Intestinal infection triggers Parkinsonâ€s™lisease-like s

Nature 571, 565-569 DOI: 10.1038/s41586-019-1405-y

Citation Report

#	Article	IF	CITATIONS
1	Mitochondriaâ \in "Striking a balance between host and endosymbiont. Science, 2019, 365, .	6.0	130
2	Neuroinflammation and the Gut Microbiota: Possible Alternative Therapeutic Targets to Counteract Alzheimer's Disease?. Frontiers in Aging Neuroscience, 2019, 11, 284.	1.7	95
3	NIX-Mediated Mitophagy Promotes Effector Memory Formation in Antigen-Specific CD8+ T Cells. Cell Reports, 2019, 29, 1862-1877.e7.	2.9	26
4	Mitocellular communication: Shaping health and disease. Science, 2019, 366, 827-832.	6.0	154
5	Impact of the Microbiome on the Human Genome. Trends in Parasitology, 2019, 35, 809-821.	1.5	5
6	Lots of Movement in Gut and Parkinson's Research. Trends in Endocrinology and Metabolism, 2019, 30, 687-689.	3.1	2
7	Infection triggers symptoms similar to those of Parkinson's disease in mice lacking PINK1 protein. Nature, 2019, 571, 481-482.	13.7	2
8	The gut-brain axis in the pathogenesis of Parkinson's disease. Brain Science Advances, 2019, 5, 73-81.	0.3	10
9	Microbiome changes: an indicator of Parkinson's disease?. Translational Neurodegeneration, 2019, 8, 38.	3.6	61
10	Is Parkinson's Disease an Autoimmune Disorder?. Neurology Today: an Official Publication of the American Academy of Neurology, 2019, 19, 19-19.	0.0	0
11	Monitoring autophagy in cancer: From bench to bedside. Seminars in Cancer Biology, 2020, 66, 12-21.	4.3	31
12	Microglial memory of early life stress and inflammation: Susceptibility to neurodegeneration in adulthood. Neuroscience and Biobehavioral Reviews, 2020, 117, 232-242.	2.9	34
13	Genetics of leprosy: today and beyond. Human Genetics, 2020, 139, 835-846.	1.8	40
14	Post-translational Modifications of Key Machinery in the Control of Mitophagy. Trends in Biochemical Sciences, 2020, 45, 58-75.	3.7	71
15	Mitochondrial division, fusion and degradation. Journal of Biochemistry, 2020, 167, 233-241.	0.9	40
16	Innate and adaptive immune responses in Parkinson's disease. Progress in Brain Research, 2020, 252, 169-216.	0.9	64
17	The microbiota-immune axis as a central mediator of gut-brain communication. Neurobiology of Disease, 2020, 136, 104714.	2.1	110
18	Mitochondria–Lysosome Crosstalk: From Physiology to Neurodegeneration. Trends in Molecular Medicine, 2020, 26, 71-88.	3.5	165

ITATION REDO

#	Article	IF	Citations
19	Autonomic dysfunction in Parkinson's disease: Implications for pathophysiology, diagnosis, and treatment. Neurobiology of Disease, 2020, 134, 104700.	2.1	148
20	Mitochondrial Quality Control and Restraining Innate Immunity. Annual Review of Cell and Developmental Biology, 2020, 36, 265-289.	4.0	73
21	Characterization of the intestinal microbiota during <i>Citrobacter rodentium</i> infection in a mouse model of infection-triggered Parkinson's disease. Gut Microbes, 2020, 12, 1830694.	4.3	14
22	Inflammatory bowel disease and Parkinson's disease: common pathophysiological links. Gut, 2021, 70, gutjnl-2020-322429.	6.1	72
23	Diet, Microbiota and Brain Health: Unraveling the Network Intersecting Metabolism and Neurodegeneration. International Journal of Molecular Sciences, 2020, 21, 7471.	1.8	32
24	Mitophagy-Mediated mtDNA Release Aggravates Stretching-Induced Inflammation and Lung Epithelial Cell Injury via the TLR9/MyD88/NF-κB Pathway. Frontiers in Cell and Developmental Biology, 2020, 8, 819.	1.8	26
25	Systematic Surveys of Iron Homeostasis Mechanisms Reveal Ferritin Superfamily and Nucleotide Surveillance Regulation to be Modified by PINK1 Absence. Cells, 2020, 9, 2229.	1.8	9
26	<p>The Underlying Role of Mitophagy in Different Regulatory Mechanisms of Chronic Obstructive Pulmonary Disease</p> . International Journal of COPD, 2020, Volume 15, 2167-2177.	0.9	9
27	Accelerated Amyloid Beta Pathogenesis by Bacterial Amyloid FapC. Advanced Science, 2020, 7, 2001299.	5.6	47
28	Connecting the "Dots†From Free Radical Lipid Autoxidation to Cell Pathology and Disease. Chemical Reviews, 2020, 120, 12757-12787.	23.0	61
29	Human Dopaminergic Neurons Lacking PINK1 Exhibit Disrupted Dopamine Metabolism Related to Vitamin B6 Co-Factors. IScience, 2020, 23, 101797.	1.9	20
30	Intranigral Administration of β-Sitosterol-β-D-Glucoside Elicits Neurotoxic A1 Astrocyte Reactivity and Chronic Neuroinflammation in the Rat Substantia Nigra. Journal of Immunology Research, 2020, 2020, 1-19.	0.9	10
31	Parkinson's: A Disease of Aberrant Vesicle Trafficking. Annual Review of Cell and Developmental Biology, 2020, 36, 237-264.	4.0	54
32	α-Synuclein in Parkinson's Disease: Does a Prion-Like Mechanism of Propagation from Periphery to the Brain Play a Role?. Neuroscientist, 2021, 27, 107385842094318.	2.6	5
33	The Microbiome as a Modifier of Neurodegenerative Disease Risk. Cell Host and Microbe, 2020, 28, 201-222.	5.1	120
34	NLRP3 Inflammasomes in Parkinson's disease and their Regulation by Parkin. Neuroscience, 2020, 446, 323-334.	1.1	48
35	Docosahexaenoic acid-acylated astaxanthin ester exhibits superior performance over non-esterified astaxanthin in preventing behavioral deficits coupled with apoptosis in MPTP-induced mice with Parkinson's disease. Food and Function, 2020, 11, 8038-8050.	2.1	32
36	Mitochondrial <i>UQCRC1</i> mutations cause autosomal dominant parkinsonism with polyneuropathy. Brain, 2020, 143, 3352-3373.	3.7	37

#	Article	IF	CITATIONS
37	Sensitive ELISA-based detection method for the mitophagy marker p-S65-Ub in human cells, autopsy brain, and blood samples. Autophagy, 2021, 17, 2613-2628.	4.3	29
38	The Effect of Dysfunctional Ubiquitin Enzymes in the Pathogenesis of Most Common Diseases. International Journal of Molecular Sciences, 2020, 21, 6335.	1.8	31
39	Predictive analysis methods for human microbiome data with application to Parkinson's disease. PLoS ONE, 2020, 15, e0237779.	1.1	21
40	Single Nucleotide Polymorphisms Associated With Gut Homeostasis Influence Risk and Age-at-Onset of Parkinson's Disease. Frontiers in Aging Neuroscience, 2020, 12, 603849.	1.7	16
41	Stem Cells and Organoid Technology in Precision Medicine in Inflammation: Are We There Yet?. Frontiers in Immunology, 2020, 11, 573562.	2.2	13
42	New Insights into Immune-Mediated Mechanisms in Parkinson's Disease. International Journal of Molecular Sciences, 2020, 21, 9302.	1.8	16
43	PINK1/PARKIN signalling in neurodegeneration and neuroinflammation. Acta Neuropathologica Communications, 2020, 8, 189.	2.4	204
44	Targeting the microbiota in pharmacology of psychiatric disorders. Pharmacological Research, 2020, 157, 104856.	3.1	35
45	Mitochondrial Homeostasis and Signaling in Parkinson's Disease. Frontiers in Aging Neuroscience, 2020, 12, 100.	1.7	27
46	Maackiain Ameliorates 6-Hydroxydopamine and SNCA Pathologies by Modulating the PINK1/Parkin Pathway in Models of Parkinson's Disease in Caenorhabditis elegans and the SH-SY5Y Cell Line. International Journal of Molecular Sciences, 2020, 21, 4455.	1.8	30
47	Mechanisms of neurodegeneration in Parkinson's disease: keep neurons in the PINK1. Mechanisms of Ageing and Development, 2020, 189, 111277.	2.2	11
48	Clostridium difficile infection and risk of Parkinson's disease: a Swedish populationâ€based cohort study. European Journal of Neurology, 2020, 27, 2134-2141.	1.7	14
49	Sodium Butyrate Exacerbates Parkinson's Disease by Aggravating Neuroinflammation and Colonic Inflammation in MPTP-Induced Mice Model. Neurochemical Research, 2020, 45, 2128-2142.	1.6	49
50	COVID-19 infection may increase the risk of parkinsonism – Remember the Spanish flu?. Cytokine and Growth Factor Reviews, 2020, 54, 6-7.	3.2	15
51	Characterizing dysbiosis of gut microbiome in PD: evidence for overabundance of opportunistic pathogens. Npj Parkinson's Disease, 2020, 6, 11.	2.5	140
52	TNF receptor–associated factor 6 interacts with ALS-linked misfolded superoxide dismutase 1 and promotes aggregation. Journal of Biological Chemistry, 2020, 295, 3808-3825.	1.6	16
53	EGCG ameliorates neuronal and behavioral defects by remodeling gut microbiota and TotM expression in <i>Drosophila</i> models of Parkinson's disease. FASEB Journal, 2020, 34, 5931-5950.	0.2	40
54	West Nile Virus-Induced Neurologic Sequelae—Relationship to Neurodegenerative Cascades and Dementias. Current Tropical Medicine Reports, 2020, 7, 25-36.	1.6	13

		CITATION REPORT		
#	Article		IF	Citations
55	Leucine Rich Repeat Kinase 2 and Innate Immunity. Frontiers in Neuroscience, 2020, 1	4, 193.	1.4	36
56	PINK1 and Parkin mitochondrial quality control: a source of regional vulnerability in Pa disease. Molecular Neurodegeneration, 2020, 15, 20.	rkinson's	4.4	264
57	Microbiota and Other Preventive Strategies and Non-genetic Risk Factors in Parkinson Frontiers in Aging Neuroscience, 2020, 12, 12.	's Disease.	1.7	5
58	Overcoming blood–brain barrier transport: Advances in nanoparticle-based drug deli Materials Today, 2020, 37, 112-125.	very strategies.	8.3	196
59	Parkinson's Disease and the Gut: Future Perspectives for Early Diagnosis. Frontiers 2020, 14, 626.	in Neuroscience,	1.4	18
60	Control of Reactive Oxygen Species for the Prevention of Parkinson's Disease: The of Flavonoids. Antioxidants, 2020, 9, 583.	Possible Application	2.2	63
61	Dietary Pattern, Gut Microbiota, and Alzheimer's Disease. Journal of Agricultural ar 2020, 68, 12800-12809.	าd Food Chemistry,	2.4	57
62	The STING pathway does not contribute to behavioural or mitochondrial phenotypes in Pink1/parkin or mtDNA mutator models. Scientific Reports, 2020, 10, 2693.	n Drosophila	1.6	20
63	Implications of the Gut Microbiome in Parkinson's Disease. Movement Disorders, 2020), 35, 921-933.	2.2	95
64	Regulation of immune-driven pathogenesis in Parkinson's disease by gut microbio and Immunity, 2020, 87, 890-897.	ta. Brain, Behavior,	2.0	28
65	Alterations in \hat{I}_{\pm} -synuclein and PINK1 expression reduce neurite length and induce mite and Golgi fragmentation in midbrain neurons. Neuroscience Letters, 2020, 720, 13477	ochondrial fission 77.	1.0	11
66	The gut microbiota $\hat{a} \in$ " brain axis of insects. Current Opinion in Insect Science, 2020,	39, 6-13.	2.2	52
67	Gut Microbial Signatures Can Discriminate Unipolar from Bipolar Depression. Advance 7, 1902862.	d Science, 2020,	5.6	99
68	Selective neuronal vulnerability in Parkinson's disease. Progress in Brain Research, 202	0, 252, 61-89.	0.9	43
69	Neurodegenerative Diseases $\hat{a} {\in} ``$ Is Metabolic Deficiency the Root Cause?. Frontiers in 2020, 14, 213.	Neuroscience,	1.4	148
70	Enhanced Susceptibility of PINK1 Knockout Rats to α-Synuclein Fibrils. Neuroscience,	2020, 437, 64-75.	1.1	15
71	Mitophagy: An Emerging Role in Aging and Age-Associated Diseases. Frontiers in Cell a Developmental Biology, 2020, 8, 200.	ind	1.8	220
72	Using multi-organ culture systems to study Parkinson's disease. Molecular Psychia 725-735.	try, 2021, 26,	4.1	16

#	Article	IF	CITATIONS
73	Mitochondria and Parkinson's Disease: Clinical, Molecular, and Translational Aspects. Journal of Parkinson's Disease, 2021, 11, 45-60.	1.5	100
74	The gut microbiota–brain axis in behaviour and brain disorders. Nature Reviews Microbiology, 2021, 19, 241-255.	13.6	864
75	Proteomic Profiling of Mitochondrial-Derived Vesicles in Brain Reveals Enrichment of Respiratory Complex Sub-assemblies and Small TIM Chaperones. Journal of Proteome Research, 2021, 20, 506-517.	1.8	14
76	Mitochondrial Dysfunction and Mitophagy in Parkinson's Disease: From Mechanism to Therapy. Trends in Biochemical Sciences, 2021, 46, 329-343.	3.7	234
77	Inflammation and Parkinson's disease pathogenesis: Mechanisms and therapeutic insight. Progress in Molecular Biology and Translational Science, 2021, 177, 175-202.	0.9	21
78	<scp><i>LRRK2</i></scp> Parkinsonism: Does the Response to Gut Bacteria Mitigate the Neurological Picture?. Movement Disorders, 2021, 36, 71-75.	2.2	4
79	The multiâ€faceted role of mitochondria in the pathology of Parkinson's disease. Journal of Neurochemistry, 2021, 156, 715-752.	2.1	42
80	Leveraging sequenceâ€based faecal microbial community survey data to identify alterations in gut microbiota among patients with Parkinson's disease. European Journal of Neuroscience, 2021, 53, 687-696.	1.2	6
81	COVID-19: dealing with a potential risk factor for chronic neurological disorders. Journal of Neurology, 2021, 268, 1171-1178.	1.8	50
82	Targeting mitophagy in Parkinson's disease. Journal of Biological Chemistry, 2021, 296, 100209.	1.6	65
83	Is Gut Dysbiosis an Epicenter of Parkinson's Disease?. Neurochemical Research, 2021, 46, 425-438.	1.6	11
84	Deciphering the dual role and prognostic potential of PINK1 across cancer types. Neural Regeneration Research, 2021, 16, 659.	1.6	7
85	Gut microbiota-derived propionate mediates the neuroprotective effect of osteocalcin in a mouse model of Parkinson's disease. Microbiome, 2021, 9, 34.	4.9	97
86	Inflammation and Depression: Is Immunometabolism the Missing Link?. , 2021, , 259-287.		3
89	The Association Between the Gut Microbiota and Parkinson's Disease, a Meta-Analysis. Frontiers in Aging Neuroscience, 2021, 13, 636545.	1.7	111
90	Advances of Mechanisms-Related Metabolomics in Parkinson's Disease. Frontiers in Neuroscience, 2021, 15, 614251.	1.4	6
91	Parkinson's disease and mitophagy: an emerging role for LRRK2. Biochemical Society Transactions, 2021, 49, 551-562.	1.6	32
93	Intragastric Administration of Casein Leads to Nigrostriatal Disease Progressed Accompanied with Persistent Nigrostriatal—Intestinal Inflammation Activited and Intestinal Microbiota—Metabolic Disorders Induced in MPTP Mouse Model of Parkinson's Disease. Neurochemical Research, 2021, 46, 1514-1539	1.6	9

#	Article	IF	CITATIONS
94	New Avenues for Parkinson's Disease Therapeutics: Disease-Modifying Strategies Based on the Gut Microbiota. Biomolecules, 2021, 11, 433.	1.8	38
95	CD4 T cells mediate brain inflammation and neurodegeneration in a mouse model of Parkinson'sÂdisease. Brain, 2021, 144, 2047-2059.	3.7	124
96	Mitochondrial clearance: mechanisms and roles in cellular fitness. FEBS Letters, 2021, 595, 1239-1263.	1.3	28
97	Selective packaging of mitochondrial proteins into extracellular vesicles prevents the release of mitochondrial DAMPs. Nature Communications, 2021, 12, 1971.	5.8	142
98	Gut Microbiota Interaction with the Central Nervous System throughout Life. Journal of Clinical Medicine, 2021, 10, 1299.	1.0	47
99	Research on developing drugs for Parkinson's disease. Brain Research Bulletin, 2021, 168, 100-109.	1.4	14
101	The translocator protein (TSPO) is prodromal to mitophagy loss in neurotoxicity. Molecular Psychiatry, 2021, 26, 2721-2739.	4.1	10
102	The cell biology of Parkinson's disease. Journal of Cell Biology, 2021, 220, .	2.3	77
103	The role of gut dysbiosis in Parkinson's disease: mechanistic insights and therapeutic options. Brain, 2021, 144, 2571-2593.	3.7	119
104	Increased Accumulation of α‣ynuclein in Inflamed Appendices of Parkinson's Disease Patients. Movement Disorders, 2021, 36, 1911-1918.	2.2	8
105	Genes Implicated in Familial Parkinson's Disease Provide a Dual Picture of Nigral Dopaminergic Neurodegeneration with Mitochondria Taking Center Stage. International Journal of Molecular Sciences, 2021, 22, 4643.	1.8	12
106	Inflammatory neuropsychiatric disorders and COVID-19 neuroinflammation. Acta Neuropsychiatrica, 2021, 33, 165-177.	1.0	15
107	Gastrointestinal dysfunction in Parkinson's disease: molecular pathology and implications of gut microbiome, probiotics, and fecal microbiota transplantation. Journal of Neurology, 2022, 269, 1154-1163.	1.8	63
108	Impact of diet on human gut microbiome and disease risk. New Microbes and New Infections, 2021, 41, 100845.	0.8	16
109	Delivering Antisense Oligonucleotides across the Bloodâ€Brain Barrier by Tumor Cellâ€Derived Small Apoptotic Bodies. Advanced Science, 2021, 8, 2004929.	5.6	45
110	The Pathogenesis of Parkinson's Disease: A Complex Interplay Between Astrocytes, Microglia, and T Lymphocytes?. Frontiers in Neurology, 2021, 12, 666737.	1.1	74
111	Roles and Mechanisms of Gut Microbiota in Patients With Alzheimer's Disease. Frontiers in Aging Neuroscience, 2021, 13, 650047.	1.7	70
112	The viral hypothesis: how herpesviruses may contribute to Alzheimer's disease. Molecular Psychiatry, 2021, 26, 5476-5480.	4.1	20

#	Article	IF	CITATIONS
114	Crystal structure of human PACRG in complex with MEIG1 reveals roles in axoneme formation and tubulin binding. Structure, 2021, 29, 572-586.e6.	1.6	19
115	Genetic Defects and Pro-inflammatory Cytokines in Parkinson's Disease. Frontiers in Neurology, 2021, 12, 636139.	1.1	26
116	A hybrid aggregate FRET probe from the mixed assembly of cyanine dyes for highly specific monitoring of mitochondria autophagy. Analytica Chimica Acta, 2021, 1165, 338561.	2.6	4
117	iTRAQ-based quantitative proteomic analysis of low molybdenum inducing thymus atrophy and participating in immune deficiency-related diseases. Ecotoxicology and Environmental Safety, 2021, 216, 112200.	2.9	2
118	Oral subchronic exposure to the mycotoxin ochratoxin A induces key pathological features of Parkinson's disease in mice six months after the end of the treatment. Food and Chemical Toxicology, 2021, 152, 112164.	1.8	16
119	The PINK1-Mediated Crosstalk between Neural Cells and the Underlying Link to Parkinson's Disease. Cells, 2021, 10, 1395.	1.8	6
120	Hidden phenotypes of PINK1/Parkin knockout mice. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129871.	1.1	9
121	AMPK activates Parkin independent autophagy and improves post sepsis immune defense against secondary bacterial lung infections. Scientific Reports, 2021, 11, 12387.	1.6	12
122	Parkinson's disease. Lancet, The, 2021, 397, 2284-2303.	6.3	1,176
123	Molecular Communication Between Neuronal Networks and Intestinal Epithelial Cells in Gut Inflammation and Parkinson's Disease. Frontiers in Medicine, 2021, 8, 655123.	1.2	11
124	Genetic Imaging of Neuroinflammation in Parkinson's Disease: Recent Advancements. Frontiers in Cell and Developmental Biology, 2021, 9, 655819.	1.8	15
125	Near-Infrared Radiation-Assisted Drug Delivery Nanoplatform to Realize Blood–Brain Barrier Crossing and Protection for Parkinsonian Therapy. ACS Applied Materials & Interfaces, 2021, 13, 37746-37760.	4.0	28
126	Hot Topics in Recent Parkinson's Disease Research: Where We are and Where We Should Go. Neuroscience Bulletin, 2021, 37, 1735-1744.	1.5	19
127	The Gut-Brain Axis in Inflammatory Bowel Disease—Current and Future Perspectives. International Journal of Molecular Sciences, 2021, 22, 8870.	1.8	36
128	A cyanine dye supramolecular FRET switch driven by G-quadruplex to monitor mitophagy. Dyes and Pigments, 2021, 192, 109429.	2.0	8
128 129	A cyanine dye supramolecular FRET switch driven by G-quadruplex to monitor mitophagy. Dyes and Pigments, 2021, 192, 109429. Basal Synaptic Transmission and Long-Term Plasticity at CA3-CA1 Synapses Are Unaffected in Young Adult PINK1-Deficient Rats. Frontiers in Neuroscience, 2021, 15, 655901.	2.0	8
128 129 130	A cyanine dye supramolecular FRET switch driven by G-quadruplex to monitor mitophagy. Dyes and Pigments, 2021, 192, 109429. Basal Synaptic Transmission and Long-Term Plasticity at CA3-CA1 Synapses Are Unaffected in Young Adult PINK1-Deficient Rats. Frontiers in Neuroscience, 2021, 15, 655901. Exploring human-genome gut-microbiome interaction in Parkinson's disease. Npj Parkinson's Disease, 2021, 7, 74.	2.0 1.4 2.5	8 0 15

		CITATION REPORT		
#	Article		IF	CITATIONS
132	UQCRC1 engages cytochrome c for neuronal apoptotic cell death. Cell Reports, 2021,	36, 109729.	2.9	13
133	The neuromicrobiology of Parkinson's disease: A unifying theory. Ageing Research 101396.	Reviews, 2021, 70,	5.0	24
134	Identifying dominant-negative actions of a dopamine transporter variant in patients w and neuropsychiatric disease. JCI Insight, 2021, 6, .	ith parkinsonism	2.3	11
135	Parkinson's disease and the gut: Models of an emerging relationship. Acta Biomaterial 325-344.	ia, 2021, 132,	4.1	15
136	The Gut-Brain Axis in Multiple Sclerosis. Is Its Dysfunction a Pathological Trigger or a C the Disease?. Frontiers in Immunology, 2021, 12, 718220.	onsequence of	2.2	38
137	Interplay of gut microbiota and oxidative stress: Perspective on neurodegeneration an neuroprotection. Journal of Advanced Research, 2022, 38, 223-244.	d	4.4	86
138	Citrobacter rodentium infection at the gut–brain axis interface. Current Opinion in № 2021, 63, 59-65.	vlicrobiology,	2.3	5
139	PARKIN modifies peripheral immune response and increases neuroinflammation in acti autoimmune encephalomyelitis (EAE). Journal of Neuroimmunology, 2021, 359, 57769	ve experimental 94.	1.1	8
140	Reassessing neurodegenerative disease: immune protection pathways and antagonist Trends in Neurosciences, 2021, 44, 771-780.	ic pleiotropy.	4.2	10
141	Parkinson's disease outside the brain: targeting the autonomic nervous system. Lance 2021, 20, 868-876.	t Neurology, The,	4.9	32
142	Flavin-containing monooxygenase 1 deficiency promotes neuroinflammation in dopam in mice. Neuroscience Letters, 2021, 764, 136222.	ninergic neurons	1.0	2
143	The Nrf2-NLRP3-caspase-1 axis mediates the neuroprotective effects of Celastrol in Par Redox Biology, 2021, 47, 102134.	rkinson's disease.	3.9	65
144	Gut Dysbiosis and Neurological Disorders—An Eclectic Perspective. , 2022, , 489-500).		0
145	Parkinson Disease. , 2021, , 109-133.			0
146	Morbidity, Mortality, and Conversion to Neurodegenerative Diseases in Patients with Behavior Disorder and REM Sleep without Atonia. Neuroepidemiology, 2021, 55, 141-2	≀EM Sleep 153.	1.1	2
147	Comprehensive Perspectives on Experimental Models for Parkinson's Disease. , 20	21, 12, 223.		12
148	Mitophagy in Parkinson's disease: From pathogenesis to treatment target. Neurochem International, 2020, 138, 104756.	nistry	1.9	17
149	PINK1 and Parkin: The odd couple. Neuroscience Research, 2020, 159, 25-33.		1.0	8

#	Article	IF	CITATIONS
150	Autophagy in the mammalian nervous system: a primer for neuroscientists. Neuronal Signaling, 2019, 3, NS20180134.	1.7	13
151	Mitophagy pathways in health and disease. Journal of Cell Biology, 2020, 219, .	2.3	121
155	Minireview on the Relations between Gut Microflora and Parkinson's Disease: Further Biochemical (Oxidative Stress), Inflammatory, and Neurological Particularities. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-15.	1.9	18
156	Chemical inhibition of FBXO7 reduces inflammation and confers neuroprotection by stabilizing the mitochondrial kinase PINK1. JCI Insight, 2020, 5, .	2.3	40
157	Mitophagy and Innate Immunity in Infection. Molecules and Cells, 2020, 43, 10-22.	1.0	45
158	Kill one or kill the many: interplay between mitophagy and apoptosis. Biological Chemistry, 2020, 402, 73-88.	1.2	44
159	Healthy Gut, Healthy Brain: The Gut Microbiome in Neurodegenerative Disorders. Current Topics in Medicinal Chemistry, 2020, 20, 1142-1153.	1.0	28
160	Culprit or Bystander: Defective Mitophagy in Alzheimer's Disease. Frontiers in Cell and Developmental Biology, 2019, 7, 391.	1.8	11
161	A gut bacterial amyloid promotes $\hat{l}\pm$ -synuclein aggregation and motor impairment in mice. ELife, 2020, 9, .	2.8	251
162	Inflammatory Bowel Disease and Patients With Mental Disorders: What Do We Know?. Journal of Clinical Medicine Research, 2021, 13, 466-473.	0.6	9
163	The PINK1 repertoire: Not just a one trick pony. BioEssays, 2021, 43, e2100168.	1.2	9
164	T-cell based immunotherapies for Parkinson's disease. , 2021, 1, .		3
165	Mitochondrial Extracellular Vesicles – Origins and Roles. Frontiers in Molecular Neuroscience, 2021, 14, 767219.	1.4	53
166	The Role of Pathogens and Anti-Infective Agents in Parkinson's Disease, from Etiology to Therapeutic Implications. Journal of Parkinson's Disease, 2022, 12, 27-44.	1.5	4
167	The role of mitophagy during oocyte aging in human, mouse, and Drosophila: implications for oocyte quality and mitochondrial disease. Reproduction and Fertility, 2021, 2, R113-R129.	0.6	13
168	Managing risky assets – mitophagy <i>in vivo</i> . Journal of Cell Science, 2021, 134, .	1.2	11
172	Emerging roles of ATG7 in human health and disease. EMBO Molecular Medicine, 2021, 13, e14824.	3.3	61
173	Issues in Laboratory Animal Science That Impact Toxicologic Pathology. , 2022, , 1077-1106.		0

#	Article	IF	CITATIONS
174	PTEN-induced kinase 1 (PINK1) and Parkin: Unlocking a mitochondrial quality control pathway linked to Parkinson's disease. Current Opinion in Neurobiology, 2022, 72, 111-119.	2.0	40
176	Nanomaterials as novel agents for amelioration of Parkinson's disease. Nano Today, 2021, 41, 101328.	6.2	18
180	Ambient temperature structures the gut microbiota of zebrafish to impact the response to radioactive pollution. Environmental Pollution, 2022, 293, 118539.	3.7	7
181	PINK1 deficiency impairs osteoblast differentiation through aberrant mitochondrial homeostasis. Stem Cell Research and Therapy, 2021, 12, 589.	2.4	21
182	Neuro-Immunity and Gut Dysbiosis Drive Parkinson's Disease-Induced Pain. Frontiers in Immunology, 2021, 12, 759679.	2.2	6
183	PINK1 kinase dysfunction triggers neurodegeneration in the primate brain without impacting mitochondrial homeostasis. Protein and Cell, 2022, 13, 26-46.	4.8	32
184	Footprints of a microbial toxin from the gut microbiome to mesencephalic mitochondria. Gut, 2023, 72, 73-89.	6.1	22
185	Common Inflammatory Mechanisms in COVID-19 and Parkinson's Diseases: The Role of Microbiome, Pharmabiotics and Postbiotics in Their Prevention. Journal of Inflammation Research, 2021, Volume 14, 6349-6381.	1.6	28
186	Ferroptosis as a Major Factor and Therapeutic Target for Neuroinflammation in Parkinson's Disease. Biomedicines, 2021, 9, 1679.	1.4	27
187	T cells, α-synuclein and Parkinson disease. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2022, 184, 439-455.	1.0	8
188	The Gut–Brain Axis and Its Relation to Parkinson's Disease: A Review. Frontiers in Aging Neuroscience, 2021, 13, 782082.	1.7	59
189	MEK inhibition overcomes chemoimmunotherapy resistance by inducing CXCL10 in cancer cells. Cancer Cell, 2022, 40, 136-152.e12.	7.7	79
190	Environmental factors in Parkinson's disease: New insights into the molecular mechanisms. Toxicology Letters, 2022, 356, 1-10.	0.4	13
191	Prussian Blue Nanozyme as a Pyroptosis Inhibitor Alleviates Neurodegeneration. Advanced Materials, 2022, 34, e2106723.	11.1	91
193	Microbes and Parkinson's disease: from associations to mechanisms. Trends in Microbiology, 2022, 30, 749-760.	3.5	9
194	MIROs and DRP1 drive mitochondrial-derived vesicle biogenesis and promote quality control. Nature Cell Biology, 2021, 23, 1271-1286.	4.6	105
195	Low Dose of Deoxynivalenol Aggravates Intestinal Inflammation and Barrier Dysfunction Induced by Enterotoxigenic <i>Escherichia coli</i> Infection through Activating Macroautophagy/NLRP3 Inflammasomes. Journal of Agricultural and Food Chemistry, 2022, 70, 3009-3022.	2.4	9
196	Interactions Between Intestinal Microbiota and Neural Mitochondria: A New Perspective on Communicating Pathway From Gut to Brain. Frontiers in Microbiology, 2022, 13, 798917.	1.5	9

#	Article	IF	CITATIONS
197	PTEN-Induced Putative Kinase 1 Dysfunction Accelerates Synucleinopathy. Journal of Parkinson's Disease, 2022, 12, 1201-1217.	1.5	4
198	Mechanistic Insights Into Gut Microbiome Dysbiosis-Mediated Neuroimmune Dysregulation and Protein Misfolding and Clearance in the Pathogenesis of Chronic Neurodegenerative Disorders. Frontiers in Neuroscience, 2022, 16, 836605.	1.4	17
200	Transcriptional analysis of peripheral memory T cells reveals Parkinson's disease-specific gene signatures. Npj Parkinson's Disease, 2022, 8, 30.	2.5	20
201	Neuronal Presentation of Antigen and Its Possible Role in Parkinson's Disease. Journal of Parkinson's Disease, 2022, 12, S137-S147.	1.5	6
202	Therapeutic targeting of mitophagy in Parkinson's disease. Biochemical Society Transactions, 2022, 50, 783-797.	1.6	20
203	Pleiotropic effects of mitochondria in aging. Nature Aging, 2022, 2, 199-213.	5.3	66
204	Immune Response Modifications in the Genetic Forms of Parkinson's Disease: What Do We Know?. International Journal of Molecular Sciences, 2022, 23, 3476.	1.8	5
205	T Lymphocytes in Parkinson's Disease. Journal of Parkinson's Disease, 2022, 12, S65-S74.	1.5	17
206	Mitophagy and Neurodegeneration: Between the Knowns and the Unknowns. Frontiers in Cell and Developmental Biology, 2022, 10, 837337.	1.8	17
207	The contribution of altered neuronal autophagy to neurodegeneration. , 2022, 238, 108178.		22
208	Systematic analysis of PINK1 variants of unknown significance shows intact mitophagy function for most variants. Npj Parkinson's Disease, 2021, 7, 113.	2.5	6
209	Neuromelanin in Parkinson's Disease: Tyrosine Hydroxylase and Tyrosinase. International Journal of Molecular Sciences, 2022, 23, 4176.	1.8	32
215	Similarities and differences between nigral and enteric dopaminergic neurons unravel distinctive involvement in Parkinson's disease. Npj Parkinson's Disease, 2022, 8, 50.	2.5	14
216	Mitochondrial quality control in health and in Parkinson's disease. Physiological Reviews, 2022, 102, 1721-1755.	13.1	70
217	Convergent pathways of the gut microbiota–brain axis and neurodegenerative disorders. Gastroenterology Report, 2022, 10, goac017.	0.6	16
218	Î [:] -Synuclein Aggregation Induced by Vagal Application of DOPAL Mediates Time-Dependent Axonal Transport Dysfunction in Rats. SSRN Electronic Journal, 0, , .	0.4	0
219	Macroautophagy in CNS health and disease. Nature Reviews Neuroscience, 2022, 23, 411-427.	4.9	44
220	The Microbiota–Gut–Brain Axis in Depression: The Potential Pathophysiological Mechanisms and Microbiota Combined Antidepression Effect, Nutrients, 2022, 14, 2081	1.7	21

#	Article	IF	CITATIONS
221	Parkinson's Disease-Specific Autoantibodies against the Neuroprotective Co-Chaperone STIP1. Cells, 2022, 11, 1649.	1.8	4
222	Exploring the multifactorial aspects of Gut Microbiome in Parkinson's Disease. Folia Microbiologica, 2022, 67, 693-706.	1.1	9
223	Microbiota–brain axis: Context and causality. Science, 2022, 376, 938-939.	6.0	49
224	Neuroinflammation in Parkinson's Disease – Putative Pathomechanisms and Targets for Disease-Modification. Frontiers in Immunology, 2022, 13, .	2.2	42
226	Monoubiquitination in Homeostasis and Cancer. International Journal of Molecular Sciences, 2022, 23, 5925.	1.8	8
227	Neurodegeneration and Neuroinflammation in Parkinson's Disease: a Self-Sustained Loop. Current Neurology and Neuroscience Reports, 2022, 22, 427-440.	2.0	21
228	The microbiome–gut–brain axis in Parkinson disease — from basic research to the clinic. Nature Reviews Neurology, 2022, 18, 476-495.	4.9	94
229	The Pathological Mechanism Between the Intestine and Brain in the Early Stage of Parkinson's Disease. Frontiers in Aging Neuroscience, 0, 14, .	1.7	3
231	Mitochondria as Cellular and Organismal Signaling Hubs. Annual Review of Cell and Developmental Biology, 2022, 38, 179-218.	4.0	52
233	Update to the Treatment of Parkinson's Disease Based on the Gut-Brain Axis Mechanism. Frontiers in Neuroscience, 0, 16, .	1.4	11
234	Reduced penetrance of Parkinson's disease models. Medizinische Genetik, 2022, 34, 117-124.	0.1	0
235	Gut microenvironmental changes as a potential trigger in Parkinson's disease through the gut–brain axis. Journal of Biomedical Science, 2022, 29, .	2.6	25
236	Feeding and lipophagy: it takes guts to deliver. EMBO Journal, 0, , .	3.5	1
237	mtDNA Maintenance and Alterations in the Pathogenesis of Neurodegenerative Diseases. Current Neuropharmacology, 2023, 21, 578-598.	1.4	1
238	Perturbed gut microbiota is gender-segregated in unipolar and bipolar depression. Journal of Affective Disorders, 2022, 317, 166-175.	2.0	2
239	Oxidative stress and synaptic dysfunction in rodent models of Parkinson's disease. Neurobiology of Disease, 2022, 173, 105851.	2.1	17
240	CircSV2b participates in oxidative stress regulation through miR-5107-5p-Foxk1-Akt1 axis in Parkinson's disease. Redox Biology, 2022, 56, 102430.	3.9	22
241	The gut-brain axis in the pathogenesis of Parkinson's disease. Brain Science Advances, 2019, 5, 73-81.	0.3	1

#	Article	IF	CITATIONS
242	Isoliquiritigenin attenuates neuroinflammation in mice model of Parkinson's disease by promoting Nrf2/NQO-1 pathway. Translational Neuroscience, 2022, 13, 301-308.	0.7	2
243	The many genomes of Parkinson's disease. International Review of Neurobiology, 2022, , .	0.9	2
244	Genetics and Pathogenesis of Parkinson's Syndrome. Annual Review of Pathology: Mechanisms of Disease, 2023, 18, 95-121.	9.6	49
245	Association between microbiological risk factors and neurodegenerative disorders: An umbrella review of systematic reviews and meta-analyses. Frontiers in Psychiatry, 0, 13, .	1.3	1
246	Progress in Parkinson's disease animal models of genetic defects: Characteristics and application. Biomedicine and Pharmacotherapy, 2022, 155, 113768.	2.5	3
247	Frontiers and future perspectives of neuroimmunology. Fundamental Research, 2022, , .	1.6	0
249	Mitophagy in the aging nervous system. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	7
250	Pericytes take up and degrade α-synuclein but succumb to apoptosis under cellular stress. Scientific Reports, 2022, 12, .	1.6	7
251	PINK1-PRKN mediated mitophagy: differences between <i>in vitro</i> and <i>in vivo</i> models. Autophagy, 2023, 19, 1396-1405.	4.3	15
252	PET imaging in animal models of Parkinson's disease. Behavioural Brain Research, 2023, 438, 114174.	1.2	3
253	Metagenomics of Parkinson's disease implicates the gut microbiome in multiple disease mechanisms. Nature Communications, 2022, 13, .	5.8	73
254	Neuron-periphery mitochondrial stress communication in aging and diseases. , 0, , .		3
255	Neuroprotective Effects of Bifidobacterium breve CCFM1067 in MPTP-Induced Mouse Models of Parkinson's Disease. Nutrients, 2022, 14, 4678.	1.7	16
256	Physiological functions of mitophagy. Current Opinion in Physiology, 2022, 30, 100612.	0.9	2
257	Age related immune modulation of experimental autoimmune encephalomyelitis in PINK1 knockout mice. Frontiers in Immunology, 0, 13, .	2.2	3
258	T cells in the brain inflammation. Advances in Immunology, 2023, , 29-58.	1.1	3
259	Unaltered T cell responses to common antigens in individuals with Parkinson's disease. Journal of the Neurological Sciences, 2023, 444, 120510.	0.3	8
260	PINK1/Parkin-mediated mitophagy in neurodegenerative diseases. Ageing Research Reviews, 2023, 84, 101817.	5.0	29

#	Article	IF	CITATIONS
261	Curcumin Regulates Gut Microbiota and Exerts a Neuroprotective Effect in the MPTP Model of Parkinson's Disease. Evidence-based Complementary and Alternative Medicine, 2022, 2022, 1-16.	0.5	10
262	Mitochondrial DNA heteroplasmy distinguishes disease manifestation in <i>PINK1</i> PRKN-linked Parkinson's disease. Brain, 2023, 146, 2753-2765.	3.7	3
263	The gut microbiota is an emerging target for improving brain health during ageing. Gut Microbiome, 2023, 4, .	0.8	9
265	Autophagy genes in biology and disease. Nature Reviews Genetics, 2023, 24, 382-400.	7.7	106
266	Mitochondrial signalling and homeostasis: from cell biology to neurological disease. Trends in Neurosciences, 2023, 46, 137-152.	4.2	29
267	LUHMES Cells: Phenotype Refinement and Development of an MPP+-Based Test System for Screening Antiparkinsonian Drugs. International Journal of Molecular Sciences, 2023, 24, 733.	1.8	0
268	Exploring the Neuroprotective Mechanism of Curcumin Inhibition of Intestinal Inflammation against Parkinson's Disease Based on the Gut-Brain Axis. Pharmaceuticals, 2023, 16, 39.	1.7	5
270	Integrated Multi ohort Analysis of the Parkinson's Disease Gut Metagenome. Movement Disorders, 2023, 38, 399-409.	2.2	4
271	PRKN/parkin-mediated mitophagy is induced by the probiotics <i>Saccharomyces boulardii</i> and <i>Lactococcus lactis</i> . Autophagy, 2023, 19, 2094-2110.	4.3	1
272	Intracellular to Interorgan Mitochondrial Communication in Striated Muscle in Health and Disease. Endocrine Reviews, 2023, 44, 668-692.	8.9	9
273	Effect of Non-Specific Porins from the Outer Membrane of Yersinia pseudotuberculosis on Mice Brain Cortex Tissues. Biochemistry (Moscow), 2023, 88, 142-151.	0.7	0
274	Role of Gut Microbiota in Neurological Disorders and Its Therapeutic Significance. Journal of Clinical Medicine, 2023, 12, 1650.	1.0	12
275	Signaling pathways in Parkinson's disease: molecular mechanisms and therapeutic interventions. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	37
276	Short-Chain Fatty Acids in the Microbiota–Gut–Brain Axis: Role in Neurodegenerative Disorders and Viral Infections. ACS Chemical Neuroscience, 2023, 14, 1045-1062.	1.7	10
277	Structure-based design and characterization of Parkin-activating mutations. Life Science Alliance, 2023, 6, e202201419.	1.3	6
278	Impaired Integrated Stress Response and Mitochondrial Integrity Modulate Genotoxic Stress Impact and Lower the Threshold for Immune Signalling. International Journal of Molecular Sciences, 2023, 24, 5891.	1.8	1
279	The Role of Microbes for Triggering Neurological Diseases. , 0, 36, 445-452.		0
280	Allele-dependent interaction of LRRK2 and NOD2 in leprosy. PLoS Pathogens, 2023, 19, e1011260.	2.1	3

	Сіт	ITATION REPORT		
#	Article	IF	Citations	
281	Microbiota and probiotics: chances and challenges – a symposium report. Gut Microbiome, 2023, 4,	. 0.8	1	
283	Structural Mechanisms of Mitochondrial Quality Control Mediated by PINK1 and Parkin. Journal of Molecular Biology, 2023, 435, 168090.	2.0	10	
285	CSDMD in peripheral myeloid cells regulates microglial immune training and neuroinflammation in Parkinson's disease. Acta Pharmaceutica Sinica B, 2023, 13, 2663-2679.	5.7	2	
303	Different pieces of the same puzzle: a multifaceted perspective on the complex biological basis of Parkinson's disease. Npj Parkinson's Disease, 2023, 9, .	2.5	5	
342	The Gut Microbiota and NDG: What Is the Interplay. , 2024, , 1-34.		0	