Enantioselective Carbonyl 1,2- or 1,4-Addition Reaction Compounds Catalyzed by the Chiral Oxazaborolidinium

Accounts of Chemical Research 52, 2349-2360 DOI: 10.1021/acs.accounts.9b00279

Citation Report

#	Article	IF	CITATIONS
1	Enantioselective Strecker and Allylation Reactions with Aldimines Catalyzed by Chiral Oxazaborolidinium Ions. Organic Letters, 2019, 21, 6679-6683.	2.4	14
2	Asymmetric Synthesis of Oxaâ€Bridged Oxazocines through a Catalytic Rh ^{II} /Zn ^{II} Relay [4+3] Cycloaddition Reaction. Angewandte Chemie, 2019, 131, 18609-18613.	1.6	5
3	Asymmetric Synthesis of Oxaâ€Bridged Oxazocines through a Catalytic Rh ^{II} /Zn ^{II} Relay [4+3] Cycloaddition Reaction. Angewandte Chemie - International Edition, 2019, 58, 18438-18442.	7.2	34
4	Chiral BrÃ,nsted Acid from Chiral Phosphoric Acid Boron Complex and Water: Asymmetric Reduction of Indoles. Angewandte Chemie, 2020, 132, 3320-3325.	1.6	8
5	Chiral BrÃ,nsted Acid from Chiral Phosphoric Acid Boron Complex and Water: Asymmetric Reduction of Indoles. Angewandte Chemie - International Edition, 2020, 59, 3294-3299.	7.2	37
6	A one-pot three-component strategy for highly diastereoselective synthesis of spirocycloalkane fused pyrazolo[3,4- <i>b</i>]pyridine derivatives using recyclable solid acid as a catalyst. Organic Chemistry Frontiers, 2020, 7, 2456-2466.	2.3	14
7	Enantioselective 1,2-Addition of α-Aminoalkyl Radical to Aldehydes via Visible-Light Photoredox Initiated Chiral Oxazaborolidinium Ion Catalysis. ACS Catalysis, 2020, 10, 10585-10591.	5.5	24
8	An efficient domino strategy for synthesis of novel spirocycloalkane fused pyrazolo[3,4-b]pyridine derivatives. Tetrahedron, 2020, 76, 131727.	1.0	8
9	Chiral 1,3,2-Oxazaborolidine Catalysts for Enantioselective Photochemical Reactions. Accounts of Chemical Research, 2020, 53, 1933-1943.	7.6	49
10	Chiral Primary Amine-Catalyzed Divergent Coupling of α-Substituted Acrylaldehydes with α-Diazoesters. ACS Catalysis, 2020, 10, 10989-10998.	5.5	13
11	Tris(pentafluorophenyl)borane-Catalyzed Cyclopropanation of Styrenes with Aryldiazoacetates. ACS Catalysis, 2020, 10, 11171-11176.	5.5	46
12	Transient-axial-chirality controlled asymmetric rhodium-carbene C(sp2)-H functionalization for the synthesis of chiral fluorenes. Nature Communications, 2020, 11, 2363.	5.8	43
13	Palladium-catalyzed regioselective synthesis of B(4,5)- or B(4)-substituted o-carboranes containing α,β-unsaturated carbonyls. Organic and Biomolecular Chemistry, 2020, 18, 4723-4727.	1.5	13
14	Highly Enantioselective Allylation Reactions of Aldehydes with Allyltrimethylsilane Catalyzed by a Chiral Oxazaborolidinium Ion. Organic Letters, 2020, 22, 5198-5201.	2.4	5
15	Enantioselective synthesis of chiral α-alkynylated thiazolidones by tandem S-addition/acetalization of alkynyl imines. Organic and Biomolecular Chemistry, 2020, 18, 3117-3124.	1.5	8
16	3â€{Methoxycarbonyl)Cyclobutenone as a Reactive Dienophile in Enantioselective Diels–Alder Reactions Catalyzed by Chiral Oxazaborolidinium Ions. Angewandte Chemie, 2021, 133, 4659-4663.	1.6	2
17	3â€(Methoxycarbonyl)Cyclobutenone as a Reactive Dienophile in Enantioselective Diels–Alder Reactions Catalyzed by Chiral Oxazaborolidinium Ions. Angewandte Chemie - International Edition, 2021, 60, 4609-4613.	7.2	20
18	Enantioselective Cyclopropanation/[1,5]-Hydrogen Shift to Access Rauhut–Currier Product. Organic Letters, 2021, 23, 213-217.	2.4	8

CITATION REPORT

#	Article	IF	CITATIONS
19	Tropylium-Catalyzed O–H Insertion Reactions of Diazoalkanes with Carboxylic Acids. Organic Letters, 2021, 23, 548-553.	2.4	35
20	Asymmetric Synthesis of (â^')â€Dictyopterene C' and its Derivatives via Catalytic Enantioselective Cyclopropanation. Bulletin of the Korean Chemical Society, 2021, 42, 675-678.	1.0	7
21	Enantioselective Acyloin Rearrangement of Acyclic Aldehydes Catalyzed by Chiral Oxazaborolidinium Ion. Organic Letters, 2021, 23, 1516-1520.	2.4	6
22	Diverse Reactions of Vinyl Diazo Compounds with Quinone Oxonium Ions, Quinone Imine Ketals, and Eschenmoser's Salt. ACS Catalysis, 2021, 11, 9869-9874.	5.5	14
23	Oxathiaborolium-Catalyzed Enantioselective [4 + 2] Cycloaddition and Its Application in Lewis Acid Coordinated and Chiral Lewis Acid Catalyzed [4 + 2] Cycloaddition. Organic Letters, 2021, 23, 6760-6764.	2.4	7
24	Catalytic Asymmetric Darzensâ€Type Epoxidation of Diazoesters: Highly Enantioselective Synthesis of Trisubstituted Epoxides. Angewandte Chemie, 2021, 133, 22410-22414.	1.6	0
25	Catalytic Asymmetric Darzensâ€Type Epoxidation of Diazoesters: Highly Enantioselective Synthesis of Trisubstituted Epoxides. Angewandte Chemie - International Edition, 2021, 60, 22236-22240.	7.2	11
26	Ternary Electron Donor–Acceptor Complex Enabled Enantioselective Radical Additions to α, β-Unsaturated Carbonyl Compounds. ACS Catalysis, 2021, 11, 14811-14818.	5.5	14
27	Asymmetric Catalytic Rearrangements with $\hat{I}\pm$ -Diazocarbonyl Compounds. Accounts of Chemical Research, 2022, 55, 415-428.	7.6	116
28	The literature of heterocyclic chemistry, Part XIX, 2019. Advances in Heterocyclic Chemistry, 2022, , 225-295.	0.9	6
29	Recent advances in borenium catalysis. Chemical Society Reviews, 2022, 51, 2583-2600.	18.7	25
30	Visible-Light-Induced Catalysis: A Regioselectivity Switch between [2+1] and [2+2] Cycloaddition of Diazocarbonyls with Olefins. Synthesis, 0, , .	1.2	0
31	Robust Analytical Methods for Monitoring the Formation of a Chiral Oxazaborolidine Catalyst. Organic Process Research and Development, 2022, 26, 1336-1340.	1.3	2
32	Highly Enantioselective Synthesis of [1,2,4]Triazino[5,4- <i>a</i>]isoquinoline Derivatives via (3 + 3) Cycloaddition Reactions of Diazo Compounds and Isoquinolinium Methylides. Organic Letters, 2022, 24, 3766-3771.	2.4	7
33	Visible-light-driven PhSSPh-catalysed regioselective hydroborylation of α,β-unsaturated carbonyl compounds with NHC-boranes. Chemical Communications, 2022, 58, 8380-8383.	2.2	15
34	Visible Light-Mediated Enantioselective Addition of α-Aminoalkyl Radicals to Ketones Catalyzed by Chiral Oxazaborolidinium Ion. Journal of Organic Chemistry, 2022, 87, 11196-11203.	1.7	7
35	Chiral Lewis acid catalysis in a visible light-triggered cycloaddition/rearrangement cascade. Chemical Science, 2022, 13, 11856-11862.	3.7	5
36	Stereoselective synthesis of trisubstituted epoxides <i>via</i> cobalt catalysis. Organic Chemistry Frontiers, 2022, 9, 4932-4936.	2.3	0

			<u>(</u>
#	Article	IF	CITATIONS
37	Olefin Difunctionnalization With the Same Atoms; Cyclopropanation of Olefins. , 2022, , .		0
38	Oxathiaborolium-catalyzed enantioselective [2 + 2] cycloadditions. Organic and Biomolecular Chemistry, 2022, 20, 8405-8409.	1.5	1
39	Enantioselective Construction of Vicinal Angular Quaternary Stereocenters Enabled by Strained Cyclobutenones. ACS Catalysis, 2022, 12, 15416-15423.	5.5	8
41	Chiral-boron-Lewis-acid-catalysed desymmetric ring expansion of 4-substituted cyclohexanones with α-diazomethylphosphonates. Organic Chemistry Frontiers, 2023, 10, 1564-1569.	2.3	3
42	Enantiodivergent Photochemical Rearrangements Due to Different Coordination Modes at an Oxazaborolidine Lewis Acid Catalyst. ACS Catalysis, 0, , 5896-5905.	5.5	0

CITATION REPORT