TREM2 deficiency aggravates αâ€synuclein–induced neuroinflammation in Parkinson's disease models

FASEB Journal 33, 12164-12174 DOI: 10.1096/fj.201900992r

Citation Report

#	Article	IF	CITATIONS
1	Microglia and the aging brain: are senescent microglia the key to neurodegeneration?. Journal of Neurochemistry, 2019, 151, 676-688.	2.1	150
2	Analysis of Cerebrospinal Fluid Soluble TREM2 and Polymorphisms in Sporadic Parkinson's Disease in a Chinese Population. Journal of Molecular Neuroscience, 2020, 70, 294-301.	1.1	14
3	Microgliaâ€Related Gene Triggering Receptor Expressed in Myeloid Cells 2 (<i>TREM2</i>) Is Upregulated in the Substantia Nigra of Progressive Supranuclear Palsy. Movement Disorders, 2020, 35, 885-890.	2.2	11
4	Mitophagy, a Form of Selective Autophagy, Plays an Essential Role in Mitochondrial Dynamics of Parkinson's Disease. Cellular and Molecular Neurobiology, 2022, 42, 1321-1339.	1.7	26
5	Neuroprotective effects of garlic extract on dopaminergic neurons of substantia nigra in a rat model of Parkinson's disease: motor and nonâ€motor outcomes. Metabolic Brain Disease, 2021, 36, 927-937.	1.4	22
6	Neuroinflammatory In Vitro Cell Culture Models and the Potential Applications for Neurological Disorders. Frontiers in Pharmacology, 2021, 12, 671734.	1.6	35
7	Gene Therapy for Neurodegenerative Disease: Clinical Potential and Directions. Frontiers in Molecular Neuroscience, 2021, 14, 618171.	1.4	9
8	Soluble Triggering Receptor Expressed on Myeloid Cells 2 From Cerebrospinal Fluid in Sleep Disorders Related to Parkinson's Disease. Frontiers in Aging Neuroscience, 2021, 13, 753210.	1.7	8
9	Genetic ablation of Gpnmb does not alter synuclein-related pathology. Neurobiology of Disease, 2021, 159, 105494.	2.1	7
10	HOTTIP downregulation reduces neuronal damage and microglial activation in Parkinson's disease cell and mouse models. Neural Regeneration Research, 2022, 17, 887.	1.6	13
11	Prebiotics Regulation of Intestinal Microbiota Attenuates Cognitive Dysfunction Induced by Surgery Stimulation in APP/PS1 Mice. , 2020, 11, 1029.		51
12	Phagocytic glia are obligatory intermediates in transmission of mutant huntingtin aggregates across neuronal synapses. ELife, 2020, 9, .	2.8	24
14	The role of efferocytosis in neuro-degenerative diseases. Neurological Sciences, 2022, 43, 1593-1603.	0.9	4
15	Current understandings and perspectives of petroleum hydrocarbons in Alzheimer's disease and Parkinson's disease: a global concern. Environmental Science and Pollution Research, 2022, 29, 10928-10949.	2.7	9
16	ATP13A2 protects dopaminergic neurons in Parkinson's disease: from biology to pathology. Journal of Biomedical Research, 2022, 36, 98.	0.7	4
17	Targeting TREM2 for Parkinson's Disease: Where to Go?. Frontiers in Immunology, 2021, 12, 795036.	2.2	11
18	Amyloid β, Tau, and α-Synuclein aggregates in the pathogenesis, prognosis, and therapeutics for neurodegenerative diseases. Progress in Neurobiology, 2022, 214, 102270.	2.8	77
19	Inflammatory Animal Models of Parkinson's Disease. Journal of Parkinson's Disease, 2022, 12, S165-S182.	1.5	9

#	Article	IF	CITATIONS
20	The Association of CSF sTREM2 With Cognitive Decline and Its Dynamic Change in Parkinson's Disease: Analysis of the PPMI Cohort. Frontiers in Aging Neuroscience, 0, 14, .	1.7	8
21	The role of triggering receptor expressed on myeloid cells 2 in Parkinson's disease and other neurodegenerative disorders. Behavioural Brain Research, 2022, 433, 113977.	1.2	4
22	Biofluid markers of blood-brain barrier disruption and neurodegeneration in Lewy body spectrum diseases: A systematic review and meta-analysis. Parkinsonism and Related Disorders, 2022, 101, 119-128.	1.1	10
24	TREMble Before TREM2: The Mighty Microglial Receptor Conferring Neuroprotective Properties in TDP-43 Mediated Neurodegeneration. Neuroscience Bulletin, 0, , .	1.5	Ο
26	Neurodegenerative Diseases: From Dysproteostasis, Altered Calcium Signalosome to Selective Neuronal Vulnerability to AAV-Mediated Gene Therapy. International Journal of Molecular Sciences, 2022, 23, 14188.	1.8	2
28	New models of Parkinson's like neuroinflammation in human microglia clone 3: Activation profiles induced by INF-γ plus high glucose and mitochondrial inhibitors. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	4
29	TREM2 activation alleviates neural damage via Akt/CREB/BDNF signalling after traumatic brain injury in mice. Journal of Neuroinflammation, 2022, 19, .	3.1	29
30	Consecutive Injection of High-Dose Lipopolysaccharide Modulates Microglia Polarization via TREM2 to Alter Status of Septic Mice. Brain Sciences, 2023, 13, 126.	1.1	4
31	The Interplay between α-Synuclein and Microglia in α-Synucleinopathies. International Journal of Molecular Sciences, 2023, 24, 2477.	1.8	9
32	Prenatally VPA exposure is likely to cause autistic-like behavior in the rats offspring via TREM2 down-regulation to affect the microglial activation and synapse alterations. Environmental Toxicology and Pharmacology, 2023, 99, 104090.	2.0	4
34	Translational molecular imaging and drug development in Parkinson's disease. Molecular Neurodegeneration, 2023, 18, .	4.4	11
35	The link between neuroinflammation and the neurovascular unit in synucleinopathies. Science Advances, 2023, 9, .	4.7	22
36	Disease mechanisms as subtypes: Lysosomal dysfunction in the endolysosomal Parkinson's disease subtype. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2023, , 33-51.	1.0	1
37	Disease mechanisms as subtypes: Immune dysfunction in Parkinson's disease. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2023, , 67-93.	1.0	Ο
38	Delineating the Neuroinflammatory Crosstalk in Neurodegeneration and Probing the Near Future Therapeutics. , 2023, , 24-46.		0
39	Allogenic microglia replacement: A novel therapeutic strategy for neurological disorders. Fundamental Research, 2023, , .	1.6	3
41	Role of neuroinflammation in neurodegeneration development. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	62