Cancer Cells Upregulate NRF2 Signaling to Adapt to Aut

Developmental Cell 50, 690-703.e6

DOI: 10.1016/j.devcel.2019.07.010

Citation Report

#	Article	IF	CITATIONS
1	Molecular Mechanisms Underlying Autophagy-Mediated Treatment Resistance in Cancer. Cancers, 2019, 11, 1775.	3.7	62
2	Signaling alterations caused by drugs and autophagy. Cellular Signalling, 2019, 64, 109416.	3.6	20
3	Circumventing autophagy inhibition. Cell Cycle, 2019, 18, 3421-3431.	2.6	6
4	Autophagy and cancer: Modulation of cell death pathways and cancer cell adaptations. Journal of Cell Biology, 2020, 219, jcb.201909033.	5.2	80
5	Autophagy and disease: unanswered questions. Cell Death and Differentiation, 2020, 27, 858-871.	11.2	256
6	MAPK1/3 kinase-dependent ULK1 degradation attenuates mitophagy and promotes breast cancer bone metastasis. Autophagy, 2021, 17, 3011-3029.	9.1	90
7	NRF2 and the Ambiguous Consequences of Its Activation during Initiation and the Subsequent Stages of Tumourigenesis. Cancers, 2020, 12, 3609.	3.7	44
8	Association of the Epithelial–Mesenchymal Transition (EMT) with Cisplatin Resistance. International Journal of Molecular Sciences, 2020, 21, 4002.	4.1	160
9	Chemopreventive effect of Betulinic acid via mTOR -Caspases/Bcl2/Bax apoptotic signaling in pancreatic cancer. BMC Complementary Medicine and Therapies, 2020, 20, 178.	2.7	23
10	Autophagy-dependent cancer cells circumvent loss of the upstream regulator RB1CC1/FIP200 and loss of LC3 conjugation by similar mechanisms. Autophagy, 2020, 16, 1332-1340.	9.1	9
11	Autophagy promotes mammalian survival by suppressing oxidative stress and p53. Genes and Development, 2020, 34, 688-700.	5.9	61
12	TIPE1â€mediated autophagy suppression promotes nasopharyngeal carcinoma cell proliferation via the AMPK/mTOR signalling pathway. Journal of Cellular and Molecular Medicine, 2020, 24, 9135-9144.	3.6	16
13	Crosstalk between autophagy and apoptosis: Mechanisms and therapeutic implications. Progress in Molecular Biology and Translational Science, 2020, 172, 55-65.	1.7	16
14	Reductive stress in striated muscle cells. Cellular and Molecular Life Sciences, 2020, 77, 3547-3565.	5. 4	31
15	Functional Genomics InÂVivo Reveal Metabolic Dependencies of Pancreatic Cancer Cells. Cell Metabolism, 2021, 33, 211-221.e6.	16.2	63
16	Lysosomal Biogenesis and Implications for Hydroxychloroquine Disposition. Journal of Pharmacology and Experimental Therapeutics, 2021, 376, 294-305.	2.5	14
17	The pleiotropic functions of autophagy in metastasis. Journal of Cell Science, 2021, 134, .	2.0	23
18	Chemotherapy resistance and YY1., 2021,, 243-249.		O

#	Article	IF	Citations
19	Mitophagy in tumorigenesis and metastasis. Cellular and Molecular Life Sciences, 2021, 78, 3817-3851.	5.4	90
20	Autophagy is a double‑edged sword in the therapy of colorectal cancer (Review). Oncology Letters, 2021, 21, 378.	1.8	24
21	Autophagy and organelle homeostasis in cancer. Developmental Cell, 2021, 56, 906-918.	7.0	68
23	NRF2 activates macropinocytosis upon autophagy inhibition. Cancer Cell, 2021, 39, 596-598.	16.8	3
24	Minimized combinatorial CRISPR screens identify genetic interactions in autophagy. Nucleic Acids Research, 2021, 49, 5684-5704.	14.5	31
25	Cancer cells escape autophagy inhibition via NRF2-induced macropinocytosis. Cancer Cell, 2021, 39, 678-693.e11.	16.8	91
26	Chloroquine and hydroxychloroquine in antitumor therapies based on autophagy-related mechanisms. Pharmacological Research, 2021, 168, 105582.	7.1	65
27	MDVs to the rescue: How autophagy-deficient cancer cells adapt to defective mitophagy. Developmental Cell, 2021, 56, 2010-2012.	7.0	10
28	Salinomycin triggers prostate cancer cell apoptosis by inducing oxidative and endoplasmic reticulum stress via suppressing Nrf2 signaling. Experimental and Therapeutic Medicine, 2021, 22, 946.	1.8	15
29	Mitochondrial-derived vesicles compensate for loss of LC3-mediated mitophagy. Developmental Cell, 2021, 56, 2029-2042.e5.	7.0	67
30	$RAR\hat{l}^3$ activation sensitizes human myeloma cells to carfilzomib treatment through the OAS-RNase L innate immune pathway. Blood, 2022, 139, 59-72.	1.4	6
31	Autophagy in major human diseases. EMBO Journal, 2021, 40, e108863.	7.8	615
32	The Nrf2-Keap1 pathway is activated by steroid hormone signaling to govern neuronal remodeling. Cell Reports, 2021, 36, 109466.	6.4	16
33	Targeting NRF2 and Its Downstream Processes: Opportunities and Challenges. Annual Review of Pharmacology and Toxicology, 2022, 62, 279-300.	9.4	74
34	Mitochondrial homeostasis is maintained in the absence of autophagy. Molecular and Cellular Oncology, 2021, 8, 1984162.	0.7	2
37	Regulation of Nrf2 Signaling. , 0, , .		53
38	Targeting Autophagy to Treat Cancer: Challenges and Opportunities. Frontiers in Pharmacology, 2020, 11, 590344.	3.5	29
39	The Autophagy, Inflammation and Metabolism Center international eSymposium – an early-career investigators' seminar series during the COVID-19 pandemic. Journal of Cell Science, 2021, 134, .	2.0	1

#	ARTICLE	IF	CITATIONS
40	Emerging roles of ATG7 in human health and disease. EMBO Molecular Medicine, 2021, 13, e14824.	6.9	61
42	Regulation of Nrf2 Signaling. Reactive Oxygen Species (Apex, N C), 2019, 8, 312-322.	5.4	55
43	The Emerging Roles of Autophagy in Human Diseases. Biomedicines, 2021, 9, 1651.	3.2	23
44	The complex interplay between autophagy and cell death pathways. Biochemical Journal, 2022, 479, 75-90.	3.7	16
45	Screening of Autophagy-Related Prognostic Genes in Metastatic Skin Melanoma. Disease Markers, 2022, 2022, 1-17.	1.3	0
46	A quantitative view of strategies to engineer cell-selective ligand binding. Integrative Biology (United) Tj ETQq1 🛚	0.78431 1.3	4 rgBT /Overl
47	Autophagy in PDGFR $\hat{l}\pm +$ mesenchymal cells is essential for intestinal stem cell survival. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2202016119.	7.1	8
48	Plakophilin3 loss leads to an increase in autophagy and radio-resistance. Biochemical and Biophysical Research Communications, 2022, 620, 1-7.	2.1	2
49	Targeting autophagy as a therapeutic strategy against pancreatic cancer. Journal of Gastroenterology, 2022, 57, 603-618.	5.1	12
50	The molecular biology and therapeutic potential of Nrf2 in leukemia. Cancer Cell International, 2022, 22, .	4.1	13
51	Recent advances in glioblastoma multiforme therapy: A focus on autophagy regulation. Biomedicine and Pharmacotherapy, 2022, 155, 113740.	5.6	14
52	Targeted Anti-Mitochondrial Therapy: The Future of Oncology. Genes, 2022, 13, 1728.	2.4	20
53	Targeting the Metabolic Rewiring in Pancreatic Cancer and Its Tumor Microenvironment. Cancers, 2022, 14, 4351.	3.7	15
54	Adipokines as Regulators of Autophagy in Obesity-Linked Cancer. Cells, 2022, 11, 3230.	4.1	6
55	Autophagy: Dual roles and perspective for clinical treatment of colorectal cancer. Biochimie, 2023, 206, 49-60.	2.6	1
56	Targeting UGCG Overcomes Resistance to Lysosomal Autophagy Inhibition. Cancer Discovery, 2023, 13, 454-473.	9.4	5
57	Autophagy in the Intestinal Stem Cells. Pancreatic Islet Biology, 2023, , 169-192.	0.3	0
58	Bortezomib abrogates temozolomide-induced autophagic flux through an ATG5 dependent pathway. Frontiers in Cell and Developmental Biology, 0, 10 , .	3.7	6

#	Article	IF	CITATIONS
59	Recent Advances in the Role of Autophagy in Endocrine-Dependent Tumors. Endocrine Reviews, 2023, 44, 629-646.	20.1	2
60	Where is the field of autophagy research heading?. Autophagy, 0, , .	9.1	O
61	Leukemic cells resist lysosomal inhibition through the mitochondria-dependent reduction of intracellular pH and oxidants. Free Radical Biology and Medicine, 2023, 198, 1-11.	2.9	1
62	Autophagy and autophagy-related pathways in cancer. Nature Reviews Molecular Cell Biology, 2023, 24, 560-575.	37.0	115
63	Recent advances in targeting autophagy in cancer. Trends in Pharmacological Sciences, 2023, 44, 290-302.	8.7	14
64	装载½è‡ªå™¬æŠʻå^¶å‰,的纳米银æ,介åºç¡…ååŒå¢žå¼ºèƒ¶è^ç~æ°³¾ç——. Science China Materials, 0, ,	. 6.3	0
65	The Multi-Faceted Consequences of NRF2 Activation throughout Carcinogenesis. Molecules and Cells, 2023, 46, 176-186.	2.6	7
66	Inhibition of autophagy; an opportunity for the treatment of cancer resistance. Frontiers in Cell and Developmental Biology, $0,11,.$	3.7	0
67	Co-targeting autophagy and NRF2 signaling triggers mitochondrial superoxide to sensitize oral cancer stem cells for cisplatin-induced apoptosis. Free Radical Biology and Medicine, 2023, 207, 72-88.	2.9	5
68	The transcription factor NRF1 (NFE2L1) activates aggrephagy by inducing p62 and GABARAPL1 after proteasome inhibition to maintain proteostasis. Scientific Reports, 2023, 13, .	3.3	0
69	Mitochondrial Metabolism: A New Dimension of Personalized Oncology. Cancers, 2023, 15, 4058.	3.7	6
70	The Combined Inhibition of Autophagy and Diacylglycerol Acyltransferase-Mediated Lipid Droplet Biogenesis Induces Cancer Cell Death during Acute Amino Acid Starvation. Cancers, 2023, 15, 4857.	3.7	1
71	Sensitivity of osteosarcoma cell lines to autophagy inhibition as determined by pharmacologic and genetic manipulation. Veterinary and Comparative Oncology, 2023, 21, 726-738.	1.8	0
72	Autophagy as a critical driver of metabolic adaptation, therapeutic resistance, and immune evasion of cancer. Current Opinion in Biotechnology, 2023, 84, 103012.	6.6	0
73	Exploring the Multifaceted Role of NRF2 in Brain Physiology and Cancer: A Comprehensive Review. Neuro-Oncology Advances, 0, , .	0.7	0
74	UDP-glucose dehydrogenase supports autophagy-deficient PDAC growth via increasing hyaluronic acid biosynthesis. Cell Reports, 2024, 43, 113808.	6.4	0