3D printed electro-thermal anti- or de-icing system for

Cold Regions Science and Technology 166, 102844

DOI: 10.1016/j.coldregions.2019.102844

Citation Report

#	Article	IF	CITATIONS
1	Passive Anti-Icing and Active Electrothermal Deicing System Based on an Ultraflexible Carbon Nanowire (CNW)/PDMS Biomimetic Nanocomposite with a Superhydrophobic Microcolumn Surface. Langmuir, 2020, 36, 14483-14494.	3.5	66
2	Novel sandwich structural electric heating coating for anti-icing/de-icing on complex surfaces. Surface and Coatings Technology, 2020, 404, 126489.	4.8	46
3	Preparation of Hydrophobic Surface on PLA and ABS by Fused Deposition Modeling. Polymers, 2020, 12, 1539.	4.5	28
4	3D printed epoxy-CNTs/GNPs conductive inks with application in anti-icing and de-icing systems. European Polymer Journal, 2020, 141, 110090.	5.4	22
5	Peridynamic modeling and simulation of thermo-mechanical de-icing process with modified ice failure criterion. Defence Technology, 2021, 17, 15-35.	4.2	22
6	The use of modern polymer materials and wood in the construction of buildings in the form of geodesic domes. E3S Web of Conferences, 2021, 274, 01024.	0.5	2
7	3D printed anti-icing and de-icing system based on CNT/GNP doped epoxy composites with self-curing and structural health monitoring capabilities. Smart Materials and Structures, 2021, 30, 025016.	3.5	16
8	A repairable carbon nanotube web-based electro-thermal heater and damage sensor for aerospace applications. Aeronautical Journal, 0 , , 1 - 11 .	1.6	O
9	Fused Filament Fabrication Three-Dimensional Printing Multi-Functional of Polylactic Acid/Carbon Black Nanocomposites. Journal of Carbon Research, 2021, 7, 52.	2.7	17
10	Printed Single-Wall Carbon Nanotube-Based Joule Heating Devices Integrated as Functional Laminae in Advanced Composites. ACS Applied Materials & Interfaces, 2021, 13, 39880-39893.	8.0	23
11	Temperature self-regulating electrothermal pseudo-slippery surface for anti-icing. Chemical Engineering Journal, 2021, 422, 130110.	12.7	28
12	Multiphysics anti-icing simulation of a CFRP composite wing structure embedded with thin etched-foil electrothermal heating films in glaze ice conditions. Composite Structures, 2021, 276, 114441.	5.8	17
13	Experimental investigation of surface wettability induced anti-icing characteristics in an ice wind tunnel. Renewable Energy, 2021, 179, 1179-1190.	8.9	20
14	Ultralow Icing Adhesion of a Superhydrophobic Coating Based on the Synergistic Effect of Soft and Stiff Particles. Langmuir, 2021, 37, 12016-12026.	3.5	21
15	Superhydrophobic materials used for anti-icing Theory, application, and development. IScience, 2021, 24, 103357.	4.1	52
16	Ice adhesion of PDMS surfaces with balanced elastic and water-repellent properties. Journal of Colloid and Interface Science, 2022, 608, 792-799.	9.4	35
17	A Mini-Review on Recent Developments in Anti-Icing Methods. Polymers, 2021, 13, 4149.	4.5	16
18	Durable and robust PVDF-HFP/SiO2/CNTs nanocomposites for anti-icing application: Water repellency, icing delay, and ice adhesion. Progress in Organic Coatings, 2022, 163, 106637.	3.9	8

#	Article	IF	CITATIONS
19	Effective thermal conductivity of 3D-printed continuous wire polymer composites. Progress in Additive Manufacturing, 2022, 7, 699-712.	4.8	5
20	Icephobic/anti-icing properties of superhydrophobic surfaces. Advances in Colloid and Interface Science, 2022, 304, 102658.	14.7	103
21	Electroâ€∤Photoâ€Thermal Promoted Antiâ€Icing Materials: A New Strategy Combined with Passive Antiâ€Icing and Active Deâ€Icing. Advanced Materials Interfaces, 2022, 9, .	3.7	38
22	Scalable high-efficiency multilayered anti-icing/de-icing coating: Superhydrophobic upper layer boosts the performance of the electrothermal system. Progress in Organic Coatings, 2022, 168, 106866.	3.9	5
23	An abrasion-resistant, photothermal, superhydrophobic anti-icing coating prepared by polysiloxane-modified carbon nanotubes and fluorine-silicone resin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129335.	4.7	33
26	Anti-icing fluid performance on substrates with different thermal conductivity and roughness. Cold Regions Science and Technology, 2022, 202, 103630.	3.5	0
27	Research and development of anti-icing/deicing techniques for vessels: Review. Ocean Engineering, 2022, 260, 112008.	4.3	24
28	Recent advances of bio-inspired anti-icing surfaces. Advances in Colloid and Interface Science, 2022, 308, 102756.	14.7	32
29	Smart low interfacial toughness coatings for on-demand de-icing without melting. Nature Communications, 2022, 13 , .	12.8	38
30	Dynamic simulation of aircraft electro-impulse de-icing using bond-based peridynamics. Advances in Mechanical Engineering, 2022, 14, 168781322211302.	1.6	0
31	Recent Developments on Dielectric Barrier Discharge (DBD) Plasma Actuators for Icing Mitigation. Actuators, 2023, 12, 5.	2.3	8
32	Anti-icing study for refrigerated container based on various heating wire forms. Thermal Science, 2022, , 215-215.	1.1	0
33	Heat flux measurement using 3D-printed continuous wire polymer composite sensors. Case Studies in Thermal Engineering, 2023, 42, 102739.	5.7	1
34	Multi-functional medical grade Polyamide12/Carbon black nanocomposites in material extrusion 3D printing. Composite Structures, 2023, 311, 116788.	5.8	16
35	Electrical Heaters for Anti/De-Icing of Polymer Structures. Polymers, 2023, 15, 1573.	4.5	2
36	Research progress on construction strategy and technical evaluation of aircraft icing accretion protection system. Chinese Journal of Aeronautics, 2023, 36, 1-23.	5.3	5
37	Research Progress of Superhydrophobic Materials in the Field of Anti-/De-Icing and Their Preparation: A Review. Materials, 2023, 16, 5151.	2.9	4
39	Graphite-epoxy composite systems for Joule heating based de-icing. Cold Regions Science and Technology, 2023, 216, 104024.	3.5	0

3

CITATION REPORT

#	Article	IF	CITATIONS
40	Reframing ice adhesion mechanisms on a solid surface. Applied Surface Science, 2023, 641, 158462.	6.1	3
41	Integrated composite electrothermal de-icing system based on ultra-thin flexible heating film. Applied Thermal Engineering, 2024, 236, 121723.	6.0	1
42	Recent progress in understanding the anti-icing behavior of materials. Advances in Colloid and Interface Science, 2024, 323, 103057.	14.7	3
43	Utilizing piezoelectric actuators to micro-vibration generation for de-icing system of aircraft. Multiscale and Multidisciplinary Modeling, Experiments and Design, 0, , .	2.1	0