroma grandiflorum. Food Chemistry, 2022, 373, 131494.	8.2	9
48	Longan seed polyphenols inhibit α-amylase activity and reduce postprandial glycemic response in mice. Food and Function, 2021, 12, 12338-12346.	4.6	6
49	The inhibitory mechanism of chlorogenic acid and its acylated derivatives on α-amylase and α-glucosidase. Food Chemistry, 2022, 372, 131334.	8.2	46
50	Tea and coffee polyphenols and their biological properties based on the latest in vitro investigations. Industrial Crops and Products, 2022, 175, 114265.	5.2	56
51	Inhibition Mechanism of Berberine on αâ€Amylase and αâ€Glucosidase in Vitro. Starch/Staerke, 2022, 74, 2100231.	2.1	11
52	Lowering the predicted glycemic index of pasta using dried onions as functional ingredients. International Journal of Food Sciences and Nutrition, 2022, 73, 443-450.	2.8	3
53	Potential of phenolic compounds in <i>Ligustrum robustum</i> (Rxob.) Blume as antioxidant and lipase inhibitors: Multiâ€spectroscopic methods and molecular docking. Journal of Food Science, 2022, 87, 651-663.	3.1	12
54	Viscosity-Based Flow Sensor on Paper for Quantitative and Label-Free Detection of α-Amylase and Its Inhibitor. ACS Sensors, 2022, 7, 593-600.	7.8	12

#	Article	IF	CITATIONS
55	Potential Mechanisms Involved in the Protective Effect of Dicaffeoylquinic Acids from Artemisia annua L. Leaves against Diabetes and Its Complications. Molecules, 2022, 27, 857.	3.8	8
56	Trends in the enzymatic inhibition by natural extracts. , 2022, , 413-425.		0
57	Evaluation of Anti-Diabetic and Anti-Hyperlipidemic Activities of Hydro-Alcoholic Crude Extract of the Shoot Tips of Crinum abyssinicum Hochst. ex A. Rich (Amaryllidaceae) in Mice. Journal of Experimental Pharmacology, 2022, Volume 14, 27-41.	3.2	7
58	Thinned Nectarines, an Agro-Food Waste with Antidiabetic Potential: HPLC-HESI-MS/MS Phenolic Characterization and In Vitro Evaluation of Their Beneficial Activities. Foods, 2022, 11, 1010.	4.3	10
59	Hypoglycemic bioactivity of anthocyanins: A review on proposed targets and potential signaling pathways. Critical Reviews in Food Science and Nutrition, 2023, 63, 7878-7895.	10.3	10
60	Inhibitory Effect of Polyphenols from the Whole Green Jackfruit Flour against α-Glucosidase, α-Amylase, Aldose Reductase and Glycation at Multiple Stages and Their Interaction: Inhibition Kinetics and Molecular Simulations. Molecules, 2022, 27, 1888.	3.8	37
61	Biophysical and Structural Insights in αâ€Amylase and Bile Acids interaction. ChemistrySelect, 2022, 7, .	1.5	0
62	Adzuki bean (<i>Vigna angularis</i>): Chemical compositions, physicochemical properties, health benefits, and food applications. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 2335-2362.	11.7	14
63	Evaluation of the antioxidant, anti-inflammatory and antihyperglycemic activities of black bean (Phaseolus vulgaris L.) by-product extracts obtained by supercritical CO2. Journal of Supercritical Fluids, 2022, 183, 105560.	3.2	12
64	Starch gels enriched with phenolics: Effects on paste properties, structure and digestibility. LWT - Food Science and Technology, 2022, 161, 113350.	5.2	11
65	α-Amylase Changed the Catalytic Behaviors of Amyloglucosidase Regarding Starch Digestion Both in the Absence and Presence of Tannic Acid. Frontiers in Nutrition, 2022, 9, 817039.	3.7	0
66	Common bean (<i>Phaseolus vulgaris</i> L.) αâ€amylase inhibitors as safe nutraceutical strategy against diabetes and obesity: An update review. Phytotherapy Research, 2022, 36, 2803-2823.	5.8	16
67	A Structure—Activity Relationship Study of the Inhibition of α-Amylase by Benzoic Acid and Its Derivatives. Nutrients, 2022, 14, 1931.	4.1	6
68	Effects of phenols with different structure characteristics on properties of potato starch: Action rule and molecular mechanism. Journal of Food Processing and Preservation, 2022, 46, .	2.0	5
69	Enzymic catalyzing affinity to substrate affects inhibitor-enzyme binding interactions: Inhibition behaviors of EGCG against starch digestion by individual and co-existing α-amylase and amyloglucosidase. Food Chemistry, 2022, 388, 133047.	8.2	12
70	Biodegradable-Renewable Vitrimer Fabrication by Epoxidized Natural Rubber and Oxidized Starch with Robust Ductility and Elastic Recovery. ACS Sustainable Chemistry and Engineering, 2022, 10, 7942-7953.	6.7	23
71	The flavonoid profiles in the pulp of different pomelo (Citrus grandis L. Osbeck) and grapefruit (Citrus paradisi Mcfad) cultivars and their in vitro bioactivity. Food Chemistry: X, 2022, 15, 100368.	4.3	13
72	Main factors affecting the starch digestibility in Chinese steamed bread. Food Chemistry, 2022, 393, 133448.	8.2	6

#	Article	IF	CITATIONS
73	Modification of Pea Starch Digestibility through the Complexation with Gallic Acid via High-Pressure Homogenization. Polymers, 2022, 14, 2623.	4.5	8
74	The inhibitory mechanism of amylase inhibitors and research progress in nanoparticle-based inhibitors. Critical Reviews in Food Science and Nutrition, 2023, 63, 12126-12135.	10.3	11
75	Relations between <i>in vitro</i> starch digestibility of commercial baked products and their macronutrients. Journal of the Science of Food and Agriculture, 0, , .	3.5	0
76	Gathering scientific evidence for a new bioactive natural ingredient: The combination between chemical profiles and biological activities of Flueggea virosa extracts. Food Bioscience, 2022, 49, 101967.	4.4	8
77	α-amylase inhibitory activity of chitooligosaccharide from shrimp shell chitosan and its epigallocatechin gallate conjugate: kinetics, fluorescence quenching and structure–activity relationship. Food Chemistry, 2023, 403, 134456.	8.2	12
78	Therapeutic potential of non-starch polysaccharides on type 2 diabetes: from hypoglycemic mechanism to clinical trials. Critical Reviews in Food Science and Nutrition, 2024, 64, 1177-1210.	10.3	6
79	A dark purple multifunctional ingredient from blueberry pomace enhanced with lactic acid bacteria for various applications. Journal of Food Science, 2022, 87, 4725-4737.	3.1	2
80	Dietary compounds slow starch enzymatic digestion: A review. Frontiers in Nutrition, 0, 9, .	3.7	6
81	Effect of fermentation on ameliorative properties of tamarind seed (<i>Tamarindus indica</i>) in sucroseâ€induced diabeticâ€ike biochemical alterations in <i>Drosophila melanogaster</i> . Journal of Food Processing and Preservation, 2022, 46, .	2.0	2
82	Purification, composition and activity of bound polyphenols from mung bean coat dietary fiber. Food Research International, 2022, 162, 111997.	6.2	6
83	Preliminary Study on the Influence of the Polyphenols of Different Groups on the Digestibility of Wheat Starch, Measured by the Content of Resistant Starch. Applied Sciences (Switzerland), 2022, 12, 10859.	2.5	0
84	Dietary Polyphenols as Natural Inhibitors of $\hat{I}\pm$ -Amylase and $\hat{I}\pm$ -Glucosidase. Life, 2022, 12, 1692.	2.4	24
85	Dual complexation using heat moisture treatment and pre-gelatinization to enhance Starch–Phenolic complex and control digestibility. Food Hydrocolloids, 2023, 136, 108280.	10.7	8
86	Phenolic compounds of "blue food―Porphyra haitanensis: Chemical fingerprints, antioxidant activities, and in vitro antiproliferative activities against HepG2 cells. Food Research International, 2022, 162, 112139.	6.2	2
87	Factors influencing the starch digestibility of starchy foods: A review. Food Chemistry, 2023, 406, 135009.	8.2	20
88	Inhibitory mechanism of phenolic compounds in rapeseed oil on α-amylase and α-glucosidase: Spectroscopy, molecular docking, and molecular dynamic simulation. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 289, 122251.	3.9	8
89	Nanotechnology approach for exploring the enhanced bioactivities, biochemical characterisation and phytochemistry of freshly prepared <scp> <i>Mentha arvensis</i> </scp> L. nanosuspensions. Phytochemical Analysis, 0, , .	2.4	2
90	Dual Regulation of Sulfonated Lignin to Prevent and Treat Type 2 Diabetes Mellitus. Biomacromolecules, 2023, 24, 841-848.	5.4	2

#	Article	IF	CITATIONS
91	In Vitro Micropropagation of Endangered Achillea fragrantissima Forssk. Combined with Enhancement of Its Antihyperglycemic Activity. Agronomy, 2023, 13, 278.	3.0	2
92	Phenolic profile, α-amylase inhibition and molecular docking scrutiny of the trunk bark of <i>Pinus pinea</i> growing in Tunisia. Plant Biosystems, 2023, 157, 357-366.	1.6	0
93	Implication of solvent polarities on browntop millet (Urochloa ramosa) phenolic antioxidants and their ability to protect oxidative DNA damage and inhibit α-amylase and α-glucosidase enzymes. Food Chemistry, 2023, 411, 135474.	8.2	3
94	Inhibition mechanisms of wounded okra on the α-glucosidase/α-amylase. Food Bioscience, 2023, 51, 102333.	4.4	3
95	Production of α-Amylase from Bacillus megaterium MD-1. Türk Doğa Ve Fen Dergisi, 0, , .	0.5	0
96	Exploring the inhibitory mechanism of p-coumaric acid on α-amylase via multi-spectroscopic analysis, enzymatic inhibition assay and molecular docking. Food Hydrocolloids, 2023, 139, 108524.	10.7	10
97	Synthesis of ECG ((â^')-epicatechin gallate) acylated derivatives as new inhibitors of α-amylase and their mechanism on delaying starch digestion. Food Bioscience, 2023, 52, 102466.	4.4	4
98	Integrated metabolite analysis and health-relevant in vitro functionality of white, red, and orange maize (Zea mays L.) from the Peruvian Andean race Cabanita at different maturity stages. Frontiers in Nutrition, 0, 10, .	3.7	2
99	Corchorus olitorius extract exhibit anti-hyperglycemic and anti-inflammatory properties in rodent models of obesity and diabetes mellitus. Frontiers in Nutrition, 0, 10, .	3.7	5
100	Effect of Fermentation Humidity on Quality of Congou Black Tea. Foods, 2023, 12, 1726.	4.3	2
101	Preparation And Application of \hat{I} - Amylase Inhibitors. , 0, 45, 334-339.		0
102	Total phenol, flavonoids, and tannin contents, antimicrobial, antioxidant, vital digestion enzymes inhibitory and cytotoxic activities of Verbascum fruticulosum. European Journal of Integrative Medicine, 2023, 60, 102256.	1.7	1
103	Interactions between tea polyphenols and nutrients in food. Comprehensive Reviews in Food Science and Food Safety, 2023, 22, 3130-3150.	11.7	7
104	Insights on the Hypoglycemic Potential of Crocus sativus Tepal Polyphenols: An In Vitro and In Silico Study. International Journal of Molecular Sciences, 2023, 24, 9213.	4.1	2
105	Insoluble dietary fiber from wheat bran retards starch digestion by reducing the activity of alpha-amylase. Food Chemistry, 2023, 426, 136624.	8.2	7
106	Elucidation of alphaâ€amylase inhibition by natural shikimic acid derivates regarding the infrequent uncompetitive inhibition mode and structure–activity relationship. Food Frontiers, 2023, 4, 2058-2069.	7.4	2
107	Antibacterial and enzyme inhibitory activities of flavan-3-ol monomers and procyanidin-rich grape seed fractions. Journal of Functional Foods, 2023, 107, 105643.	3.4	2
108	Binding interactions between protein and polyphenol decreases inhibitory activity of the polyphenol against î±-amylase: A new insight into the effect of dietary components on starch-hydrolyzing enzyme inhibition. Food Hydrocolloids, 2023, 144, 109005.	10.7	3

#	Article	IF	CITATIONS
109	Comparative analysis of the interaction of oroxylin A with two sources of α-glucosidase and α-amylase. Journal of Molecular Structure, 2023, 1292, 136176.	3.6	0
110	A comprehensive review on food hydrocolloids as gut modulators in the food matrix and nutrition: The hydrocolloid-gut-health axis. Food Hydrocolloids, 2023, 145, 109068.	10.7	4
111	Release characteristic of bound polyphenols from tea residues insoluble dietary fiber by mixed solid-state fermentation with cellulose degrading strains CZ-6 and CZ-7. Food Research International, 2023, 173, 113319.	6.2	2
112	Effects of coarse cereals on dough and Chinese steamed bread – a review. Frontiers in Nutrition, 0, 10, ·	3.7	0
113	Anti-Diabetic Activity of Glycyrrhetinic Acid Derivatives FC-114 and FC-122: Scale-Up, In Silico, In Vitro, and In Vivo Studies. International Journal of Molecular Sciences, 2023, 24, 12812.	4.1	1
114	Fruit and vegetable polyphenols as natural bioactive inhibitors of pancreatic lipase and cholesterol esterase: Inhibition mechanisms, polyphenol influences, application challenges. Food Bioscience, 2023, 55, 103054.	4.4	3
115	Probing gallic acid–starch interactions through Rapid ViscoAnalyzer in vitro digestion. Food Research International, 2023, 173, 113409.	6.2	1
116	Determination of active constituents in kombucha fermentation broth using nano-composite colorimetric sensor based on selected volatile markers determined by GC–MS. Microchemical Journal, 2023, 195, 109493.	4.5	1
117	Effect of burdock on the regulation of gut microbiota in hyperglycemic rats and its in vitro digestion and fermentation characteristics. Food Bioscience, 2023, 56, 103191.	4.4	1
118	Fermented grain-based beverages as probiotic vehicles and their potential antioxidant and antidiabetic properties. Biocatalysis and Agricultural Biotechnology, 2023, 53, 102873.	3.1	0
119	The inhibition mechanism of bound polyphenols extracted from mung bean coat dietary fiber on porcine pancreatic α-amylase: kinetic, spectroscopic, differential scanning calorimetric and molecular docking. Food Chemistry, 2024, 436, 137749.	8.2	2
120	The role of herbal teas in reducing the starch digestibility of cooked rice (Oryza sativa L.): An in vitro co-digestion study. NFS Journal, 2023, 33, 100154.	4.3	0
121	Determination of the critical pH for unfolding water-soluble cod protein and its effect on encapsulation capacities. Food Research International, 2023, 174, 113621.	6.2	2
122	Effect of Sugarcane Jaggery Prepared Using Different Heat Treatment Methods on α-Amylase Activity. Sugar Tech, 2024, 26, 207-214.	1.8	0
123	Lowering glycemic levels via gastrointestinal tract factors: the roles of dietary fiber, polyphenols, and their combination. Critical Reviews in Food Science and Nutrition, 0, , 1-37.	10.3	0
124	Exploring antioxidant activities and inhibitory effects against αâ€amylase and αâ€glucosidase of <i>Elaeocarpus braceanus</i> fruits: insights into mechanisms by molecular docking and molecular dynamics. International Journal of Food Science and Technology, 2024, 59, 343-355.	2.7	1
125	Inhibition mechanism of α-glucosidase by three geranylated compounds: Kinetic, spectroscopic and molecular docking. Process Biochemistry, 2024, 136, 237-244.	3.7	0
126	Screening and Characterization of an Î \pm -Amylase Inhibitor from Carya cathayensis Sarg. Peel. Foods, 2023, 12, 4425.	4.3	0

#	Article	IF	CITATIONS
127	Chemical and biochemical characterization of Ipomoea aquatica: genoprotective potential and inhibitory mechanism of its phytochemicals against α-amylase and α-glucosidase. Frontiers in Nutrition, 0, 10, .	3.7	0
128	Characterization and bioactivities of coffee husks extract encapsulated with polyvinylpyrrolidone. Food Research International, 2024, 178, 113878.	6.2	0
129	Research progresses on the effect of drying technology on α-glucosidase inhibitors in plants. , 0, 69, 538-544.		0
130	Inhibitory effect and mechanism of tannic acid against two starch digestive enzymes. Food Quality and Safety, 2024, 8, .	1.8	0
131	Effect of tea polyphenols supplement on growth performance, antioxidation, and gut microbiota in squabs. Frontiers in Microbiology, 0, 14, .	3.5	0
132	Molecular interactions between polyphenols and porcine α-amylase: An inhibition study on starch granules probed by kinetic, spectroscopic, calorimetric and in silico techniques. Food Hydrocolloids, 2024, 151, 109821.	10.7	0
133	Dietary phenolic compounds as promising therapeutic agents for diabetes and its complications: A comprehensive review. Food Science and Nutrition, 2024, 12, 3025-3045.	3.4	0
134	Onion (Allium cepa L.) Skin Waste Valorization: Unveiling the Phenolic Profile and Biological Potential for the Creation of Bioactive Agents through Subcritical Water Extraction. Antioxidants, 2024, 13, 205.	5.1	0
135	Milk casein hydrolysate peptides regulate starch digestion through inhibition of α-glucosidase: An insight into the active oligopeptide screening, enzyme inhibition behaviors, and oligopeptide-enzyme binding interactions. Food Hydrocolloids, 2024, 152, 109926.	10.7	0
136	Challenges and opportunities in developing low glycemic index foods with white kidney bean α-amylase inhibitor. Trends in Food Science and Technology, 2024, 147, 104397.	15.1	0