Carbon Anodes for Nonaqueous Alkali Metalâ€Ion Batte

Advanced Energy Materials 9, 1900550 DOI: 10.1002/aenm.201900550

Citation Report

#	Article	IF	CITATIONS
1	An Urgent Call to Spent LIB Recycling: Whys and Wherefores for Graphite Recovery. Advanced Energy Materials, 2020, 10, 2002238.	10.2	167
2	Multiscale Hierarchically Engineered Carbon Nanosheets Derived from Covalent Organic Framework for Potassiumâ€lon Batteries. Small Methods, 2020, 4, 2000159.	4.6	36
3	Advances in materials for allâ€climate sodiumâ€ion batteries. EcoMat, 2020, 2, e12043.	6.8	32
4	Advanced Postâ€Potassiumâ€lon Batteries as Emerging Potassiumâ€Based Alternatives for Energy Storage. Advanced Functional Materials, 2020, 30, 2005209.	7.8	62
5	Biâ€Based Electrode Materials for Alkali Metalâ€ l on Batteries. Small, 2020, 16, e2004022.	5.2	71
6	Fast Rate and Long Life Potassiumâ€lon Based Dualâ€lon Battery through 3D Porous Organic Negative Electrode. Advanced Functional Materials, 2020, 30, 2001440.	7.8	155
7	Self-assembly of block copolymers towards mesoporous materials for energy storage and conversion systems. Chemical Society Reviews, 2020, 49, 4681-4736.	18.7	311
8	Potassiumâ \in sulfur batteries: Status and perspectives. EcoMat, 2020, 2, e12038.	6.8	41
9	Failure analysis with a focus on thermal aspect towards developing safer Na-ion batteries*. Chinese Physics B, 2020, 29, 048201.	0.7	26
10	High Capacity Adsorption—Dominated Potassium and Sodium Ion Storage in Activated Crumpled Graphene. Advanced Energy Materials, 2020, 10, 1903280.	10.2	72
11	Tellurium: A Highâ€Volumetric apacity Potassiumâ€ŀon Battery Electrode Material. Advanced Materials, 2020, 32, e1908027.	11.1	83
12	A general strategy for metal compound encapsulated into network-structured carbon as fast-charging alkali-metal ion battery anode. Energy Storage Materials, 2020, 29, 300-309.	9.5	19
13	A promising 3D crystalline red P/reduced graphene oxide aerogel architecture anode for sodium-ion batteries. Chemical Engineering Journal, 2020, 393, 124788.	6.6	23
14	Structural stability of Na-inserted spinel-type sodium titanium oxide. Journal of Alloys and Compounds, 2021, 853, 157211.	2.8	9
15	Rational design of carbon materials as anodes for potassium-ion batteries. Energy Storage Materials, 2021, 34, 483-507.	9.5	130
16	Hard Carbon Anodes: Fundamental Understanding and Commercial Perspectives for Naâ€lon Batteries beyond Liâ€lon and Kâ€lon Counterparts. Advanced Energy Materials, 2021, 11, .	10.2	282
17	Nitrogen-doped hollow carbon spheres synthesized from solid precursor and its application in lithium ions batteries. Journal of Alloys and Compounds, 2021, 858, 157720.	2.8	7
18	Tuning microstructures of hard carbon for high capacity and rate sodium storage. Chemical Engineering Journal, 2021, 417, 128104.	6.6	30

CITATION REPORT

#	Article	IF	CITATIONS
19	Controllable assembling of highly-doped linked carbon bubbles on graphene microfolds. Journal of Energy Chemistry, 2021, 58, 500-507.	7.1	3
20	Advanced Anode Materials of Potassium Ion Batteries: from Zero Dimension to Three Dimensions. Nano-Micro Letters, 2021, 13, 12.	14.4	121
21	Recent developments in carbon-based materials as high-rate anode for sodium ion batteries. Materials Chemistry Frontiers, 2021, 5, 4089-4106.	3.2	25
22	Challenges and Strategies toward Cathode Materials for Rechargeable Potassiumâ€lon Batteries. Advanced Materials, 2021, 33, e2004689.	11.1	188
23	The use of in-situ Raman spectroscopy in investigating carbon materials as anodes of alkali metal-ion batteries. New Carbon Materials, 2021, 36, 93-105.	2.9	29
24	A perspective on sustainable energy materials for lithium batteries. SusMat, 2021, 1, 38-50.	7.8	208
25	Hierarchically porous SiOx/C and carbon materials from one biomass waste precursor toward high-performance lithium/sodium storage. Journal of Power Sources, 2021, 489, 229459.	4.0	49
26	Defects in Hard Carbon: Where Are They Located and How Does the Location Affect Alkaline Metal Storage?. Small, 2021, 17, e2007652.	5.2	28
27	High-Mass-Loading Electrodes for Advanced Secondary Batteries and Supercapacitors. Electrochemical Energy Reviews, 2021, 4, 382-446.	13.1	181
28	Ultralong cycle life and high rate potassium ion batteries enabled by multi-level porous carbon. Journal of Power Sources, 2021, 492, 229614.	4.0	27
29	Rational design of microstructure and interphase enables high-capacity and long-life carbon anodes for potassium ion batteries. Carbon, 2021, 176, 383-389.	5.4	30
30	Direct synthesis of carbon nanomaterials via surface activation of bulk copper. Carbon, 2021, 177, 1-10.	5.4	18
31	Solid-state fabrication of CNT-threaded Fe1-S@N-doped carbon composite as high-rate anodes for sodium-ion batteries and hybrid capacitors. Journal of Alloys and Compounds, 2021, 869, 159303.	2.8	8
32	Design principles and direct applications of cobalt-based metal-organic frameworks for electrochemical energy storage. Coordination Chemistry Reviews, 2021, 438, 213872.	9.5	51
33	Exploration in materials, electrolytes and performance towards metal ion (Li, Na, K, Zn and Mg)-based hybrid capacitors: A review. Nano Energy, 2021, 86, 106070.	8.2	85
34	Hard Carbon Anodes for Nextâ€Generation Liâ€lon Batteries: Review and Perspective. Advanced Energy Materials, 2021, 11, 2101650.	10.2	213
35	Understanding potassium ion storage mechanism in pitch-derived soft carbon and the consequence on cyclic stability. Journal of Power Sources, 2021, 506, 230179.	4.0	39
36	Layered NaxCoO2-based cathodes for advanced Na-ion batteries: review on challenges and advancements. Ionics, 2021, 27, 4549-4572.	1.2	11

CITATION REPORT

#	Article	IF	CITATIONS
37	Fast energy storage performance of CoFe2O4/CNTs hybrid aerogels for potassium ion battery. Journal of Colloid and Interface Science, 2021, 600, 820-827.	5.0	15
38	Recent advances in potassium-ion hybrid capacitors: Electrode materials, storage mechanisms and performance evaluation. Energy Storage Materials, 2021, 41, 108-132.	9.5	66
39	New insights into carbon-based and MXene anodes for Na and K-ion storage: A review. Journal of Energy Chemistry, 2021, 62, 660-691.	7.1	56
40	Electrochemical performance of Fe2(SO4)3 as a novel anode material for lithium-ion batteries. Journal of Alloys and Compounds, 2021, 886, 161238.	2.8	23
41	Status and challenges facing representative anode materials for rechargeable lithium batteries. Journal of Energy Chemistry, 2022, 66, 260-294.	7.1	149
42	Synthesis of presodiated B, N Co-doped carbon materials and application in sodium ions batteries with enhanced initial coulombic efficiency. Chemical Engineering Journal, 2022, 427, 131951.	6.6	26
43	Recent Advances in Stability of Carbonâ€Based Anodes for Potassiumâ€Ion Batteries. Batteries and Supercaps, 2021, 4, 554-570.	2.4	25
44	Carbon-Based Fibers for Advanced Electrochemical Energy Storage Devices. Chemical Reviews, 2020, 120, 2811-2878.	23.0	334
45	Spent asphalt-derived mesoporous carbon for high-performance Li/Na/K-ion storage. Journal of Power Sources, 2021, 514, 230593.	4.0	12
46	Role of the Solvation Shell Structure and Dynamics on Kâ€ion and Liâ€ion Transport in Mixed Carbonate Electrolytes. Batteries and Supercaps, 0, , .	2.4	3
47	Multifunctional Separator Allows Stable Cycling of Potassium Metal Anodes and of Potassium Metal Batteries. Advanced Materials, 2022, 34, e2105855.	11.1	45
48	Surface modification and in situ carbon intercalation of two-dimensional niobium carbide as promising electrode materials for potassium-ion batteries. Chemical Engineering Journal, 2022, 431, 133838.	6.6	19
49	High-performance solid-solution potassium-ion intercalation mechanism of multilayered turbostratic graphene nanosheets. Journal of Energy Chemistry, 2022, 67, 814-823.	7.1	13
50	A comparative overview of carbon anodes for nonaqueous alkali metal-ion batteries. Journal of Materials Chemistry A, 2021, 9, 27140-27169.	5.2	25
51	Intercalation pseudocapacitance of hollow carbon bubbles with multilayered shells for boosting K-ion storage. Journal of Materials Chemistry A, 2022, 10, 2075-2084.	5.2	6
52	Highâ€Energy Aqueous Ammoniumâ€Ion Hybrid Supercapacitors. Advanced Materials, 2022, 34, e2107992.	11.1	73
53	Toward Practical Highâ€Energy and Highâ€Power Lithium Battery Anodes: Present and Future. Advanced Science, 2022, 9, e2105213.	5.6	84
54	Separation, purification, regeneration and utilization of graphite recovered from spent lithium-ion batteries - A review. Journal of Environmental Chemical Engineering, 2022, 10, 107312.	3.3	29

#	Article	IF	CITATIONS
55	Comparison between hard carbon and natural graphite using the thermal safety diagrams of lithium-ion batteries. Journal of Energy Storage, 2022, 48, 104010.	3.9	1
56	The impact of electrode with carbon materials on safety performance of lithium-ion batteries: A review. Carbon, 2022, 191, 448-470.	5.4	164
57	Environmentally Benign Humic Acid for Potassium-Ion Hybrid Capacitors. SSRN Electronic Journal, 0, , .	0.4	0
58	Laser-Modified Graphited Onion-Like Carbon as Anode for Lithium/Potassium-Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
59	Laser-Modified Graphited Onion-Like Carbon as Anode for Lithium/Potassium-Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
60	Mechanistic Elucidation of Electronically Conductive PEDOT:PSS Tailored Binder for a Potassiumâ€lon Battery Graphite Anode: Electrochemical, Mechanical, and Thermal Safety Aspects. Advanced Energy Materials, 2022, 12, .	10.2	19
61	Interlayer and doping engineering in partially graphitic hollow carbon nanospheres for fast sodium and potassium storage. Chinese Chemical Letters, 2023, 34, 107339.	4.8	1
62	Phosphorus/Phosphideâ€Based Materials for Alkali Metalâ€Ion Batteries. Advanced Science, 2022, 9, e2200740.	5.6	14
63	One-step reconstruction of acid treated spent graphite for high capacity and fast charging lithium-ion batteries. Electrochimica Acta, 2022, 415, 140198.	2.6	23
64	Laser-modified graphitic onion-like carbon as anode for lithium/potassium-ion batteries. Carbon, 2022, 192, 347-355.	5.4	18
65	Hard Carbon Microsphere with Expanded Graphitic Interlayers Derived from a Highly Branched Polymer Network as Ultrahigh Performance Anode for Practical Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 61180-61188.	4.0	11
66	Phosphorus/sulfur co-doped hard carbon with a well-designed porous bowl-like structure and enhanced initial coulombic efficiency for high-performance sodium storage. Journal of Alloys and Compounds, 2022, 911, 164979.	2.8	9
67	Self-assembled titanium-deficient undoped anatase TiO2 nanoflowers for ultralong-life and high-rate Li+/Na+ storage. Chemical Engineering Journal, 2022, 445, 136638.	6.6	12
68	General overview of sodium, potassium, and zinc-ion capacitors. Journal of Alloys and Compounds, 2022, 913, 165216.	2.8	17
69	Advances in Carbon Materials for Sodium and Potassium Storage. Advanced Functional Materials, 2022, 32, .	7.8	54
70	First-principle study of highly controllable boron-doped graphene (BC ₂₀) as a high-capacity anode for potassium-ion batteries. Materials Research Express, 2022, 9, 065604.	0.8	2
71	Rational design of a hollow porous structure for enhancing diffusion kinetics of K ions in edge-nitrogen doped carbon nanorods. Nano Research, 2022, 15, 8109-8117.	5.8	24
72	Recent Progress of Carbonâ€Based Anode Materials for Potassium Ion Batteries. Chemical Record, 2022, 22, .	2.9	6

CITATION REPORT

#	Article	IF	CITATIONS
73	Recent advances and promise of zinc-ion energy storage devices based on MXenes. Journal of Materials Science, 2022, 57, 13817-13844.	1.7	5
74	Research progress in anode materials based on multiple potassium storage mechanisms. Sustainable Materials and Technologies, 2022, 33, e00480.	1.7	0
75	Facile synthesis of surface fluorinated-Li4Ti5O12/carbon nanotube nanocomposites for a high-rate capability anode of lithium-ion batteries. Applied Surface Science, 2022, 605, 154710.	3.1	11
76	Emerging carbon-based flexible anodes for potassium-ion batteries: Progress and opportunities. Frontiers in Chemistry, 0, 10, .	1.8	1
77	Environmentally Benign Humic Acid for Potassium-Ion Hybrid Capacitors. Energy & Fuels, 2022, 36, 12807-12815.	2.5	1
78	Facile fabrication of a series of Cu-doped Co3O4 with controlled morphology for alkali metal-ion batteries. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 656, 130459.	2.3	1
79	Lithium storage behavior and mechanism of hexagonal FePO4/C composite as a novel anode material for lithium-ion batteries. Journal of Alloys and Compounds, 2023, 933, 167766.	2.8	10
80	Recent Advances in Electrolytes for Potassiumâ€ion Batteries. Advanced Functional Materials, 2023, 33, .	7.8	44
81	An ultraâ€stable sodium half/full battery based on a unique microâ€channel pineâ€derived carbon/SnS ₂ @reduced graphene oxide film. , 2023, 2, .		8
83	Production of Hard Carbon from Saccharum spontaneum, known as "Paja Canalera― , 2022, , .		0
84	Sucrose-derived hard carbon wrapped with reduced graphene oxide as a high-performance anode for sodium-ion batteries. Journal of Materials Chemistry A, 2023, 11, 9816-9823.	5.2	11
85	Simultaneous reactions of sulfonation and condensation for high-yield conversion of polystyrene into carbonaceous material. Journal of Industrial and Engineering Chemistry, 2023, 122, 426-436.	2.9	7
86	A novel double-coated anode material SiOx/C/Cu2O for lithium ion batteries. Solid State Ionics, 2023, 394, 116211.	1.3	3
87	Reconfiguring Hard Carbons with Emerging Sodiumâ€lon Batteries: A Perspective. Advanced Materials, 2023, 35, .	11.1	58
88	Highâ€Entropy Perovskites for Energy Conversion and Storage: Design, Synthesis, and Potential Applications. Small Methods, 2023, 7, .	4.6	14
89	Application of Thermally Fluorinated Multi-Wall Carbon Nanotubes as an Additive to an Li4Ti5O12 Lithium Ion Battery. Nanomaterials, 2023, 13, 995.	1.9	1
90	Enhanced hazard characterization of lithium-ion batteries subject to destructive overcharge conditions. Journal of Thermal Analysis and Calorimetry, 0, , .	2.0	0
91	Single atom-based electrodes for alkali metal-ion batteries: Current progress and future perspectives. Functional Materials Letters, 0, , .	0.7	0

#	Article	IF	CITATIONS
92	Critical review on the degradation mechanisms and recent progress of Ni-rich layered oxide cathodes for lithium-ion batteries. EnergyChem, 2023, 5, 100103.	10.1	10
104	Reappraisal of hard carbon anodes for practical lithium/sodium-ion batteries from the perspective of full-cell matters. Energy and Environmental Science, 2023, 16, 5688-5720.	15.6	6
106	Hierarchical V3S4/C nanofibers with fast kinetics for superior alkali metal batteries. Rare Metals, 2024, 43, 1836-1844.	3.6	0
108	A comprehensive review of various carbonaceous materials for anodes in lithium-ion batteries. Dalton Transactions, 2024, 53, 4900-4921.	1.6	0