Deep Learning With Edge Computing: A Review

Proceedings of the IEEE 107, 1655-1674

DOI: 10.1109/jproc.2019.2921977

Citation Report

#	Article	IF	CITATIONS
1	JSDoop and TensorFlow.js: Volunteer Distributed Web Browser-Based Neural Network Training. IEEE Access, 2019, 7, 158671-158684.	2.6	6
2	Scientific Image Restoration Anywhere. , 2019, , .		9
3	Traffic big data assisted V2X communications toward smart transportation. Wireless Networks, 2020, 26, 1601-1610.	2.0	33
4	Live Demonstration: CNN Edge Computing for Mobile Robot Navigation. , 2020, , .		O
5	Custom-IP for Gradient Descent Optimization based on Hardware/Software Co-design Paradigm., 2020,		0
6	Combining multiple data sources and enriching the dataset using Industrial Edge Devices. Procedia CIRP, 2020, 93, 1346-1351.	1.0	1
7	A Systematic Assessment of Embedded Neural Networks for Object Detection. , 2020, , .		26
8	Leveraging Deep Learning and IoT big data analytics to support the smart cities development: Review and future directions. Computer Science Review, 2020, 38, 100303.	10.2	165
9	Accelerating on-device DNN inference during service outage through scheduling early exit. Computer Communications, 2020, 162, 69-82.	3.1	1
10	Memory-Latency-Accuracy Trade-Offs for Continual Learning on a RISC-V Extreme-Edge Node. , 2020, , .		9
11	An Accurate EEGNet-based Motor-Imagery Brain–Computer Interface for Low-Power Edge Computing. , 2020, , .		54
12	Advanced Deep Learning-Based Computational Offloading for Multilevel Vehicular Edge-Cloud Computing Networks. IEEE Access, 2020, 8, 137052-137062.	2.6	84
13	A Smartphone-Based Cell Segmentation to Support Nasal Cytology. Applied Sciences (Switzerland), 2020, 10, 4567.	1.3	4
14	On Edge Computing for Remote Pathology Consultations and Computations. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 2523-2534.	3.9	20
15	Deep learning architectures in emerging cloud computing architectures: Recent development, challenges and next research trend. Applied Soft Computing Journal, 2020, 96, 106582.	4.1	50
16	Computation offloading in Edge Computing environments using Artificial Intelligence techniques. Engineering Applications of Artificial Intelligence, 2020, 95, 103840.	4.3	34
17	Job scheduling for distributed machine learning in optical WAN. Future Generation Computer Systems, 2020, 112, 549-560.	4.9	8
18	Fast and Accurate Streaming CNN Inference via Communication Compression on the Edge., 2020,,.		32

#	Article	IF	CITATIONS
19	Protecting Machine Learning Integrity in Distributed Big Data Networking. IEEE Network, 2020, 34, 84-90.	4.9	1
20	Task Offloading for Automatic Speech Recognition in Edge-Cloud Computing Based Mobile Networks. , 2020, , .		4
21	Al-edge based voice responsive smart headphone for user context-awarenes. , 2020, , .		0
22	Distributed Artificial Intelligence-as-a-Service (DAlaaS) for Smarter IoE and 6G Environments. Sensors, 2020, 20, 5796.	2.1	73
23	A survey on machine learning in Internet of Things: Algorithms, strategies, and applications. Internet of Things (Netherlands), 2020, 12, 100314.	4.9	56
24	A Review and Analysis of Automatic Optical Inspection and Quality Monitoring Methods in Electronics Industry. IEEE Access, 2020, 8, 183192-183271.	2.6	81
25	GPU based Re-trainable Pruned CNN design for Camera Trapping at the Edge. , 2020, , .		0
26	A Latency-Optimized Reconfigurable NoC for In-Memory Acceleration of DNNs. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2020, 10, 362-375.	2.7	25
27	The Communication-Aware Clustered Federated Learning Problem. , 2020, , .		18
28	CRIME: Input-Dependent Collaborative Inference for Recurrent Neural Networks. IEEE Transactions on Computers, 2020, , 1-1.	2.4	10
29	Electric Vehicles Plug-In Duration Forecasting Using Machine Learning for Battery Optimization. Energies, 2020, 13, 4208.	1.6	7
30	A Review on Computational Intelligence Techniques in Cloud and Edge Computing. IEEE Transactions on Emerging Topics in Computational Intelligence, 2020, 4, 742-763.	3.4	57
31	Edge Computing and Its Convergence With Blockchain in 5G and Beyond: Security, Challenges, and Opportunities. IEEE Access, 2020, 8, 205340-205373.	2.6	30
32	Key Advances in Pervasive Edge Computing for Industrial Internet of Things in 5G and Beyond. IEEE Access, 2020, 8, 206734-206754.	2.6	43
33	An Energy-Efficient Silicon Photonic-Assisted Deep Learning Accelerator for Big Data. Wireless Communications and Mobile Computing, 2020, 2020, 1-11.	0.8	4
34	Research and Application of Edge Computing Based on Deep Learning. Journal of Physics: Conference Series, 2020, 1646, 012016.	0.3	7
35	Accelerate Personalized IoT Service Provision by Cloud-Aided Edge Reinforcement Learning: A Case Study on Smart Lighting. Lecture Notes in Computer Science, 2020, , 69-84.	1.0	7
36	Extending reference architecture of big data systems towards machine learning in edge computing environments. Journal of Big Data, 2020, 7, .	6.9	22

#	Article	IF	Citations
37	Edge Machine Learning for Al-Enabled IoT Devices: A Review. Sensors, 2020, 20, 2533.	2.1	211
38	Federated Learning with Quantization Constraints. , 2020, , .		57
39	Optimization of Edge-PLC-Based Fault Diagnosis With Random Forest in Industrial Internet of Things. IEEE Internet of Things Journal, 2020, 7, 9664-9674.	5. 5	21
40	Remaining useful life prediction based on state assessment using edge computing on deep learning. Computer Communications, 2020, 160, 91-100.	3.1	23
41	Lightweight Compression Of Neural Network Feature Tensors For Collaborative Intelligence. , 2020, , .		28
42	Behavioral Biometrics for Continuous Authentication in the Internet-of-Things Era: An Artificial Intelligence Perspective. IEEE Internet of Things Journal, 2020, 7, 9128-9143.	5.5	84
43	EdgeDRNN: Enabling Low-latency Recurrent Neural Network Edge Inference. , 2020, , .		15
44	Logarithm-approximate floating-point multiplier is applicable to power-efficient neural network training. The Integration VLSI Journal, 2020, 74, 19-31.	1.3	10
45	Moving Deep Learning to the Edge. Algorithms, 2020, 13, 125.	1.2	48
46	Collaborative Data Scheduling for Vehicular Edge Computing via Deep Reinforcement Learning. IEEE Internet of Things Journal, 2020, 7, 9637-9650.	5 . 5	84
47	Deep Learning for Edge Computing Applications: A State-of-the-Art Survey. IEEE Access, 2020, 8, 58322-58336.	2.6	96
48	Low-Cost Image Search System on Off-Line Situation. Electronics (Switzerland), 2020, 9, 153.	1.8	2
49	Write Termination Circuits for RRAM: A Holistic Approach From Technology to Application Considerations. IEEE Access, 2020, 8, 109297-109308.	2.6	9
50	A Survey on Deep Transfer Learning to Edge Computing for Mitigating the COVID-19 Pandemic. Journal of Systems Architecture, 2020, 108, 101830.	2.5	112
51	Joint Task Offloading, CNN Layer Scheduling, and Resource Allocation in Cooperative Computing System. IEEE Systems Journal, 2020, 14, 5350-5361.	2.9	8
52	Convergence of Edge Computing and Deep Learning: A Comprehensive Survey. IEEE Communications Surveys and Tutorials, 2020, 22, 869-904.	24.8	776
53	Joint DNN Partition Deployment and Resource Allocation for Delay-Sensitive Deep Learning Inference in IoT. IEEE Internet of Things Journal, 2020, 7, 9241-9254.	5 . 5	72
54	Lightweight and Unobtrusive Data Obfuscation at IoT Edge for Remote Inference. IEEE Internet of Things Journal, 2020, 7, 9540-9551.	5 . 5	16

#	ARTICLE	IF	CITATIONS
55	Distributed perception and model inference with intelligent connected vehicles in smart cities. Ad Hoc Networks, 2020, 103, 102152.	3.4	9
56	Sliding Differential Evolution Scheduling for Federated Learning in Bandwidth-Limited Networks. IEEE Communications Letters, 2021, 25, 503-507.	2.5	8
57	Binarized Neural Architecture Search for Efficient Object Recognition. International Journal of Computer Vision, 2021, 129, 501-516.	10.9	8
58	"Last mile―optimization of edge computing ecosystem with deep learning models and specialized tensor processing architectures. Advances in Computers, 2021, , 303-341.	1.2	19
59	Distributed machine learning for energy trading in electric distribution system of the future. Electricity Journal, 2021, 34, 106883.	1.3	17
60	Video Caching, Analytics, and Delivery at the Wireless Edge: A Survey and Future Directions. IEEE Communications Surveys and Tutorials, 2021, 23, 431-471.	24.8	67
61	Wireless Networked Multirobot Systems in Smart Factories. Proceedings of the IEEE, 2021, 109, 468-494.	16.4	44
62	Wireless Avionics Intracommunications: A Survey of Benefits, Challenges, and Solutions. IEEE Internet of Things Journal, 2021, 8, 7745-7767.	5.5	24
63	Lights and shadows in Evolutionary Deep Learning: Taxonomy, critical methodological analysis, cases of study, learned lessons, recommendations and challenges. Information Fusion, 2021, 67, 161-194.	11.7	21
64	Achieving Democracy in Edge Intelligence: A Fog-Based Collaborative Learning Scheme. IEEE Internet of Things Journal, 2021, 8, 2751-2761.	5.5	23
65	DLSTM: Distributed Long Short-Term Memory Neural Networks for the Internet of Things. IEEE Transactions on Network Science and Engineering, 2022, 9, 111-120.	4.1	7
67	A Novel Approach of IoT Stream Sampling and Model Update on the IoT Edge Device for Class Incremental Learning in an Edge-Cloud System. IEEE Access, 2021, 9, 29180-29199.	2.6	4
68	Efficiency Versus Accuracy: A Review of Design Techniques for DNN Hardware Accelerators. IEEE Access, 2021, 9, 9785-9799.	2.6	18
69	Developing Practical Multi-view Learning for Clinical Analytics in P4 Medicine. IEEE Transactions on Emerging Topics in Computing, 2021, , 1-1.	3.2	3
70	Applications of Machine Learning in Networking: A Survey of Current Issues and Future Challenges. IEEE Access, 2021, 9, 52523-52556.	2.6	19
71	UVeQFed: Universal Vector Quantization for Federated Learning. IEEE Transactions on Signal Processing, 2021, 69, 500-514.	3.2	100
72	Latency-Driven Model Placement for Efficient Edge Intelligence Service. IEEE Transactions on Services Computing, 2022, 15, 591-601.	3.2	3
73	Over-the-Air Federated Learning From Heterogeneous Data. IEEE Transactions on Signal Processing, 2021, 69, 3796-3811.	3.2	86

#	Article	IF	Citations
74	When Serverless Computing Meets Edge Computing: Architecture, Challenges, and Open Issues. IEEE Wireless Communications, 2021, 28, 126-133.	6.6	58
75	Custom Hardware Architectures for Deep Learning on Portable Devices: A Review. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33, 6068-6088.	7.2	21
76	Simplified security learning using vertically partitioned data with IoT. Nonlinear Theory and Its Applications IEICE, 2021, 12, 412-423.	0.4	0
77	Grad-CAM-Based Classification of Chest X-Ray Images of Pneumonia Patients. Communications in Computer and Information Science, 2021, , 161-174.	0.4	4
78	Natural Language Understanding (NLU) on the Edge. Advances in Intelligent Systems and Computing, 2021, , 43-50.	0.5	1
79	A Survey on Applications of Deep Learning in Cloud Radio Access Network. IEEE Access, 2021, 9, 61972-61997.	2.6	4
80	Analysis of Edge-Optimized Deep Learning Classifiers for Radar-Based Gesture Recognition. IEEE Access, 2021, 9, 74406-74421.	2.6	15
81	Cloud Versus Edge Deployment Strategies of Real-Time Face Recognition Inference. IEEE Transactions on Network Science and Engineering, 2022, 9, 143-160.	4.1	24
82	Intelligent Service Migration Based on Hidden State Inference for Mobile Edge Computing. IEEE Transactions on Cognitive Communications and Networking, 2022, 8, 380-393.	4.9	16
83	Exploiting Hardware-Based Data-Parallel and Multithreading Models for Smart Edge Computing in Reconfigurable FPGAs. IEEE Transactions on Computers, 2022, 71, 2903-2914.	2.4	1
84	Home Appliance Recognition Using Edge Intelligence. Advances in Intelligent Systems and Computing, 2021, , 619-629.	0.5	1
85	The Design and Implementation of Secure Distributed Image Classification Model Training System for Heterogenous Edge Computing. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2021, , 179-198.	0.2	0
86	A Multiple Gradient Descent Design for Multi-Task Learning on Edge Computing: Multi-Objective Machine Learning Approach. IEEE Transactions on Network Science and Engineering, 2022, 9, 121-133.	4.1	13
87	Edge Analytics and Deep Learning for Sustainable Development. EAI/Springer Innovations in Communication and Computing, 2021, , 231-251.	0.9	0
88	Automated Deep Learning for Medical Imaging. , 2021, , 1-13.		0
89	Automated Ensemble for Deep Learning Inference on Edge Computing Platforms. IEEE Internet of Things Journal, 2022, 9, 4202-4213.	5.5	5
90	Enabling DNN Acceleration With Data and Model Parallelization Over Ubiquitous End Devices. IEEE Internet of Things Journal, 2022, 9, 15053-15065.	5.5	11
91	Two-Dimensional Task Offloading for Mobile Networks: An Imitation Learning Framework. IEEE/ACM Transactions on Networking, 2021, 29, 2494-2507.	2.6	7

#	Article	IF	CITATIONS
92	Human in the Loop: Industry 4.0 Technologies and Scenarios for Worker Mediation of Automated Manufacturing. IEEE Access, 2021, 9, 103950-103966.	2.6	20
93	DoSRA: A Decentralized Approach to Online Edge Task Scheduling and Resource Allocation. IEEE Internet of Things Journal, 2022, 9, 4677-4692.	5.5	18
94	Task Partitioning and Offloading in DNN-Task Enabled Mobile Edge Computing Networks. IEEE Transactions on Mobile Computing, 2023, 22, 2435-2445.	3.9	30
95	Wireless Edge Machine Learning: Resource Allocation and Trade-Offs. IEEE Access, 2021, 9, 45377-45398.	2.6	32
96	CUTIE: Beyond PetaOp/s/W Ternary DNN Inference Acceleration With Better-Than-Binary Energy Efficiency. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41, 1020-1033.	1.9	9
97	Assessing the Configuration Space of the Open Source NVDLA Deep Learning Accelerator on a Mainstream MPSoC Platform. IFIP Advances in Information and Communication Technology, 2021, , 87-112.	0.5	0
98	Design and Development of an Internet of Smart Cameras Solution for Complex Event Detection in COVID-19 Risk Behaviour Recognition. ISPRS International Journal of Geo-Information, 2021, 10, 81.	1.4	3
99	Optimising Deep Learning at the Edge for Accurate Hourly Air Quality Prediction. Sensors, 2021, 21, 1064.	2.1	26
100	Joint computation offloading and task caching for multi-user and multi-task MEC systems: reinforcement learning-based algorithms. Wireless Networks, 2021, 27, 2023-2038.	2.0	113
101	A Generalization Performance Study Using Deep Learning Networks in Embedded Systems. Sensors, 2021, 21, 1031.	2.1	13
102	A Deep Transfer Learning-based Edge Computing Method for Home Health Monitoring. , 2021, , .		10
103	Low-Cost Automatic Weather Stations in the Internet of Things. Information (Switzerland), 2021, 12, 146.	1.7	31
105	Design of a Model of a Reconfigurable Computing Environment for Determining Image Gradient Characteristics. Optoelectronics, Instrumentation and Data Processing, 2021, 57, 132-140.	0.2	4
106	Geolocation-Centric Information Platform for Resilient Spatio-temporal Content Management. IEICE Transactions on Communications, 2021, E104.B, 199-209.	0.4	3
107	Learning algorithms for vector quantization using vertically partitioned data with IoT. Artificial Life and Robotics, 2021, 26, 283-290.	0.7	1
108	Manufacturing as a Data-Driven Practice: Methodologies, Technologies, and Tools. Proceedings of the IEEE, 2021, 109, 399-422.	16.4	24
109	Transfer Learning on the Edge Networks. , 2021, , .		1
110	Real-time traffic sign detection network using DS-DetNet and lite fusion FPN. Journal of Real-Time Image Processing, 2021, 18, 2181-2191.	2.2	16

#	Article	IF	CITATIONS
111	Increasing Traffic Safety with Real-Time Edge Analytics and 5G., 2021,,.		16
112	ELVISort: encoding latent variables for instant sorting, an artificial intelligence-based end-to-end solution. Journal of Neural Engineering, 2021, 18, 046033.	1.8	7
114	Edge deep learning for neural implants: a case study of seizure detection and prediction. Journal of Neural Engineering, 2021, 18, 046034.	1.8	28
115	Embedding Sequence Model in STM32 Based Neuro-Controller. , 2021, , .		2
116	Dynamic Markov Model: Password Guessing Using Probability Adjustment Method. Applied Sciences (Switzerland), 2021, 11, 4607.	1.3	2
117	Towards On-Device Face Recognition in Body-worn Cameras. , 2021, , .		7
118	Performance prediction for convolutional neural networks on edge GPUs., 2021,,.		10
119	TEA-fed., 2021,,.		15
120	Cloud-backed mobile cognition. Computing (Vienna/New York), 2022, 104, 461-479.	3.2	2
121	Ultra-compact binary neural networks for human activity recognition on RISC-V processors., 2021,,.		14
122	AutoML for Video Analytics with Edge Computing. , 2021, , .		34
123	Mobile app recommendation via heterogeneous graph neural network in edge computing. Applied Soft Computing Journal, 2021, 103, 107162.	4.1	16
124	An Overview of Machine Learning within Embedded and Mobile Devices–Optimizations and Applications. Sensors, 2021, 21, 4412.	2.1	73
125	Reconfigurable Intelligent Surface for Green Edge Inference. IEEE Transactions on Green Communications and Networking, 2021, 5, 964-979.	3.5	36
126	Reconfigurable Intelligent Surface Aided Mobile Edge Computing: From Optimization-Based to Location-Only Learning-Based Solutions. IEEE Transactions on Communications, 2021, 69, 3709-3725.	4.9	58
127	Distributed Learning Applications in Power Systems: A Review of Methods, Gaps, and Challenges. Energies, 2021, 14, 3654.	1.6	6
128	Optimization Techniques for Conversion of Quantization Aware Trained Deep Neural Networks to Lightweight Spiking Neural Networks. , 2021, , .		1
129	Dynamic Resource Optimization for Adaptive Federated Learning at the Wireless Network Edge. , 2021, , .		6

#	Article	IF	CITATIONS
130	Design Considerations for Energy-efficient Inference on Edge Devices., 2021,,.		8
131	Model-based Weight Quantization for Convolutional Neural Network Compression., 2021,,.		7
132	Memory Efficient Invertible Neural Networks for Class-Incremental Learning., 2021,,.		0
133	Distributed training for accelerating metalearning algorithms. , 2021, , .		3
134	Soudain: Online Adaptive Profile Configuration for Real-time Video Analytics., 2021,,.		3
135	Removing Channel Estimation by Location-Only Based Deep Learning for RIS Aided Mobile Edge Computing. , 2021, , .		3
136	Reconfigurable Intelligent Surface Assisted Mobile Edge Computing With Heterogeneous Learning Tasks. IEEE Transactions on Cognitive Communications and Networking, 2021, 7, 369-382.	4.9	44
137	Stable and compact design of Memristive GoogLeNet Neural Network. Neurocomputing, 2021, 441, 52-63.	3.5	20
138	Energy-efficient neural networks with near-threshold processors and hardware accelerators. Journal of Systems Architecture, 2021, 116, 102062.	2.5	4
139	MEC-Based Energy-Aware Distributed Feature Extraction for mHealth Applications with Strict Latency Requirements. , 2021, , .		9
140	Adaptive and Collaborative Edge Inference in Task Stream with Latency Constraint. , 2021, , .		5
141	Model-Based Deep Learning: Key Approaches and Design Guidelines. , 2021, , .		16
142	Informed Prefetching in I/O Bounded Distributed Deep Learning., 2021,,.		3
143	Energy-efficient Collaborative Sensing: Learning the Latent Correlations of Heterogeneous Sensors. ACM Transactions on Sensor Networks, 2021, 17, 1-28.	2.3	5
144	Learning-Based Fast Decision for Task Execution in Next Generation Wireless Networks., 2021,,.		1
145	Emotion Recognition on Edge Devices: Training and Deployment. Sensors, 2021, 21, 4496.	2.1	5
146	Collaborative Inference via Ensembles on the Edge. , 2021, , .		16
147	Improving the Accuracy of Early Exits in Multi-Exit Architectures via Curriculum Learning. , 2021, , .		4

#	Article	IF	CITATIONS
148	An Energy-Efficient SNN Processor Design based on Sparse Direct Feedback and Spike Prediction. , 2021, , .		2
149	Wearable Edge AI Applications for Ecological Environments. Sensors, 2021, 21, 5082.	2.1	10
150	TinyRadarNN: Combining Spatial and Temporal Convolutional Neural Networks for Embedded Gesture Recognition With Short Range Radars. IEEE Internet of Things Journal, 2021, 8, 10336-10346.	5.5	34
151	Task Offloading with Uncertain Processing Cycles. , 2021, , .		2
152	Scientometric review of artificial intelligence for operations & maintenance of wind turbines: The past, present and future. Renewable and Sustainable Energy Reviews, 2021, 144, 111051.	8.2	47
153	Fog Computing for Smart Grids. , 2021, , 7-31.		0
154	Analysis of Machine Learning Algorithms for Anomaly Detection on Edge Devices. Sensors, 2021, 21, 4946.	2.1	9
156	Optimization of MLP Neural Networks in 8-bit Microcontrollers using Program Memory. , 2021, , .		0
157	Ensemble Online Sequential Extreme Learning Machine for Air Quality Prediction., 2021,,.		0
158	An edge based hybrid intrusion detection framework for mobile edge computing. Complex & Intelligent Systems, 2022, 8, 3719-3746.	4.0	16
159	A controlled investigation of behaviorally-cloned deep neural network behaviors in an autonomous steering task. Robotics and Autonomous Systems, 2021, 142, 103780.	3.0	2
160	6G-enabled Edge Intelligence for Ultra -Reliable Low Latency Applications: Vision and Mission. Computer Standards and Interfaces, 2021, 77, 103521.	3.8	63
161	Best Practices for the Deployment of Edge Inference: The Conclusions to Start Designing. Electronics (Switzerland), 2021, 10, 1912.	1.8	5
162	Adaptive In-Network Collaborative Caching for Enhanced Ensemble Deep Learning at Edge. Mathematical Problems in Engineering, 2021, 2021, 1-14.	0.6	3
163	In-circuit tuning of deep learning designs. Journal of Systems Architecture, 2021, 118, 102198.	2.5	0
164	Distributing DNN training over IoT edge devices based on transfer learning. Neurocomputing, 2022, 467, 56-65.	3.5	12
165	A Survey of Recent Advances in Edge-Computing-Powered Artificial Intelligence of Things. IEEE Internet of Things Journal, 2021, 8, 13849-13875.	5.5	113
166	Synergistically Exploiting CNN Pruning and HLS Versioning for Adaptive Inference on Multi-FPGAs at the Edge. Transactions on Embedded Computing Systems, 2021, 20, 1-26.	2.1	8

#	ARTICLE	IF	CITATIONS
167	Federated deep reinforcement learning based secure data sharing for Internet of Things. Computer Networks, 2021, 197, 108327.	3.2	19
168	Mobile computing and communications-driven fog-assisted disaster evacuation techniques for context-aware guidance support: A survey. Computer Communications, 2021, 179, 195-216.	3.1	4
169	Convolutional feature extraction for process monitoring using ultrasonic sensors. Computers and Chemical Engineering, 2021, 155, 107508.	2.0	3
170	Energy-conscious optimization of Edge Computing through Deep Reinforcement Learning and two-phase immersion cooling. Future Generation Computer Systems, 2021, 125, 891-907.	4.9	20
171	Low-precision Logarithmic Number Systems. Transactions on Architecture and Code Optimization, 2021, 18, 1-25.	1.6	8
172	Edge computing enabled video segmentation for real-time traffic monitoring in internet of vehicles. Pattern Recognition, 2022, 121, 108146.	5.1	93
173	Edge Learning. ACM Computing Surveys, 2022, 54, 1-36.	16.1	10
174	Edge Computing in Healthcare Systems. EAI/Springer Innovations in Communication and Computing, 2021, , 63-100.	0.9	2
175	Decoupling Offloading Decision and Resource Allocation via Deep Reinforcement Learning and Sequential Least Squares Programming. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2021, , 554-566.	0.2	0
176	Novel Approach of Class Incremental Learning on Internet of Things (IoT) Framework. Advances in Intelligent Systems and Computing, 2021, , 358-367.	0.5	0
177	Hardware-Aware Affordance Detection for Application in Portable Embedded Systems. IEEE Access, 2021, 9, 123178-123193.	2.6	10
178	ISLSTM: An Intelligent Scheduling Algorithm for Internet of Things. Transactions on Computational Science and Computational Intelligence, 2021, , 655-668.	0.3	0
179	An Energy-Efficient Fine-Grained Deep Neural Network Partitioning Scheme for Wireless Collaborative Fog Computing. IEEE Access, 2021, 9, 79611-79627.	2.6	16
180	Lightweight Compression of Intermediate Neural Network Features for Collaborative Intelligence. IEEE Open Journal of Circuits and Systems, 2021, 2, 350-362.	1.4	12
181	Edge Intelligence-Based Moving Target Classification Using Compressed Seismic Measurements and Convolutional Neural Networks. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1-5.	1.4	11
182	Compact and Stable Memristive Visual Geometry Group Neural Network. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 987-998.	7.2	4
183	SyReNN: A Tool for Analyzing Deep Neural Networks. Lecture Notes in Computer Science, 2021, , 281-302.	1.0	6
184	Reconstruction of Missing Ground-Penetrating Radar Traces Using Simplified U-Net. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1-5.	1.4	3

#	Article	IF	CITATIONS
185	An Overview of the Edge Computing in the Modern Digital Age. Advances in Information Security, 2021, , 33-52.	0.9	2
186	Energy-efficient deep learning inference on edge devices. Advances in Computers, 2021, 122, 247-301.	1.2	17
187	Resource-Constrained Neural Architecture Search on Edge Devices. IEEE Transactions on Network Science and Engineering, 2022, 9, 134-142.	4.1	14
188	Test Architecture for Systolic Array of Edge-Based Al Accelerator. IEEE Access, 2021, 9, 96700-96710.	2.6	6
189	Data-Driven Predictive Maintenance: AÂMethodology Primer. Information Fusion and Data Science, 2021, , 39-73.	0.3	2
190	Cyber-Physical-Social Systems: An Overview. , 2021, , 25-45.		7
191	IoT Sensor Data Analysis and Fusion Applying Machine Learning and Meta-Heuristic Approaches. Studies in Computational Intelligence, 2021, , 441-469.	0.7	8
192	A Novel Multi-step Finite-State Automaton for Arbitrarily Deterministic Tsetlin Machine Learning. Lecture Notes in Computer Science, 2020, , 108-122.	1.0	4
193	Deep Reinforcement Learning for Autonomous Internet of Things: Model, Applications and Challenges. IEEE Communications Surveys and Tutorials, 2020, 22, 1722-1760.	24.8	159
194	Siamese Networks for Few-Shot Learning on Edge Embedded Devices. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2020, 10, 488-497.	2.7	12
195	EdgeDRNN: Recurrent Neural Network Accelerator for Edge Inference. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2020, 10, 419-432.	2.7	28
196	End-to-End Evaluation of Federated Learning and Split Learning for Internet of Things. , 2020, , .		84
197	Deep Learning Inference at the Edge for Mobile and Aerial Robotics. , 2020, , .		5
198	Image Search System Based on Feature Vectors of Convolutional Neural Network. , 2020, , .		1
199	Cross-Layer Hardware/Software Assessment of the Open-Source NVDLA Configurable Deep Learning Accelerator., 2020,,.		1
200	SEE., 2019,,.		13
201	Architecture for Enabling Edge Inference via Model Transfer from Cloud Domain in a Kubernetes Environment. Future Internet, 2021, 13, 5.	2.4	12
202	HiveMind: Towards Cellular Native Machine Learning Model Splitting. IEEE Journal on Selected Areas in Communications, 2022, 40, 626-640.	9.7	20

#	Article	IF	CITATIONS
203	Implementing Practical DNN-Based Object Detection Offloading Decision for Maximizing Detection Performance of Mobile Edge Devices. IEEE Access, 2021, 9, 140199-140211.	2.6	9
204	Joint Coding and Scheduling Optimization for Distributed Learning Over Wireless Edge Networks. IEEE Journal on Selected Areas in Communications, 2022, 40, 484-498.	9.7	6
205	Demo: Discover, Provision, and Orchestration of Machine Learning Inference Services in Heterogeneous Edge. , 2021 , , .		1
206	Workflow on CNN utilization and inference in FPGA for embedded applications: 6th South-East Europe Design Automation, Computer Engineering, Computer Networks and Social Media Conference (SEEDA-CECNSM 2021)., 2021, , .		3
207	A Container-based Design Methodology for Robotic Applications on Kubernetes Edge-Cloud architectures. , 2021, , .		8
208	DDoS Attack Detection in Vehicular Ad-Hoc Network (VANET) for 5G Networks. Studies in Big Data, 2022, , 263-278.	0.8	13
209	A <scp>multiâ€step finiteâ€state</scp> automaton for arbitrarily deterministic Tsetlin Machine learning. Expert Systems, 2023, 40, .	2.9	1
210	Survey on Mobile Edge-Cloud Computing: A Taxonomy on Computation offloading Approaches. Studies in Big Data, 2022, , 117-158.	0.8	10
211	Privacy-preserving activity and health monitoring on databox. , 2020, , .		11
212	Performance Analysis of Deep Neural Networks for Object Classification with Edge TPU., 2020, , .		8
213	Real-Time Identification of Rice Weeds by UAV Low-Altitude Remote Sensing Based on Improved Semantic Segmentation Model. Remote Sensing, 2021, 13, 4370.	1.8	23
214	Improved Environment-Aware–Based Noise Reduction System for Cochlear Implant Users Based on a Knowledge Transfer Approach: Development and Usability Study. Journal of Medical Internet Research, 2021, 23, e25460.	2.1	3
215	Boost Precision Agriculture with Unmanned Aerial Vehicle Remote Sensing and Edge Intelligence: A Survey. Remote Sensing, 2021, 13, 4387.	1.8	58
216	Improving Backbones Performance by Complex Architectures. Lecture Notes in Computer Science, 2020, , 394-406.	1.0	0
217	COTAF: Convergent Over-the-Air Federated Learning. , 2020, , .		15
218	Energy Optimization on Joint Task Computation Using Genetic Algorithm. , 2020, , .		0
219	QoS Optimization of DNN Serving Systems Based on Per-Request Latency Characteristics. , 2020, , .		2
220	Bayesian Online Learning for MEC Object Recognition Systems. , 2020, , .		4

#	Article	IF	CITATIONS
221	An Intelligent Doorbell Design Using Federated Deep Learning. , 2021, , .		3
222	On the impact of smart sensor approximations on the accuracy of machine learning tasks. Heliyon, 2020, 6, e05750.	1.4	3
223	Optimization of Deep Learning Inference on Edge Devices. , 2020, , .		8
224	A Survey on Edge Computing in Bioinformatics and Health Informatics. , 2020, , .		5
225	Machine Learning at Resource Constraint Edge Device Using Bonsai Algorithm. , 2020, , .		6
226	An Edge-Cloud Framework Equipped with Deep Learning Model for Recyclable Garbage Detection. , 2020, , .		0
227	Defending Against Localized Adversarial Attacks on Edge-Deployed Monocular Depth Estimators. , 2020, , .		1
228	Serving at the Edge: An Edge Computing Service Architecture Based on ICN. ACM Transactions on Internet Technology, 2022, 22, 1-27.	3.0	17
229	Machine Learning at the Network Edge: A Survey. ACM Computing Surveys, 2022, 54, 1-37.	16.1	134
231	Federated Learning for Privacy-Preserving Speaker Recognition. IEEE Access, 2021, 9, 149477-149485.	2.6	3
232	Evaluation of Deep Learning Accelerators for Object Detection at the Edge. Lecture Notes in Computer Science, 2020, , 320-326.	1.0	7
233	Al Multi-Tenancy on Edge: Concurrent Deep Learning Model Executions and Dynamic Model Placements on Edge Devices., 2021,,.		7
234	Development of a micro weather station using Arduino and Internet of Things. Physics Education, 2022, 57, 015005.	0.3	1
235	Highly-Optimized Radar-Based Gesture Recognition System with Depthwise Expansion Module. Sensors, 2021, 21, 7298.	2.1	14
236	Bringing AI to edge: From deep learning's perspective. Neurocomputing, 2022, 485, 297-320.	3.5	44
237	Sparse and dense matrix multiplication hardware for heterogeneous multi-precision neural networks. Array, 2021, 12, 100101.	2.5	1
238	Late Breaking Results: Enabling Containerized Computing and Orchestration of ROS-based Robotic SW Applications on Cloud-Server-Edge Architectures. , 2020, , .		5
239	Distributing deep learning inference on edge devices. , 2020, , .		2

#	Article	IF	CITATIONS
240	Harnessing the Computing Continuum for Urgent Science. Performance Evaluation Review, 2020, 48, 41-46.	0.4	8
241	DNN Placement and Inference in Edge Computing. , 2020, , .		3
242	A collaborative deep learning microservice for backdoor defenses in Industrial IoT networks. Ad Hoc Networks, 2022, 124, 102727.	3.4	7
243	When latency matters. Computer Communication Review, 2021, 51, 2-13.	1.5	5
244	A Benchmark of Deep Learning Models for Multi-leaf Diseases for Edge Devices. , 2021, , .		8
245	Self-Adaptive Approximate Mobile Deep Learning. Electronics (Switzerland), 2021, 10, 2958.	1.8	4
246	Simulating multi-agent-based computation offloading for autonomous cars. Cluster Computing, 2022, 25, 2755-2766.	3.5	3
247	A pilot study towards a smart-health framework to collect and analyze biomarkers with low-cost and flexible wearables. Smart Health, 2022, 23, 100249.	2.0	13
248	Multi-view Representation Learning withÂDeep Features forÂOffline Signature Verification. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2021, , 261-275.	0.2	0
249	EdgePipe: Tailoring Pipeline Parallelism With Deep Neural Networks for Volatile Wireless Edge Devices. IEEE Internet of Things Journal, 2022, 9, 11633-11647.	5.5	3
250	Holistic Network Virtualization and Pervasive Network Intelligence for 6G. IEEE Communications Surveys and Tutorials, 2022, 24, 1-30.	24.8	124
251	Low Latency Deep Learning Inference Model for Distributed Intelligent IoT Edge Clusters. IEEE Access, 2021, 9, 160607-160621.	2.6	18
252	DePo: Dynamically Offload Expensive Event Processing to the Edge of Cyber-Physical Systems. IEEE Transactions on Parallel and Distributed Systems, 2022, 33, 2120-2132.	4.0	2
253	Task Offloading and Scheduling Strategy for Intelligent Prosthesis in Mobile Edge Computing Environment. Wireless Communications and Mobile Computing, 2022, 2022, 1-13.	0.8	3
254	A Minimalist Method Toward Severity Assessment and Progression Monitoring of Obstructive Sleep Apnea on the Edge. ACM Transactions on Computing for Healthcare, 2022, 3, 1-16.	3.3	0
255	Machine Learning at the Edge: Efficient Utilization of Limited CPU/GPU Resources by Multiplexing. , 2020, , .		9
256	Poster: Configuration Management for Internet Services at the Edge: A Data-Driven Approach. , 2020, , .		1
258	Edge-Cloud Architectures Using UAVs Dedicated To Industrial IoT Monitoring And Control Applications. , 2020, , .		3

#	Article	IF	Citations
259	Energy-Efficient Adaptive Machine Learning on IoT End-Nodes With Class-Dependent Confidence. , 2020, , .		2
260	ECML: Improving Efficiency of Machine Learning in Edge Clouds. , 2020, , .		6
261	A Multi-Agent Approach for Vehicle-to-Fog Fair Computation Offloading. , 2020, , .		1
262	Evaluation and Optimization of Distributed Machine Learning Techniques for Internet of Things. IEEE Transactions on Computers, 2022, 71, 2538-2552.	2.4	23
263	Parameter Servers Placement for Distributed Deep Learning in Edge computing., 2021,,.		0
264	Retransmission Edge Computing System Conducting Adaptive Image Compression Based on Image Recognition Accuracy. , 2021, , .		3
265	DNN inference offloading for object detection in 5G multi-access edge computing. , 2021, , .		4
266	Adaptive Deep Neural Network Ensemble for Inference-as-a-Service on Edge Computing Platforms. , 2021, , .		0
267	Edge MLOps: An Automation Framework for AloT Applications. , 2021, , .		22
268	Kubernetes-based DL Offloading Framework for Optimizing GPU Utilization in Edge Computing. , 2021, , .		0
269	Real-Time, CNN-Based Assistive Device for Visually Impaired People. , 2021, , .		3
270	DeepFreeze: Cold Boot Attacks and High Fidelity Model Recovery on Commercial EdgeML Device. , 2021, , .		4
271	A library-based tool to translate high level DNN models into hierarchical VHDL descriptions. , 2021, , .		0
272	Prospect of R17 and B5G/6G. , 2022, , 981-1011.		0
273	DEFER: Distributed Edge Inference for Deep Neural Networks. , 2022, , .		10
274	CHIMERA: A 0.92-TOPS, 2.2-TOPS/W Edge AI Accelerator With 2-MByte On-Chip Foundry Resistive RAM for Efficient Training and Inference. IEEE Journal of Solid-State Circuits, 2022, 57, 1013-1026.	3.5	15
275	Resource Allocation Using Deep Learning in Mobile Small Cell Networks. IEEE Transactions on Green Communications and Networking, 2022, 6, 1903-1915.	3.5	5
276	SplitPlace. Performance Evaluation Review, 2022, 49, 63-65.	0.4	3

#	ARTICLE	IF	CITATIONS
277	Edge Intelligence: Concepts, Architectures, Applications, and Future Directions. Transactions on Embedded Computing Systems, 2022, 21, 1-41.	2.1	17
278	Heterogeneous platform-aware workload feature recognition for edge intelligence. Physical Communication, 2022, 52, 101620.	1.2	1
279	Communication-efficient distributed AI strategies for the IoT edge. Future Generation Computer Systems, 2022, 131, 292-308.	4.9	19
280	Deep learning in multiagent systems. , 2022, , 435-460.		0
281	Adaptive Early Exit of Computation for Energy-Efficient and Low-Latency Machine Learning over IoT Networks., 2022,,.		4
282	Anomalous Vehicle Recognition in Smart Urban Traffic Monitoring as an Edge Service. Future Internet, 2022, 14, 54.	2.4	5
283	Federated learning and next generation wireless communications: A survey on bidirectional relationship. Transactions on Emerging Telecommunications Technologies, 2022, 33, .	2.6	13
284	KeepEdge: A Knowledge Distillation Empowered Edge Intelligence Framework for Visual Assisted Positioning in UAV Delivery. IEEE Transactions on Mobile Computing, 2023, 22, 4729-4741.	3.9	5
285	An Efficient and Robust Cloud-Based Deep Learning With Knowledge Distillation. IEEE Transactions on Cloud Computing, 2023, 11, 1733-1745.	3.1	6
286	Resilience Enhancement at Edge Cloud Systems. IEEE Access, 2022, 10, 45190-45206.	2.6	5
287	edge–SR: Super–Resolution For The Masses. , 2022, , .		7
288	Multiobjective Multiple Mobile Sink Scheduling via Evolutionary Fuzzy Rough Neural Network for Wireless Sensor Networks. IEEE Transactions on Fuzzy Systems, 2022, 30, 4630-4641.	6.5	4
289	Joint Social-Aware and Mobility-Aware Computation Offloading in Heterogeneous Mobile Edge Computing. IEEE Access, 2022, 10, 28600-28613.	2.6	5
290	An Edge-Al Based Forecasting Approach for Improving Smart Microgrid Efficiency. IEEE Transactions on Industrial Informatics, 2022, 18, 7946-7954.	7.2	62
291	Real-Time Semantic Segmentation via Spatial-Detail Guided Context Propagation. IEEE Transactions on Neural Networks and Learning Systems, 2024, PP, 1-12.	7.2	10
293	SpongeTraining: Achieving High Efficiency and Accuracy for Wireless Edge-Assisted Online Distributed Learning. IEEE Transactions on Mobile Computing, 2023, 22, 4930-4945.	3.9	0
294	Supervised Compression for Resource-Constrained Edge Computing Systems. , 2022, , .		26
296	Al-Enabled Secure Microservices in Edge Computing: Opportunities and Challenges. IEEE Transactions on Services Computing, 2023, 16, 1485-1504.	3.2	29

#	Article	IF	CITATIONS
297	Automated Deep Learning for Medical Imaging. , 2022, , 473-485.		0
298	Edge Computing asÂanÂArchitectural Solution: AnÂUmbrella Review. Lecture Notes in Electrical Engineering, 2022, , 601-616.	0.3	0
299	Imtidad: A Reference Architecture and a Case Study on Developing Distributed AI Services for Skin Disease Diagnosis over Cloud, Fog and Edge. Sensors, 2022, 22, 1854.	2.1	19
300	Visualization of Railway Transportation Engineering Management Using BIM Technology under the Application of Internet of Things Edge Computing. Wireless Communications and Mobile Computing, 2022, 2022, 1-15.	0.8	5
301	Domain-Aware Neural Architecture Search for Classifying Animals in Camera Trap Images. Animals, 2022, 12, 437.	1.0	5
302	Preservation of Higher Accuracy Computing in Resource-Constrained Devices Using Deep Neural Approach., 2022,,.		0
303	Global impact of COVID-19 on agriculture: role of sustainable agriculture and digital farming. Environmental Science and Pollution Research, 2023, 30, 42509-42525.	2.7	64
304	Split Computing and Early Exiting for Deep Learning Applications: Survey and Research Challenges. ACM Computing Surveys, 2023, 55, 1-30.	16.1	30
305	A Survey of Deep Learning on Mobile Devices: Applications, Optimizations, Challenges, and Research Opportunities. Proceedings of the IEEE, 2022, 110, 334-354.	16.4	19
306	Performance Modeling of Computer Vision-based CNN on Edge GPUs. Transactions on Embedded Computing Systems, 2022, 21, 1-33.	2.1	1
307	Local & Department of the network edge for efficient predictive analytics. Future Generation Computer Systems, 2022, 134, 107-122.	4.9	10
308	Adaptive sparse ternary gradient compression for distributed DNN training in edge computing. CCF Transactions on High Performance Computing, 0 , 1 .	1.1	0
309	New fully automatic approach for tissue identification in histopathological examinations using transfer learning. IET Image Processing, 2022, 16, 2875-2889.	1.4	5
310	Programmable black phosphorus image sensor for broadband optoelectronic edge computing. Nature Communications, 2022, 13, 1485.	5.8	67
311	Image Classification for Edge-Cloud Setting: A Comparison Study for OCR Application. Pertanika Journal of Science and Technology, 2022, 30, 1157-1170.	0.3	1
312	Winograd Convolution for Deep Neural Networks: Efficient Point Selection. Transactions on Embedded Computing Systems, 2022, 21, 1-28.	2.1	6
313	Edge computing and the internet of things on agricultural green productivity. Journal of Supercomputing, 2022, 78, 14448-14470.	2.4	5
314	Dynamic and adaptive fault-tolerant asynchronous federated learning using volunteer edge devices. Future Generation Computer Systems, 2022, 133, 53-67.	4.9	13

#	Article	IF	CITATIONS
315	Energy and Cost Considerations for GPU Accelerated AI Inference Workloads. , 2021, , .		0
316	Comparative Evaluation of Machine Learning Inference Machines on Edge-class Devices. , 2021, , .		4
317	Evaluating policy-driven adaptation on the Edge-to-Cloud Continuum. , $2021, , .$		2
318	A pose-based hand image classification method retrainable on embedded target devices. , 2021, , .		O
319	Audio Distress Signal Recognition in Rural and Urban Areas using a WSN consisting of Portable Resource-Constrained Devices. , 2021, , .		0
320	Exploring Edge Computing for Gait Recognition. , 2021, , .		0
321	Placement of DNN Models on Mobile Edge Devices for Effective Video Analysis., 2021,,.		1
322	BP-Net: Efficient Deep Learning for Continuous Arterial Blood Pressure Estimation using Photoplethysmogram. , 2021, , .		3
323	Compact CNN Models for On-device Ocular-based User Recognition in Mobile Devices. , 2021, , .		7
324	Master-slave based test cost reduction method for DNN accelerators. IEICE Electronics Express, 2021, 18, 20210425-20210425.	0.3	O
325	A Review on Deep Reinforcement Learning for the management of SDN and NFV in Edge-IoT. , 2021, , .		5
326	MDSC., 2021,,.		2
327	A Mini-Survey and Feasibility Study of Deep-Learning-Based Human Activity Recognition from Slight Feature Signals Obtained Using Privacy-Aware Environmental Sensors. Applied Sciences (Switzerland), 2021, 11, 11807.	1.3	3
328	Side-Channel Analysis-Based Model Extraction on Intelligent CPS: An Information Theory Perspective. , 2021, , .		1
329	Efficient Parameter Server Placement for Distributed Deep Learning in Edge Computing. Computer Journal, 0, , .	1.5	0
330	Visual AI Applications on Smart Delivery Units. , 2021, , .		0
331	Understanding the Threats of Trojaned Quantized Neural Network in Model Supply Chains. , 2021, , .		5
332	Memcached: An Experimental Study of DDoS Attacks for the Wellbeing of IoT Applications. Sensors, 2021, 21, 8071.	2.1	2

#	Article	IF	CITATIONS
333	A Neural Network Model Compression Method for Pneumonia Image Classification., 2021,,.		0
334	Analyse or Transmit: Utilising Correlation at the Edge with Deep Reinforcement Learning. , 2021, , .		2
335	AutoGeoLabel: Automated Label Generation for Geospatial Machine Learning. , 2021, , .		5
336	A CNN-based Human Activity Recognition System Combining a Laser Feedback Interferometry Eye Movement Sensor and an IMU for Context-aware Smart Glasses., 2021, 5, 1-24.		11
337	The Cloud based Edge Computing with IoT Infrastructure and Security., 2021,,.		0
338	Energy-Efficient Service Placement for Latency-Sensitive Applications in Edge Computing. IEEE Internet of Things Journal, 2022, 9, 17926-17937.	5.5	9
339	Deep reinforcement learning for dynamic scheduling of a flexible job shop. International Journal of Production Research, 2022, 60, 4049-4069.	4.9	42
340	Applications and Techniques for Fast Machine Learning in Science. Frontiers in Big Data, 2022, 5, 787421.	1.8	20
341	Distributed intelligence on the Edge-to-Cloud Continuum: A systematic literature review. Journal of Parallel and Distributed Computing, 2022, 166, 71-94.	2.7	35
342	A Runtime Resource Management and Provisioning Middleware for Fog Computing Infrastructures. ACM Transactions on Internet of Things, 2022, 3, 1-29.	3.4	O
343	Commentary: Leveraging Edge Computing Technology for Digital Pathology. Journal of Pathology Informatics, 2021, 12, 12.	0.8	2
344	Al cardiologist at the edge., 2022,, 469-477.		3
345	Multi-exit DNN Inference Acceleration based on Multi-Dimensional Optimization for Edge Intelligence. IEEE Transactions on Mobile Computing, 2022, , 1-1.	3.9	16
346	Real-Time Fault Detection and Condition Monitoring for Industrial Autonomous Transfer Vehicles Utilizing Edge Artificial Intelligence. Sensors, 2022, 22, 3208.	2.1	17
347	Pyramid: Enabling Hierarchical Neural Networks with Edge Computing., 2022,,.		42
348	Federated Learning: A signal processing perspective. IEEE Signal Processing Magazine, 2022, 39, 14-41.	4.6	48
349	Big Data Seismology. Reviews of Geophysics, 2022, 60, .	9.0	24
350	Goal-Oriented Communication for Edge Learning Based On the Information Bottleneck. , 2022, , .		7

#	Article	IF	Citations
351	Internet of things: Conceptual network structure, main challenges and future directions. Digital Communications and Networks, 2023, 9, 677-687.	2.7	16
352	Dynamic Resource Optimization for Adaptive Federated Learning Empowered by Reconfigurable Intelligent Surfaces., 2022,,.		1
353	Fault-Aware Adversary Attack Analyses and Enhancement for RRAM-Based Neuromorphic Accelerator. Frontiers in Sensors, 2022, 3, .	1.7	0
354	U-HAR. Proceedings of the ACM on Human-Computer Interaction, 2022, 6, 1-19.	2.5	4
355	Enabling Deep Reinforcement Learning on Energy Constrained Devices at the Edge of the Network. , 2022, , .		1
356	A survey on deep learning for cybersecurity: Progress, challenges, and opportunities. Computer Networks, 2022, 212, 109032.	3.2	35
357	Ubi-Flex-Cloud: ubiquitous flexible cloud computing: status quo and research imperatives. Applied Computing and Informatics, 2022, ahead-of-print, .	3.7	3
358	CNNPC: End-Edge-Cloud Collaborative CNN Inference With Joint Model Partition and Compression. IEEE Transactions on Parallel and Distributed Systems, 2022, 33, 4039-4056.	4.0	8
360	Unsupervised Test-Time Adaptation of Deep Neural Networks at the Edge: A Case Study., 2022,,.		0
361	An Innovative Method to Monitor and Control an Injection Molding Process Condition using Artificial Intelligence based Edge Computing System. , 2022, , .		1
362	Task Offloading for Deep Learning Empowered Automatic Speech Analysis in Mobile Edge-Cloud Computing Networks. IEEE Transactions on Cloud Computing, 2023, 11, 1985-1998.	3.1	2
363	A System Deployment Model of Multi-CCD Automatic Optical Inspection for Economical Operations. IEEE Access, 2022, 10, 58040-58049.	2.6	2
365	SplitPlace: AI Augmented Splitting and Placement of Large-Scale Neural Networks in Mobile Edge Environments. IEEE Transactions on Mobile Computing, 2023, 22, 5539-5554.	3.9	8
366	Big–Little Adaptive Neural Networks on Low-Power Near-Subthreshold Processors. Journal of Low Power Electronics and Applications, 2022, 12, 28.	1.3	1
367	Material measurement units for a circular economy: Foundations through a review. Sustainable Production and Consumption, 2022, 32, 833-850.	5.7	3
368	A review of ultrasonic sensing and machine learning methods to monitor industrial processes. Ultrasonics, 2022, 124, 106776.	2.1	18
370	ASTC: An Adaptive Gradient Compression Scheme for Communication-Efficient Edge Computing. , 2021, , .		0
371	Migrating Deep Learning Data and Applications among Kubernetes Edge Nodes., 2021, , .		O

#	Article	IF	Citations
372	Joint Dynamic Grouping and Gradient Coding for Time-Critical Distributed Machine Learning in Heterogeneous Edge Networks. IEEE Internet of Things Journal, 2022, 9, 22723-22736.	5 . 5	1
373	Early Termination Based Training Acceleration for an Energy-Efficient SNN Processor Design. IEEE Transactions on Biomedical Circuits and Systems, 2022, 16, 442-455.	2.7	2
374	Multi-Cell Multi-Beam Prediction Using Auto-Encoder LSTM for mmWave Systems. IEEE Transactions on Wireless Communications, 2022, 21, 10366-10380.	6.1	9
375	Edge Al as a Service: Configurable Model Deployment and Delay-Energy Optimization With Result Quality Constraints. IEEE Transactions on Cloud Computing, 2023, 11, 1954-1969.	3.1	3
376	Radar Perception for Autonomous Unmanned Aerial Vehicles: a Survey., 2022,,.		1
377	When Deep Learning Meets Steganography: Protecting Inference Privacy in the Dark. , 2022, , .		3
378	Multimodal Federated Learning on IoT Data. , 2022, , .		12
379	Distributed Inference with Deep Learning Models across Heterogeneous Edge Devices., 2022,,.		14
380	NeuroMessenger: Towards Error Tolerant Distributed Machine Learning Over Edge Networks., 2022,,.		2
381	Application and Implementation of Deep Learning for Evaluation of Martial Arts Trainings. Mobile Information Systems, 2022, 2022, 1-6.	0.4	0
382	A 5G-Based VR Application for Efficient Port Management. World Electric Vehicle Journal, 2022, 13, 101.	1.6	5
383	Psychological Mobilization of Innovative Teaching Methods for Students' Basic Educational Curriculum Reform Under Deep Learning. Frontiers in Psychology, 0, 13, .	1.1	0
384	Secure olympics games with technology: Intelligent border surveillance for the 2022 Beijing winter olympics. Journal of Systems Architecture, 2022, 129, 102634.	2.5	3
385	Streaming Overlay Architecture for Lightweight LSTM Computation on FPGA SoCs. ACM Transactions on Reconfigurable Technology and Systems, 0, , .	1.9	1
386	Towards scalable and efficient Deep-RL in edge computing: A game-based partition approach. Journal of Parallel and Distributed Computing, 2022, 168, 108-119.	2.7	10
387	Estimating crowd density with edge intelligence based on lightweight convolutional neural networks. Expert Systems With Applications, 2022, 206, 117823.	4.4	15
388	Lyapunov-Based Optimization of Edge Resources for Energy-Efficient Adaptive Federated Learning. IEEE Transactions on Green Communications and Networking, 2023, 7, 265-280.	3.5	9
389	Peak Prediction Using Multi Layer Perceptron (MLP) for Edge Computing ASICs Targeting Scientific Applications. , 2022, , .		2

#	Article	IF	CITATIONS
390	Linear Classification on Noisy Hardware. , 2022, , .		0
391	Deep Odometry Systems on Edge with EKF-LoRa Backend for Real-Time Indoor Positioning. , 2022, , .		4
392	Novel Adaptive DNN Partitioning Method Based on Image-Stream Pipeline Inference between the Edge and Cloud. , 2022 , , .		0
393	Employing Edge Computing to Enhance Self-Defense Capabilities of IoT Devices. , 2022, , .		1
394	An Online Approach for DNN Model Caching and Processor Allocation in Edge Computing. , 2022, , .		2
395	Reaching for the Sky: Maximizing Deep Learning Inference Throughput on Edge Devices with Al Multi-Tenancy. ACM Transactions on Internet Technology, 2023, 23, 1-33.	3.0	4
396	A review of zirconia oxygen, NOx, and mixed potential gas sensors – History and current trends. Sensors and Actuators B: Chemical, 2022, 370, 132363.	4.0	20
397	Deep learning in automated ultrasonic NDE – Developments, axioms and opportunities. NDT and E International, 2022, 131, 102703.	1.7	43
398	Enabling technologies for AI empowered 6G massive radio access networks. ICT Express, 2023, 9, 341-355.	3.3	21
399	Advanced Technology in Agriculture Industry by Implementing Image Annotation Technique and Deep Learning Approach: A Review. Agriculture (Switzerland), 2022, 12, 1033.	1.4	18
400	Single-layer vision transformers for more accurate early exits with less overhead. Neural Networks, 2022, 153, 461-473.	3.3	13
401	Next-generation energy systems for sustainable smart cities: Roles of transfer learning. Sustainable Cities and Society, 2022, 85, 104059.	5.1	47
402	RCT: Resource Constrained Training for Edge Al. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35, 2575-2587.	7.2	0
403	Modelling multi-cell edge video analytics. , 2022, , .		2
404	No Free Lunch: Balancing Learning and Exploitation at the Network Edge., 2022,,.		1
405	Towards supervised real-time human activity recognition on embedded equipment. , 2022, , .		2
406	Joint Privacy Enhancement and Quantization in Federated Learning. , 2022, , .		2
407	Towards a novel wearable solution for citrus inspection using Edge Al. , 2022, , .		0

#	Article	IF	CITATIONS
408	SymDNN: Simple & Symple & Symp		2
409	Update Compression for Deep Neural Networks on the Edge. , 2022, , .		7
410	BottleFit: Learning Compressed Representations in Deep Neural Networks for Effective and Efficient Split Computing. , 2022, , .		6
411	lloT Malware Detection Using Edge Computing and Deep Learning for Cybersecurity in Smart Factories. Applied Sciences (Switzerland), 2022, 12, 7679.	1.3	12
412	Machine Learning for Intelligent-Reflecting-Surface-Based Wireless Communication towards 6G: A Review. Sensors, 2022, 22, 5405.	2.1	37
413	Human Activity Recognition on Microcontrollers with Quantized and Adaptive Deep Neural Networks. Transactions on Embedded Computing Systems, 2022, 21, 1-28.	2.1	7
414	Clustering-Based Decision Tree for Vehicle Routing Spatio-Temporal Selection. Electronics (Switzerland), 2022, 11, 2379.	1.8	1
415	Edge Computing with Artificial Intelligence: A Machine Learning Perspective. ACM Computing Surveys, 2023, 55, 1-35.	16.1	54
416	Vertical Metalâ€Oxide Electrochemical Memory for Highâ€Density Synaptic Array Based Highâ€Performance Neuromorphic Computing. Advanced Electronic Materials, 2022, 8, .	2.6	11
417	Artificial intelligence and digital twins in power systems: Trends, synergies and opportunities. Digital Twin, 0, 2, 11.	0.0	1
418	EnforceSNN: Enabling resilient and energy-efficient spiking neural network inference considering approximate DRAMs for embedded systems. Frontiers in Neuroscience, $0,16,.$	1.4	5
419	A Lightweight Neural Learning Algorithm for Real-Time Facial Feature Tracking System via Split-Attention and Heterogeneous Convolution. Neural Processing Letters, 0, , .	2.0	0
420	Understanding and Applying Deep Learning. Neural Computation, 0, , 1-22.	1.3	0
421	Low-complexity deep unfolded neural network receiver for MIMO systems based on the probability data association detector. Eurasip Journal on Wireless Communications and Networking, 2022, 2022, .	1.5	1
422	QoC-Driven MEC Transfer System Framework in Wireless Networks. Wireless Communications and Mobile Computing, 2022, 2022, 1-14.	0.8	1
423	A deep learning-based web application for segmentation and quantification of blueberry internal bruising. Computers and Electronics in Agriculture, 2022, 201, 107200.	3.7	4
424	A Thermal Infrared Pedestrian-Detection Method for Edge Computing Devices. Sensors, 2022, 22, 6710.	2.1	3
425	Power-of-2-arms for bandit learning with switching costs. , 2022, , .		3

#	Article	IF	Citations
426	Trajectory prediction dimensionality reduction for low-cost connected automated vehicle systems. Transportation Research, Part D: Transport and Environment, 2022, 111, 103439.	3.2	2
427	Pervasive AI for IoT Applications: A Survey on Resource-Efficient Distributed Artificial Intelligence. IEEE Communications Surveys and Tutorials, 2022, 24, 2366-2418.	24.8	29
428	Edge Deployment Framework of GuardBot for Optimized Face Mask Recognition With Real-Time Inference Using Deep Learning. IEEE Access, 2022, 10, 77898-77921.	2.6	8
429	New Bridge to Cloud: An Ultra-Dense LEO Assisted Green Computation Offloading Approach. IEEE Transactions on Green Communications and Networking, 2023, 7, 552-564.	3.5	3
430	Machine and Deep Learning for Resource Allocation in Multi-Access Edge Computing: A Survey. IEEE Communications Surveys and Tutorials, 2022, 24, 2449-2494.	24.8	19
431	Contactless Palmprint Recognition System: A Survey. IEEE Access, 2022, 10, 132483-132505.	2.6	2
432	Edge Al: Leveraging the Full Potential of Deep Learning. Studies in Computational Intelligence, 2022, , 27-46.	0.7	5
433	Edge Computing-Assisted DNN Image Recognition System With Progressive Image Retransmission. IEEE Access, 2022, 10, 91253-91262.	2.6	3
434	Fast and Automatic Object Registration for Human-Robot Collaboration in Industrial Manufacturing. Communications in Computer and Information Science, 2022, , 232-242.	0.4	2
435	All-Analog Silicon Integration of Image Sensor and Neural Computing Engine for Image Classification. IEEE Access, 2022, 10, 94417-94430.	2.6	4
436	Potenziale von Neuronalen Netzen gegen $\tilde{A}^{1}\!\!/\!\!a$ ber SPC zur Fehlervermeidung in der Prozesssteuerung. , 2022, , 188-206.		1
437	Collaborative Three-Tier Architecture Noncontact Respiratory Rate Monitoring Using Target Tracking and False Peaks Eliminating Algorithms. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-13.	2.4	6
438	The Many Faces of Edge Intelligence. IEEE Access, 2022, 10, 104769-104782.	2.6	10
439	Design and Implementation of a Fast Convolution Algorithm for Embedded Platform. , 2022, , .		1
440	AdaSTE: An Adaptive Straight-Through Estimator to Train Binary Neural Networks., 2022,,.		3
441	A Blockchain-based Multi-layer Decentralized Framework for Robust Federated Learning. , 2022, , .		2
442	Consistent Relative Confidence and Label-Free Model Selection for Convolutional Neural Networks. , 2022, , .		0
443	Building Integrated Photovoltaics 4.0: Digitization of the Photovoltaic Integration in Buildings for a Resilient Infra at Large Scale. Electronics (Switzerland), 2022, 11, 2700.	1.8	16

#	Article	IF	Citations
444	Towards lightweight deep neural network for smart agriculture on embedded systems., 2022,,.		2
445	A Distributed Privacy-Preserving Framework for Deep Learning with Edge-Cloud Computing. , 2022, , .		0
446	CSGN: Combined Channel- and Spatial-Wise Dynamic Gating Architecture for Convolutional Neural Networks. Electronics (Switzerland), 2022, 11, 2678.	1.8	0
447	Lightweight CNN-Based Deep Neural Networks Application in Safety Measurement. , 2022, , .		0
448	A Data-Driven Model for Automated Chinese Word Segmentation and POS Tagging. Computational Intelligence and Neuroscience, 2022, 2022, 1-10.	1.1	1
449	A Framework and Method for Surface Floating Object Detection Based on 6G Networks. Electronics (Switzerland), 2022, 11, 2939.	1.8	2
450	A Critical Review for Real-Time Continuous Soil Monitoring: Advantages, Challenges, and Perspectives. Environmental Science &	4.6	12
451	Recognition of coal and gangue based on multi-dimensional gray gradient feature fusion. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2022, 44, 8060-8076.	1.2	5
452	Computational Optimization of Image-Based Reinforcement Learning for Robotics. Sensors, 2022, 22, 7382.	2.1	1
453	Uses And Challenges of Deep Learning Models for Covid-19 Diagnosis and Prediction. , 2022, , 67-84.		0
454	Automatic autism spectrum disorder detection using artificial intelligence methods with MRI neuroimaging: A review. Frontiers in Molecular Neuroscience, $0,15,.$	1.4	32
455	ARES: Adaptive Resource-Aware Split Learning for Internet of Things. Computer Networks, 2022, 218, 109380.	3.2	13
457	YOLO-Head: An Input Adaptive Neural Network Preprocessor. IFIP Advances in Information and Communication Technology, 2022, , 344-351.	0.5	0
458	ECCVideo: A Scalable Edge Cloud Collaborative Video Analysis System. IEEE Intelligent Systems, 2023, 38, 34-44.	4.0	1
459	Deep Learning on FPGAs with Multiple Service Levels for Edge Computing. , 2022, , .		2
460	ReLP: Reinforcement Learning Pruning Method Based on Prior Knowledge. Neural Processing Letters, 2023, 55, 4661-4678.	2.0	1
461	Partitioning DNNs for Optimizing Distributed Inference Performance on Cooperative Edge Devices: A Genetic Algorithm Approach. Applied Sciences (Switzerland), 2022, 12, 10619.	1.3	3
462	Secure Distributed Processing ofÂBP withÂUpdatable Decomposition Data. , 2023, , 1-15.		0

#	Article	IF	CITATIONS
463	Macro benchmarking edge devices using enhanced super-resolution generative adversarial networks (ESRGANs). Journal of Supercomputing, 0 , , .	2.4	0
464	Edge Intelligence with Distributed Processing of DNNs: A Survey. CMES - Computer Modeling in Engineering and Sciences, 2023, .	0.8	O
465	A Survey on Mobile Edge Computing for Video Streaming: Opportunities and Challenges. IEEE Access, 2022, 10, 120514-120550.	2.6	20
466	Joint DNN Partition and Resource Allocation Optimization for Energy-Constrained Hierarchical Edge-Cloud Systems. IEEE Transactions on Vehicular Technology, 2023, 72, 3930-3944.	3.9	2
467	Distributed Artificial Intelligence Empowered by End-Edge-Cloud Computing: A Survey. IEEE Communications Surveys and Tutorials, 2023, 25, 591-624.	24.8	34
468	C-NMT: A Collaborative Inference Framework for Neural Machine Translation. , 2022, , .		0
469	ConfAx: Exploiting Approximate Computing for Configurable FPGA CNN Acceleration at the Edge. , 2022, , .		0
470	A Non-conventional Sum-and-Max based Neural Network layer for Low Power Classification. , 2022, , .		1
471	CoBAAF: Controlled Bayesian Air Aggregation Federated Learning from Heterogeneous Data., 2022,,.		0
472	Hardware-Accelerated Mars Sample Localization Via Deep Transfer Learning From Photorealistic Simulations. IEEE Robotics and Automation Letters, 2022, 7, 12555-12561.	3.3	1
473	Parkinson hastalarının aktivitelerinin tanınmasında TinyML tabanlı uç bilişim sistemi. Ömer Halisder Üniversitesi Mühendislik Bilimleri Dergisi, 0, , .	nir 0.2	0
474	Over-the-Air Split Learning with MIMO-Based Neural Network and Constellation-Based Activation. , 2022, , .		3
475	VEI., 2022, , .		0
476	A survey of mobility-aware Multi-access Edge Computing: Challenges, use cases and future directions. Ad Hoc Networks, 2023, 140, 103044.	3.4	17
477	A New NN-Based Approach to In-Sensor PDM-to-PCM Conversion for Ultra TinyML KWS. IEEE Transactions on Circuits and Systems II: Express Briefs, 2023, 70, 1595-1599.	2.2	3
478	Reinforcement Learning Based Energy-Efficient Collaborative Inference for Mobile Edge Computing. IEEE Transactions on Communications, 2023, 71, 864-876.	4.9	8
479	Deep Reinforcement Learning Based Computation Offloading and Trajectory Planning for Multi-UAV Cooperative Target Search. IEEE Journal on Selected Areas in Communications, 2023, 41, 504-520.	9.7	17
480	Compressing convolutional neural networks with hierarchical Tucker-2 decomposition. Applied Soft Computing Journal, 2023, 132, 109856.	4.1	6

#	Article	IF	CITATIONS
481	The gap between technology and agriculture, barrier identification and potential solution analysis. IFAC-PapersOnLine, 2022, 55, 314-318.	0.5	2
482	Machine Learning for Emergency Management: A Survey and Future Outlook. Proceedings of the IEEE, 2023, 111, 19-41.	16.4	5
483	Task Offloading With Multi-Tier Computing Resources in Next Generation Wireless Networks. IEEE Journal on Selected Areas in Communications, 2023, 41, 306-319.	9.7	13
484	Efficient Acceleration of Deep Learning Inference on Resource-Constrained Edge Devices: A Review. Proceedings of the IEEE, 2023, 111, 42-91.	16.4	18
485	Edge Computing Solutions for Distributed Machine Learning. , 2022, , .		7
486	Automatic Detection of People Getting Into a Bus in a SMART Public Transportation System. , 2022, , .		1
487	Machine Learning Based Techniques for Fault Detection in Power Distribution Grid: A Review., 2022,,.		5
488	Application of Deep Learning Model Inference with Batch Size Adjustment. , 2022, , .		1
489	TwinEDA: a sustainable deep-learning approach for limb-position estimation in preterm infants' depth images. Medical and Biological Engineering and Computing, 0, , .	1.6	0
490	An Energy-Efficient Method for Recurrent Neural Network Inference in Edge Cloud Computing. Symmetry, 2022, 14, 2524.	1.1	1
491	E-prop on SpiNNaker 2: Exploring online learning in spiking RNNs on neuromorphic hardware. Frontiers in Neuroscience, 0, 16 , .	1.4	4
492	Spike-Event X-ray Image Classification for 3D-NoC-Based Neuromorphic Pneumonia Detection. Electronics (Switzerland), 2022, 11, 4157.	1.8	2
493	Privacy-Enhanced Federated Learning: A Restrictively Self-Sampled and Data-Perturbed Local Differential Privacy Method. Electronics (Switzerland), 2022, 11, 4007.	1.8	1
494	Characterizing the Performance of Accelerated Jetson Edge Devices for Training Deep Learning Models. Proceedings of the ACM on Measurement and Analysis of Computing Systems, 2022, 6, 1-26.	1.4	2
495	<pre><scp>EdgeMesh</scp> : A hybrid distributed training mechanism for heterogeneous edge devices. Transactions on Emerging Telecommunications Technologies, 0, , .</pre>	2.6	0
496	Foreground segmentation and location of coal and gangue under complex similar background. Measurement Science and Technology, 2023, 34, 035406.	1.4	3
497	LiveDewStream: A stream processing platform for running in-lab distributed deep learning inferences on smartphone clusters at the edge. SoftwareX, 2022, 20, 101268.	1.2	0
498	Rate-Constrained Remote Contextual Bandits. IEEE Journal on Selected Areas in Information Theory, 2022, 3, 789-802.	1.9	3

#	Article	IF	Citations
499	Enabling All In-Edge Deep Learning: A Literature Review. IEEE Access, 2023, 11, 3431-3460.	2.6	5
500	Accelerating Multi-Exit BERT Inference via Curriculum Learning and Knowledge Distillation. International Journal of Software Engineering and Knowledge Engineering, 0, , .	0.6	0
501	An intelligent data capturing framework to improve condition monitoring and anomaly detection for industrial machines. Procedia Computer Science, 2023, 217, 709-719.	1.2	2
502	Background in ML Models and Radiation Effects. Synthesis Lectures on Engineering Science and Technology, 2023, , 15-40.	0.2	O
503	A New Strategy of Satellite Autonomy with Machine Learning for Efficient Resource Utilization of a Standard Performance CubeSat. Aerospace, 2023, 10, 78.	1.1	1
505	Collaborative offloading decision policy framework in IoT using edge computing. Multimedia Tools and Applications, 0 , , .	2.6	0
506	PipeEdge: Pipeline Parallelism for Large-Scale Model Inference on Heterogeneous Edge Devices. , 2022, , .		3
507	Partitioning and Placement of Deep Neural Networks on Distributed Edge Devices to Maximize Inference Throughput. , 2022, , .		O
508	Quantum Inspired Task Optimization for IoT Edge Fog Computing Environment. Mathematics, 2023, 11, 156.	1.1	3
509	ENTS: An Edge-native Task Scheduling System for Collaborative Edge Computing. , 2022, , .		4
510	Task Offloading and Resource Allocation in CPU-GPU Heterogeneous Networks. , 2022, , .		1
511	Collaborative Inference for Al-Empowered IoT Devices. IEEE Internet of Things Magazine, 2022, 5, 92-98.	2.0	7
512	Online Meta-Learning for Hybrid Model-Based Deep Receivers. IEEE Transactions on Wireless Communications, 2023, 22, 6415-6431.	6.1	7
513	Model-driven Cluster Resource Management for Al Workloads in Edge Clouds. ACM Transactions on Autonomous and Adaptive Systems, 2023, 18, 1-26.	0.4	5
514	Joint Privacy Enhancement and Quantization in Federated Learning. IEEE Transactions on Signal Processing, 2023, 71, 295-310.	3.2	4
515	RTCoInfer: Real-Time Collaborative CNN Inference for Stream Analytics on Ubiquitous Images. IEEE Journal on Selected Areas in Communications, 2023, 41, 1212-1226.	9.7	2
516	Edge Computing on IoT for Machine Signal Processing and Fault Diagnosis: A Review. IEEE Internet of Things Journal, 2023, 10, 11093-11116.	5.5	27
517	An Extensive Study on Logic Emerging IoT Adiabatic Techniques for Low-Power Circuit., 2023,, 229-238.		0

#	ARTICLE	IF	CITATIONS
518	Speeding up Smartphone-Based Dew Computing: In Vivo Experiments Setup Via an Evolutionary Algorithm. Sensors, 2023, 23, 1388.	2.1	1
519	Federated Payload-based Anomaly Detection: An Investigation for Different Aggregation Algorithms. , 2022, , .		0
520	Edge-MultiAl: Multi-Tenancy of Latency-Sensitive Deep Learning Applications on Edge. , 2022, , .		3
521	Benchmarking Container Technologies For IoT Environments. , 2022, , .		3
522	Distributed Intelligence in Wireless Networks. IEEE Open Journal of the Communications Society, 2023, , 1-1.	4.4	3
523	FastSecNet: An Efficient Cryptographic Framework for Private Neural Network Inference. IEEE Transactions on Information Forensics and Security, 2023, , 1-1.	4.5	1
524	Federated learning by employing knowledge distillation on edge devices with limited hardware resources. Neurocomputing, 2023, 531, 87-99.	3.5	0
525	loT-based edge computing (IoTEC) for improved environmental monitoring. Sustainable Computing: Informatics and Systems, 2023, 38, 100870.	1.6	1
526	Joint multi-user DNN partitioning and task offloading in mobile edge computing. Ad Hoc Networks, 2023, 144, 103156.	3 . 4	6
527	Hybrid KD-NFT: A multi-layered NFT assisted robust Knowledge Distillation framework for Internet of Things. Journal of Information Security and Applications, 2023, 75, 103483.	1.8	0
528	The effect of soundscape composition on bird vocalization classification in a citizen science biodiversity monitoring project. Ecological Informatics, 2023, 75, 102065.	2.3	6
529	Cooperative multi-camera vehicle tracking and traffic surveillance with edge artificial intelligence and representation learning. Transportation Research Part C: Emerging Technologies, 2023, 148, 103982.	3.9	12
530	Towards Data-Efficient Continuous Learning for Edge Video Analytics via Smart Caching., 2022,,.		0
531	Towards a Methodology for Building Dynamic Urgent Applications on Continuum Computing Platforms. , 2022, , .		1
532	Efficient CNN with uncorrelated Bag of Features pooling. , 2022, , .		1
533	Local Scheduling in KubeEdge-Based Edge Computing Environment. Sensors, 2023, 23, 1522.	2.1	6
534	Edge-Cloud Hybrid Tiny Data Reduction Model for Anomaly Detection. , 2022, , .		1
535	Horizontally Distributed Inference of Deep Neural Networks for Al-Enabled IoT. Sensors, 2023, 23, 1911.	2.1	4

#	Article	IF	CITATIONS
536	Security and Privacy on 6G Network Edge: A Survey. IEEE Communications Surveys and Tutorials, 2023, 25, 1095-1127.	24.8	20
537	Actor Critic Approach based Anomaly Detection for Edge Computing Environments. International Journal of Computer Networks and Communications, 2023, 15, 51-71.	0.3	0
538	SyReNN: A tool for analyzing deep neural networks. International Journal on Software Tools for Technology Transfer, 2023, 25, 145-165.	1.7	3
539	Programming for High-Performance Computing on Edge Accelerators. Mathematics, 2023, 11, 1055.	1.1	4
540	An ENet Semantic Segmentation Method Combined with Attention Mechanism. Computational Intelligence and Neuroscience, 2023, 2023, 1-9.	1.1	0
541	Mobile Edge NLU with On-device Inference for Humanitarian Assistance during Disasters. , 2022, , .		0
542	Explainable Machine Learning: The importance of a system-centric perspective [Lecture Notes]. IEEE Signal Processing Magazine, 2023, 40, 165-172.	4.6	0
543	Model-Based Deep Learning. Proceedings of the IEEE, 2023, 111, 465-499.	16.4	34
544	Analysis of Training Deep Learning Models for PCB Defect Detection. Sensors, 2023, 23, 2766.	2.1	8
545	Blockchain-Based Continuous Knowledge Transfer in Decentralized Edge Computing Architecture. Electronics (Switzerland), 2023, 12, 1154.	1.8	3
546	Artificial intelligence and digital twins in power systems: Trends, synergies and opportunities. Digital Twin, 0, 2, 11.	0.0	5
547	A cyber physical production system framework for online monitoring, visualization and control by using cloud, fog, and edge computing technologies. International Journal of Computer Integrated Manufacturing, 0 , 1 -19.	2.9	1
548	DNN Surgery: Accelerating DNN Inference on the Edge through Layer Partitioning. IEEE Transactions on Cloud Computing, 2023, , 1-15.	3.1	1
549	Energy-Efficient Collaborative Inference in MEC: A Multi-Agent Reinforcement Learning Based Approach. , 2022, , .		0
550	Edge-Cloud Collaboration Architecture for Efficient Web-Based Cognitive Services. , 2023, , .		0
551	Performance trade offs in IoT-based traffic monitoring and incident detection systems., 2022,,.		0
553	An Event-Classification Neural Network Approach for Rapid Railroad Bridge Impact Detection. Sensors, 2023, 23, 3330.	2.1	1
554	Machine learning at the edge for Al-enabled multiplexed pathogen detection. Scientific Reports, 2023, 13, .	1.6	5

#	Article	IF	Citations
555	Hierarchical Bayesian Attractor Model for Dynamic Task Allocation in Edge-Cloud Computing. , 2023, , .		O
556	Mix-GEMM: An efficient HW-SW Architecture for Mixed-Precision Quantized Deep Neural Networks Inference on Edge Devices., 2023,,.		1
557	A Stable Cloud Storage Algorithm for Online Interaction Effect Data based on HarmonyOS., 2023,,.		0
558	BYEE: Batch Fully Private Scheme for Coded Distributed Matrix Multiplication. , 2022, , .		O
559	PalmMatchDB: An On-Device Contactless Palmprint Recognition Corpus., 2023,,.		1
560	A Hands-on University Short Course for Edge Al. , 2022, , .		0
561	Efficient Deep Learning Models for Privacy-Preserving People Counting on Low-Resolution Infrared Arrays. IEEE Internet of Things Journal, 2023, 10, 13895-13907.	5.5	1
562	Detection Method of River Floating Objects based on Edge Computing. Journal of Physics: Conference Series, 2023, 2456, 012035.	0.3	0
563	FPG-AI: A Technology-Independent Framework for the Automation of CNN Deployment on FPGAs. IEEE Access, 2023, 11, 32759-32775.	2.6	2
564	Benchmarking Neural Network Compression Techniques for Ocular-Based User Authentication on Smartphones. IEEE Access, 2023, 11, 36550-36565.	2.6	2
565	Tiny, Always-on, and Fragile: Bias Propagation through Design Choices in On-device Machine Learning Workflows. ACM Transactions on Software Engineering and Methodology, 2023, 32, 1-37.	4.8	0
566	LDRP: Device-Centric Latency Diagnostic and Reduction for Cellular Networks Without Root. IEEE Transactions on Mobile Computing, 2024, 23, 2748-2764.	3.9	0
567	A Survey of Federated Learning From Data Perspective in the Healthcare Domain: Challenges, Methods, and Future Directions. IEEE Access, 2023, 11, 45711-45735.	2.6	4
568	Cooperative Task Execution for Object Detection in Edge Computing: An Internet of Things Application. Applied Sciences (Switzerland), 2023, 13, 4982.	1.3	2
569	A Survey on Run-time Power Monitors at the Edge. ACM Computing Surveys, 2023, 55, 1-33.	16.1	2
570	Federated Learning vs Edge Learning for Hot Water Demand Forecasting in Distributed Electric Water Heaters for Demand Side Flexibility Aggregation. , 2023, , .		0
571	Partial Discharge Detection by Edge Computing. IEEE Access, 2023, 11, 44192-44204.	2.6	5
572	Expanding the Edge: Enabling Efficient Winograd CNN Inference With Deep Reuse on Edge Device. IEEE Transactions on Knowledge and Data Engineering, 2023, 35, 10181-10196.	4.0	1

#	Article	IF	CITATIONS
575	A Proposed Method for Using Edge Computing to Secure Existing IoT Devices. Lecture Notes in Electrical Engineering, 2023, , 774-781.	0.3	0
579	POS: An Operator Scheduling Framework for Multi-model Inference on Edge Intelligent Computing. , 2023, , .		O
584	A Theoretical Framework for Computer Vision Learning Environment. Lecture Notes in Computer Science, 2023, , 527-534.	1.0	0
590	Boosting DNN Cold Inference on Edge Devices. , 2023, , .		O
592	An AOI-Based Surface Painting Equipment. Lecture Notes on Data Engineering and Communications Technologies, 2023, , 8-17.	0.5	0
594	A Robust NFT Assisted Knowledge Distillation Framework forÂEdge Computing. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2023, , 20-31.	0.2	1
597	Deep Learning for IoT "Artificial Intelligence of Things (AloT)― Synthesis Lectures on Engineering Science and Technology, 2023, , 105-130.	0.2	0
598	Accelerate Multi-view Inference with End-edge Collaborative Computing. , 2023, , .		O
600	CADET: Control-Aware Dynamic Edge Computing for Real-Time Target Tracking in UAV Systems. , 2023, , .		0
602	Multi-Model Specifications and their Application to Classification Systems. , 2023, , .		0
604	Evaluation of architecture-aware optimization techniques for Convolutional Neural Networks. , 2023, , .		1
605	Al/ML-Based Object Detection on FPGA SoC. Lecture Notes in Networks and Systems, 2023, , 479-487.	0.5	0
606	Machine Learning Assisted Intelligent Reflecting Surface MIMO Communication-Gateway for 6G—A Review. Lecture Notes in Networks and Systems, 2023, , 543-554.	0.5	0
611	Bit-Offsetter: A Bit-serial DNN Accelerator with Weight-offset MAC for Bit-wise Sparsity Exploitation. , 2023, , .		0
612	An Examination of Virtualization Technologies for Enabling Intelligent Edge Computing., 2023,,.		0
614	Running Virtual Services for the Intelligent Edge: A Review. , 2023, , .		0
617	A 3D Implementation of Convolutional Neural Network for Fast Inference. , 2023, , .		0
618	Event-based Classification with Recurrent Spiking Neural Networks on Low-end Micro-Controller Units., 2023,,.		0

#	Article	IF	CITATIONS
621	A Container Migration Method forÂEdge Environments Based onÂMalicious Traffic Detection. Communications in Computer and Information Science, 2023, , 121-137.	0.4	0
623	FedKNOW: Federated Continual Learning with Signature Task Knowledge Integration at Edge. , 2023, , .		0
625	Intelligent Advertising System Incorporating User Feedback: Design and Implementation using OpenCV and Python., 2023,,.		0
628	Lifespan and energy-oriented load balancing algorithms across sets of nodes in Green Edge Computing. , 2023, , .		0
629	Eff-AQI: An Efficient CNN-Based Model for Air Pollution Estimation: A Study Case in India., 2023, , .		1
630	Scaling Deep-Learning Pneumonia Detection Inference on a Reconfigurable Self-Contained Hardware Platform., 2023,,.		0
631	Energy Efficient LSTM Accelerators forÂEmbedded FPGAs Through Parameterised Architecture Design. Lecture Notes in Computer Science, 2023, , 3-17.	1.0	0
632	Exploring the Performance and Efficiency of Transformer Models for NLP on Mobile Devices. , 2023, , .		0
633	PRISM: Privacy Preserving Healthcare Internet of Things Security Management., 2023, , .		0
634	Artificial Intelligence Integrated with Machine Learning for Enhancing Business in E-World., 2023,,.		0
635	ResMap: Exploiting Sparse Residual Feature Map for Accelerating Cross-Edge Video Analytics., 2023,,.		0
636	Cross-Camera Inference on the Constrained Edge. , 2023, , .		4
637	A Note on Discriminator Updating Method based on Weights of Other Models and its Verification. , 2023, , .		0
639	Tree-based Optimization for Image-to-Image Translation with Imbalanced Datasets on the Edge. , 2023, , .		0
642	Prospects of Deep Learning and Edge Intelligence in Agriculture. Advances in Systems Analysis, Software Engineering, and High Performance Computing Book Series, 2023, , 320-341.	0.5	0
645	Efficient Partitioning and Communication Scheme-Based Distributed Edge Computing to Accelerate Deep Neural Network., 2023,,.		0
647	Internet of Things and Dew Computing-Based System for Smart Agriculture. Internet of Things, 2024, , 289-316.	1.3	1
653	BIRP: Batch-aware Inference Workload Redistribution and Parallel Scheme for Edge Collaboration. , 2023, , .		0

#	Article	IF	CITATIONS
654	Cloud-Edge Intelligent Collaborative Computing Model Based on Transfer Learning in IoT. Communications in Computer and Information Science, 2023, , 389-403.	0.4	0
655	DistHD: A Learner-Aware Dynamic Encoding Method for Hyperdimensional Classification. , 2023, , .		1
657	ParaTra: A Parallel Transformer Inference Framework for Concurrent Service Provision in Edge Computing., 2023,,.		0
664	Artificial Intelligence Advancement for 6G Communication: A Visionary Approach. , 2023, , 355-394.		0
665	Multifunctional Eu(<scp>iii</scp>)-modified HOFs: roxarsone and aristolochic acid carcinogen monitoring and latent fingerprint identification based on artificial intelligence. Materials Horizons, 2023, 10, 5782-5795.	6.4	4
676	Intra-layer model division for Edge Machine Learning Computational Needs. , 2023, , .		O
679	Asynchronous Personalized Learning for Heterogeneous Wireless Networks. , 2023, , .		0
683	An Analysis about Federated Learning in Low-Powerful Devices. , 2023, , .		0
685	Approximate arithmetic aware training for stochastic computing neural networks., 2023,,.		0
687	JAVP: Joint-Aware Video Processing with Edge-Cloud Collaboration for DNN Inference. , 2023, , .		0
688	Edge-Assisted On-Device Model Update for Video Analytics in Adverse Environments. , 2023, , .		1
689	Acceleration of FFT Algorithm Based on Reconfigurable Computing Architecture. , 2023, , .		0
690	M3: Towards Efficient Mixed Machine Learning Model Co-Location on Constrained Edge Devices. , 2023, , .		0
691	Channel-Adaptive Dynamic Neural Networks for Low-Complexity Distributed Signal Awareness. , 2023, , .		0
696	An intriguing vision for transatlantic collaborative health data use and artificial intelligence development. Npj Digital Medicine, 2024, 7, .	5.7	1
697	Cooperative Cloud-Edge Computing for Integrated Sensing and Communication in Internet of Vehicles. , 2023, , 183-199.		0
698	Deep Learning Distribution Model Using Osmotic Computing. , 2023, , .		0
699	Reinforcement Learning-Guided Channel Selection Across Time for Multivariate Time Series Classification., 2023,,.		O

#	Article	IF	Citations
703	Incremental Semi-Supervised Tri-Training: A framework for model personalization. , 2023, , .		0
704	RT DL Tasks Distribution for Sensitive Data Protection and Resource Optimization., 2023,,.		0
705	EndoDepthL: Lightweight Endoscopic Monocular Depth Estimation with CNN-Transformer. , 2023, , .		0
706	Federated Learning in Wireless Networks via Over-the-Air Computations. , 2023, , .		O
708	Towards Energy-Efficient Intelligent Edge Computing. , 2023, , .		0
709	Predictive Modeling of Run Time for Model and Data Distributed Inferencing Using Gradient Boosting Regression. , 2023, , .		0
710	Machine Learning - Imaging Applications in Transport Systems: A Review., 2023,,.		0
711	A Review on Edge Computing in 5G-Enabled IoT for Agricultural Applications: Opportunities and Challenges., 2023,,.		O
712	NASEREX: Optimizing Early Exits via AutoML for Scalable Efficient Inference in Big Image Streams. , 2023, , .		0
713	Using Machine Learning Regression Model to Predict the Optimum Election Algorithm for Parallel and Distributed Computing Systems. , 2023, , .		0
714	An Improved Attention Transfer Teacher-Student Model for Edge Deployment. , 2023, , .		0
715	A Microservice-based MLOps Platform for Efficient Development of Al Services in an Edge-Cloud Environment. , 2023, , .		0
717	Edge Computing for Sustainable Energy Management: An Environmental Aspect., 2023,,.		0
718	A Privacy-preserving Surface Defect Detection Scheme for Strip Steel. , 2023, , .		0
720	Q8KNN: A Novel 8-Bit KNN Quantization Method for Edge Computing in Smart Lighting Systems with NodeMCU. Lecture Notes in Networks and Systems, 2024, , 598-615.	0.5	0
725	System Log Anomaly Detection Based on Spiking Neural Network Trained with Backpropagation. , 2023, , .		0
726	Edge Computing for IoT., 2024,, 1-20.		0
732	Binary Neural Architecture Search. Computational Intelligence Methods and Applications, 2024, , 49-99.	0.2	0

#	Article	IF	CITATIONS
737	Communication Technologies and Security Challenges in IoT: An Introduction. Internet of Things, 2024, , 1-20.	1.3	0
738	Smart Needle Valve: Intelligent and Cost-Effective Solution to Unlock Gas Production in a Tight Gas Field in China. , 2024, , .		О