Innovation by Evolution: Bringing New Chemistry to Li

Angewandte Chemie - International Edition 58, 14420-14426 DOI: 10.1002/anie.201907729

Citation Report

#	Article	IF	CITATIONS
1	<i>ACS Central Science</i> Virtual Issue on Bioinspired Catalysis. ACS Central Science, 2019, 5, 1732-1735.	5.3	8
2	High-Throughput, Lysis-Free Screening for Sulfatase Activity Using <i>Escherichia coli</i> Autodisplay in Microdroplets. ACS Synthetic Biology, 2019, 8, 2690-2700.	1.9	25
3	Promises and Pitfalls of In Vivo Evolution to Improve Phage Therapy. Viruses, 2019, 11, 1083.	1.5	24
4	Die zentrale Rolle der Methodenentwicklung in der gerichteten Evolution selektiver Enzyme. Angewandte Chemie, 2020, 132, 13304-13333.	1.6	42
5	The Crucial Role of Methodology Development in Directed Evolution of Selective Enzymes. Angewandte Chemie - International Edition, 2020, 59, 13204-13231.	7.2	278
6	P450-BM3-Catalyzed Sulfoxidation versus Hydroxylation: A Common or Two Different Catalytically Active Species?. Journal of the American Chemical Society, 2020, 142, 2068-2073.	6.6	37
7	Advances in ultrahigh-throughput screening for directed enzyme evolution. Chemical Society Reviews, 2020, 49, 233-262.	18.7	182
8	Design and engineering of whole-cell biocatalytic cascades for the valorization of fatty acids. Catalysis Science and Technology, 2020, 10, 46-64.	2.1	38
9	Machine Learning in Enzyme Engineering. ACS Catalysis, 2020, 10, 1210-1223.	5.5	250
10	Directed Evolution of a Tryptophan 2,3â€Dioxygenase for the Diastereoselective Monooxygenation of Tryptophans. Angewandte Chemie - International Edition, 2020, 59, 3043-3047.	7.2	9
11	Directed Evolution of a Tryptophan 2,3â€Dioxygenase for the Diastereoselective Monooxygenation of Tryptophans. Angewandte Chemie, 2020, 132, 3067-3071.	1.6	6
12	Directed evolution of RhII to generate new and increased quorum sensing signal molecule catalytic activities. Enzyme and Microbial Technology, 2020, 134, 109475.	1.6	5
13	The use of consensus sequence information to engineer stability and activity in proteins. Methods in Enzymology, 2020, 643, 149-179.	0.4	23
14	Ultrahigh throughput screening for enzyme function in droplets. Methods in Enzymology, 2020, 643, 317-343.	0.4	32
15	Asymmetric Biocatalytic Synthesis of 1â€Aryltetrahydroâ€Î²â€€arbolines Enabled by "Substrate Walking― Chemistry - A European Journal, 2020, 26, 16281-16285.	1.7	18
16	Raman hyperspectral imaging with multivariate analysis for investigating enzyme immobilization. Analyst, The, 2020, 145, 7571-7581.	1.7	19
17	Building better polymerases: Engineering the replication of expanded genetic alphabets. Journal of Biological Chemistry, 2020, 295, 17046-17059.	1.6	16
18	Directed Evolution of a Hydroxylase into a Decarboxylase for Synthesis of 1-Alkenes from Fatty Acids. ACS Catalysis, 2020, 10, 14375-14379.	5.5	16

#	Article	IF	CITATIONS
19	UMI-linked consensus sequencing enables phylogenetic analysis of directed evolution. Nature Communications, 2020, 11, 6023.	5.8	25
20	Microfluidics for Biotechnology: Bridging Gaps to Foster Microfluidic Applications. Frontiers in Bioengineering and Biotechnology, 2020, 8, 589074.	2.0	62
21	Scalable biocatalytic C–H oxyfunctionalization reactions. Chemical Society Reviews, 2020, 49, 8137-8155.	18.7	105
22	Extending the Library of Lightâ€Dependent Protochlorophyllide Oxidoreductases and their Solvent Tolerance, Stability in Light and Cofactor Flexibility. ChemCatChem, 2020, 12, 4044-4051.	1.8	13
23	Recent Developments in Enantioselective Transition Metal Catalysis Featuring Attractive Noncovalent Interactions between Ligand and Substrate. ACS Catalysis, 2020, 10, 10672-10714.	5.5	127
24	Optimization of Alcohol Dehydrogenase for Industrial Scale Oxidation of Lactols. Biotechnology Journal, 2020, 15, e2000171.	1.8	10
25	Roadmap to Building a Cell: An Evolutionary Approach. Frontiers in Bioengineering and Biotechnology, 2020, 8, 927.	2.0	28
26	Looking Back: A Short History of the Discovery of Enzymes and How They Became Powerful Chemical Tools. ChemCatChem, 2020, 12, 6082-6102.	1.8	59
27	Variants of the Acyltransferase from <i>Mycobacterium smegmatis</i> Enable Enantioselective Acyl Transfer in Water. ACS Catalysis, 2020, 10, 10500-10507.	5.5	23
28	Chemical Translational Biologyâ€Guided Molecular Diagnostics: The Front Line To Mediate the Current SARSâ€CoVâ€2 Pandemic. ChemBioChem, 2020, 21, 3492-3494.	1.3	2
29	A Pioneering Career in Catalysis: Manfred T. Reetz. ACS Catalysis, 2020, 10, 15123-15139.	5.5	19
30	Synthetic biology 2020–2030: six commercially-available products that are changing our world. Nature Communications, 2020, 11, 6379.	5.8	137
31	Recent Advances in Enzymatic and Chemoenzymatic Cascade Processes. Catalysts, 2020, 10, 1258.	1.6	34
32	Iron- and cobalt-catalyzed C(sp ³)–H bond functionalization reactions and their application in organic synthesis. Chemical Society Reviews, 2020, 49, 5310-5358.	18.7	119
33	Embracing Nature's Catalysts: A Viewpoint on the Future of Biocatalysis. ACS Catalysis, 2020, 10, 8418-8427.	5.5	188
34	One Pot Use of Combilipases for Full Modification of Oils and Fats: Multifunctional and Heterogeneous Substrates. Catalysts, 2020, 10, 605.	1.6	55
35	Design of novel protein building modules and modular architectures. Current Opinion in Structural Biology, 2020, 63, 90-96.	2.6	9
36	Toxinology provides multidirectional and multidimensional opportunities: A personal perspective. Toxicon: X, 2020, 6, 100039.	1.2	2

#	Article	IF	Citations
37	Directed Evolution of Ornithine Cyclodeaminase Using an EvolvR-Based Growth-Coupling Strategy for Efficient Biosynthesis of <scp>l</scp> -Proline. ACS Synthetic Biology, 2020, 9, 1855-1863.	1.9	23
38	Practically useful protein-design methods combining phylogenetic and atomistic calculations. Current Opinion in Structural Biology, 2020, 63, 58-64.	2.6	36
39	An Atom-Economical Method for the Formation of Amidopyrroles Exploiting the Self-Assembled Resorcinarene Capsule. Organic Letters, 2020, 22, 2590-2594.	2.4	12
40	A Reflection on 50 Years of John Maynard Smith's "Protein Space― Genetics, 2020, 214, 749-754.	1.2	13
41	Computation-aided engineering of starch-debranching pullulanase from Bacillus thermoleovorans for enhanced thermostability. Applied Microbiology and Biotechnology, 2020, 104, 7551-7562.	1.7	37
42	Commemorating Frances Arnold. AICHE Journal, 2020, 66, e16924.	1.8	0
43	Computational Design of Enantiocomplementary Epoxide Hydrolases for Asymmetric Synthesis of Aliphatic and Aromatic Diols. ChemBioChem, 2020, 21, 1893-1904.	1.3	15
44	Not Enough Natural Data? Sequence and Ye Shall Find. Frontiers in Molecular Biosciences, 2020, 7, 65.	1.6	Ο
45	Natural Compounds as Pharmaceuticals: The Key Role of Cytochromes P450 Reactivity. Trends in Biochemical Sciences, 2020, 45, 511-525.	3.7	70
46	Dynamics, a Powerful Component of Current and Future in Silico Approaches for Protein Design and Engineering. International Journal of Molecular Sciences, 2020, 21, 2713.	1.8	13
47	Unusual KIE and dynamics effects in the Fe-catalyzed hetero-Diels-Alder reaction of unactivated aldehydes and dienes. Nature Communications, 2020, 11, 1850.	5.8	30
48	Towards engineering and production of artificial spider silk using tools of synthetic biology. Engineering Biology, 2020, 4, 1-6.	0.8	9
49	Biocatalytic Reduction Reactions from a Chemist's Perspective. Angewandte Chemie - International Edition, 2021, 60, 5644-5665.	7.2	118
50	Biokatalytische Reduktionen aus der Sicht eines Chemikers. Angewandte Chemie, 2021, 133, 5706-5727.	1.6	12
51	Biocatalysis: Enzymatic Synthesis for Industrial Applications. Angewandte Chemie - International Edition, 2021, 60, 88-119.	7.2	711
52	Biokatalyse: Enzymatische Synthese für industrielle Anwendungen. Angewandte Chemie, 2021, 133, 89-123.	1.6	89
53	Recent advances in user-friendly computational tools to engineer protein function. Briefings in Bioinformatics, 2021, 22, .	3.2	41
54	Current advances in design and engineering strategies of industrial enzymes. Systems Microbiology and Biomanufacturing, 2021, 1, 15-23.	1.5	32

		CITATION RE	PORT	
#	Article		IF	Citations
55	Directed Evolution. The Legacy of a Nobel Prize. Journal of Molecular Evolution, 2021, 89, 1	89-191.	0.8	6
56	Recent advances in (chemo)enzymatic cascades for upgrading bio-based resources. Chemi Communications, 2021, 57, 10661-10674.	cal	2.2	28
57	A protet-based, protonic charge transfer model of energy coupling in oxidative and photos phosphorylation. Advances in Microbial Physiology, 2021, 78, 1-177.	Inthetic	1.0	11
58	Direct monitoring of biocatalytic deacetylation of amino acid substrates by 1H NMR reveal details of substrate specificity. Organic and Biomolecular Chemistry, 2021, 19, 4904-4909	fine	1.5	1
59	Structure and evolutionary trace-assisted screening of a residue swapping the substrate ar and chiral specificity in an esterase. Computational and Structural Biotechnology Journal, 2 2307-2317.	ıbiguity 021, 19,	1.9	6
60	Computational design of noncanonical amino acid-based thioether staples at N/C-terminal multi-modular pullulanase for thermostabilization in enzyme catalysis. Computational and Structural Biotechnology Journal, 2021, 19, 577-585.	domains of	1.9	9
61	Water as the reaction medium in organic chemistry: from our worst enemy to our best frie Chemical Science, 2021, 12, 4237-4266.	ıd.	3.7	263
62	Power of Biocatalysis for Organic Synthesis. ACS Central Science, 2021, 7, 55-71.		5.3	186
63	Enzymatic strategies for asymmetric synthesis. RSC Chemical Biology, 2021, 2, 958-989.		2.0	34
64	Highlighting membrane protein structure and function: AÂcelebration of the Protein Data I Journal of Biological Chemistry, 2021, 296, 100557.	Bank.	1.6	42
65	Bioorganometallics: Artificial Metalloenzymes With Organometallic Moieties. , 2021, , .			1
66	A simple and efficient method for lyophilization of recombinant E. coli JM109 (DE3) whole- harboring active Rieske non-heme iron dioxygenases. MethodsX, 2021, 8, 101323.	cells	0.7	6
67	Applied biocatalysis beyond just buffers – from aqueous to unconventional media. Optic guidelines. Green Chemistry, 2021, 23, 3191-3206.	ns and	4.6	81
68	Concerns with computational protein engineering programmes IPRO and OptMAVEn and r pathway engineering programme optStoic. Open Biology, 2021, 11, 200173.	netabolic	1.5	1
69	Computer-aided enzymatic retrosynthesis. Nature Catalysis, 2021, 4, 92-93.		16.1	8
70	Near-perfect control of the regioselective glucosylation enabled by rational design of glycosyltransferases. Green Synthesis and Catalysis, 2021, 2, 45-53.		3.7	62
71	Efficient synthesis of cyano-containing multi-substituted indoles catalyzed by lipase. Bioorg Chemistry, 2021, 107, 104583.	;anic	2.0	17
72	Harnessing proteins for engineered living materials. Current Opinion in Solid State and Ma Science, 2021, 25, 100896.	erials	5.6	7

#	Article	IF	CITATIONS
73	A breakthrough in protein engineering of a glycosyltransferase. Green Synthesis and Catalysis, 2021, 2, 4-5.	3.7	9
74	Pervasive cooperative mutational effects on multiple catalytic enzyme traits emerge via long-range conformational dynamics. Nature Communications, 2021, 12, 1621.	5.8	72
75	Site-Specific Fluorescent Labeling of RNA Interior Positions. Molecules, 2021, 26, 1341.	1.7	3
76	Pseudo Natural Products—Chemical Evolution of Natural Product Structure. Angewandte Chemie, 2021, 133, 15837-15855.	1.6	18
77	Pseudo Natural Products—Chemical Evolution of Natural Product Structure. Angewandte Chemie - International Edition, 2021, 60, 15705-15723.	7.2	73
80	Recent Advances in Biocatalysis with Chemical Modification and Expanded Amino Acid Alphabet. Chemical Reviews, 2021, 121, 6173-6245.	23.0	62
82	Chemogenetic Evolution of a Peroxidase-like Artificial Metalloenzyme. ACS Catalysis, 2021, 11, 5079-5087.	5.5	21
83	Application of Ketoreductase in Asymmetric Synthesis of Pharmaceuticals and Bioactive Molecules: An Update (2018–2020). Chemical Record, 2021, 21, 1611-1630.	2.9	40
84	Reducing Challenges in Organic Synthesis with Stereoselective Hydrogenation and Tandem Catalysis. Journal of the American Chemical Society, 2021, 143, 6724-6745.	6.6	33
86	Enhancing the Photocatalytic Conversion of Pt(IV) Substrates by Flavoprotein Engineering. Journal of Physical Chemistry Letters, 2021, 12, 4504-4508.	2.1	9
87	Reconciling conformational heterogeneity and substrate recognition in cytochrome P450. Biophysical Journal, 2021, 120, 1732-1745.	0.2	7
88	Fettsären und Fettsärederivate als nachwachsende Plattformmoleküle für die chemische Industrie. Angewandte Chemie, 2021, 133, 20304-20326.	1.6	11
89	Prospects of Using Biocatalysis for the Synthesis and Modification of Polymers. Molecules, 2021, 26, 2750.	1.7	16
91	Fatty Acids and their Derivatives as Renewable Platform Molecules for the Chemical Industry. Angewandte Chemie - International Edition, 2021, 60, 20144-20165.	7.2	114
92	Engineering complex communities by directed evolution. Nature Ecology and Evolution, 2021, 5, 1011-1023.	3.4	54
93	Synthetic biology as driver for the biologization of materials sciences. Materials Today Bio, 2021, 11, 100115.	2.6	31
94	Engineering of a Thermostable Biocatalyst for the Synthesis of 2â€ <i>O</i> â€Glucosylglycerol. ChemBioChem, 2021, 22, 2777-2782.	1.3	9
95	Light-driven decarboxylative deuteration enabled by a divergently engineered photodecarboxylase. Nature Communications, 2021, 12, 3983.	5.8	53

#	Article	IF	CITATIONS
96	The N-Acetyl Amino Acid Racemases (NAAARs); Native and evolved biocatalysts applied to the synthesis of canonical and non-canonical amino acids. Current Opinion in Biotechnology, 2021, 69, 212-220.	3.3	3
97	Biocatalytic oxidation of fatty alcohols into aldehydes for the flavors and fragrances industry. Biotechnology Advances, 2022, 56, 107787.	6.0	39
98	Highly Selective Indole Oxidation Catalyzed by a Mn-Containing Artificial Mini-Enzyme. ACS Catalysis, 2021, 11, 9407-9417.	5.5	22
99	Directed evolution of an amine transaminase for the synthesis of an Apremilast intermediate via kinetic resolution. Bioorganic and Medicinal Chemistry, 2021, 43, 116271.	1.4	6
100	Functional Classification of Super-Large Families of Enzymes Based on Substrate Binding Pocket Residues for Biocatalysis and Enzyme Engineering Applications. Frontiers in Bioengineering and Biotechnology, 2021, 9, 701120.	2.0	5
101	Enzymatic Regio- and Enantioselective C–H Oxyfunctionalization of Fatty Acids. ACS Catalysis, 2021, 11, 10625-10630.	5.5	19
102	Bioinspired hydrogels build a bridge from bench to bedside. Nano Today, 2021, 39, 101157.	6.2	28
104	Web-based tools for computational enzyme design. Current Opinion in Structural Biology, 2021, 69, 19-34.	2.6	38
106	Evolution of dynamical networks enhances catalysis in a designer enzyme. Nature Chemistry, 2021, 13, 1017-1022.	6.6	60
107	The Epistemology of Biomimetics: The Role of Models and of Morphogenetic Principles. Perspectives on Science, 0, , 583-601.	0.3	1
108	Rigidifying a <i>De Novo</i> Enzyme Increases Activity and Induces a Negative Activation Heat Capacity. ACS Catalysis, 2021, 11, 11532-11541.	5.5	15
109	Dual film-like organelles enable spatial separation of orthogonal eukaryotic translation. Cell, 2021, 184, 4886-4903.e21.	13.5	28
110	Mimicking Enzymes: The Quest for Powerful Catalysts from Simple Molecules to Nanozymes. ACS Catalysis, 2021, 11, 11501-11509.	5.5	45
111	Nitrene transfers mediated by natural and artificial iron enzymes. Journal of Inorganic Biochemistry, 2021, 225, 111613.	1.5	5
112	The Unexplored Importance of Fleeting Chiral Intermediates in Enzyme-Catalyzed Reactions. Journal of the American Chemical Society, 2021, 143, 14939-14950.	6.6	19
113	Alginate derived functional oligosaccharides: Recent developments, barriers, and future outlooks. Carbohydrate Polymers, 2021, 267, 118158.	5.1	55
114	Adapting protein sequences for optimized therapeutic efficacy. Current Opinion in Chemical Biology, 2021, 64, 38-47.	2.8	5
115	Synthetic biomolecular condensates to engineer eukaryotic cells. Current Opinion in Chemical Biology, 2021, 64, 174-181.	2.8	25

	CHANG	N KEPOKI	
#	Article	IF	CITATIONS
116	Bio-based resources, bioprocesses and bioproducts in value creation architectures for bioeconomy markets and beyond $\hat{a} \in \mathcal{C}$ What really matters. EFB Bioeconomy Journal, 2021, 1, 100009.	1.1	7
117	Quantitation and speciation of residual protein within active pharmaceutical ingredients using image analysis with SDS-PAGE. Journal of Pharmaceutical and Biomedical Analysis, 2022, 207, 114393.	1.4	5
118	Application of Paramagnetic Lanthanoid Chelating Tags in NMR Spectroscopy and Their Use for the Localization of Ligands Within Biomacromolecules. , 2021, , 617-645.		1
119	Nano-evolution and protein-based enzymatic evolution predicts novel types of natural product nanozymes of traditional Chinese medicine: cases of herbzymes of Taishan-Huangjing (<i>Rhizoma) Tj ETQq</i>	110.7 8.4 314	rg&&/Overlo
120	Furan platform chemicals beyond fuels and plastics. Green Chemistry, 2021, 23, 7458-7487.	4.6	43
121	Advances in Metalloprotein Design and Engineering: Strategies Employed and Insights Gained. , 2021, , 900-928.		0
122	Design and engineering of artificial metalloproteins: from <i>de novo</i> metal coordination to catalysis. Protein Engineering, Design and Selection, 2021, 34, .	1.0	14
123	Flow Biocatalysis: A Challenging Alternative for the Synthesis of APIs and Natural Compounds. International Journal of Molecular Sciences, 2021, 22, 990.	1.8	55
124	The Role of Chemists and Chemical Engineers in a Sustainable World. Chemistry - A European Journal, 2020, 26, 1894-1899.	1.7	19
125	Focused rational iterative site-specific mutagenesis (FRISM). Methods in Enzymology, 2020, 643, 225-242.	0.4	48
126	The ever-expanding limits of enzyme catalysis and biodegradation: polyaromatic, polychlorinated, polyfluorinated, and polymeric compounds. Biochemical Journal, 2020, 477, 2875-2891.	1.7	32
127	Deep learning and generative methods in cheminformatics and chemical biology: navigating small molecule space intelligently. Biochemical Journal, 2020, 477, 4559-4580.	1.7	29
130	Flux Enforcement for Fermentative Production of 5-Aminovalerate and Glutarate by Corynebacterium glutamicum. Catalysts, 2020, 10, 1065.	1.6	18
131	Can the local electric field be a descriptor of catalytic activity? A case study on chorismate mutase. Physical Chemistry Chemical Physics, 2022, 24, 1974-1981.	1.3	12
132	Using continuous directed evolution to improve enzymes for plant applications. Plant Physiology, 2022, 188, 971-983.	2.3	18
133	MD simulations and QM/MM calculations reveal the key mechanistic elements which are responsible for the efficient C–H amination reaction performed by a bioengineered P450 enzyme. Chemical Science, 2021, 12, 14507-14518.	3.7	21
134	SYNBIP: synthetic binding proteins for research, diagnosis and therapy. Nucleic Acids Research, 2022, 50, D560-D570.	6.5	48
135	Biocatalytic preparation of a key intermediate of antifungal drugs using an alcohol dehydrogenase with high organic tolerance. Tetrahedron Letters, 2021, 84, 153455.	0.7	1

#	Article	IF	CITATIONS
136	Mechanistic Investigations on Microbial Type I Terpene Synthases through Site-Directed Mutagenesis. Synthesis, 2022, 54, 1551-1565.	1.2	16
139	<i>In Silico</i> Identification and Experimental Validation of Distal Activity-Enhancing Mutations in Tryptophan Synthase. ACS Catalysis, 2021, 11, 13733-13743.	5.5	30
140	From Polyclonal Sera to Recombinant Antibodies: A Review of Immunological Detection of Gluten in Foodstuff. Foods, 2021, 10, 66.	1.9	11
141	Gene Mutagenesis. Learning Materials in Biosciences, 2020, , 121-148.	0.2	0
143	Supplying plant natural products by yeast cell factories. Current Opinion in Green and Sustainable Chemistry, 2022, 33, 100567.	3.2	14
144	Minding the gaps: The importance of navigating holes in protein fitness landscapes. Cell Systems, 2021, 12, 1019-1020.	2.9	2
145	Shortening Synthetic Routes to Small Molecule Active Pharmaceutical Ingredients Employing Biocatalytic Methods. Chemical Reviews, 2022, 122, 1052-1126.	23.0	105
146	Directed Evolution of a Plant Glycosyltransferase for Chemo- and Regioselective Glycosylation of Pharmaceutically Significant Flavonoids. ACS Catalysis, 2021, 11, 14781-14790.	5.5	27
147	A Dual Anchoring Strategy for the Directed Evolution of Improved Artificial Transfer Hydrogenases Based on Carbonic Anhydrase. ACS Central Science, 2021, 7, 1874-1884.	5.3	17
148	Chemoenzymatic Stereodivergent Synthesis of All the Possible Stereoisomers of the 2,3-Dimethylglyceric Acid Ethyl Ester. Catalysts, 2021, 11, 1440.	1.6	2
149	Chemical modification of enzymes to improve biocatalytic performance. Biotechnology Advances, 2021, 53, 107868.	6.0	32
150	Two-Dimensional Polymers and Polymerizations. Chemical Reviews, 2022, 122, 442-564.	23.0	128
151	Capturing Atom-Specific Electronic Structural Dynamics of Transition-Metal Complexes with Ultrafast Soft X-Ray Spectroscopy. Annual Review of Physical Chemistry, 2022, 73, 187-208.	4.8	6
152	Biocatalysis making waves in organic chemistry. Chemical Society Reviews, 2022, 51, 594-627.	18.7	98
153	Autonomous Reaction Network Exploration in Homogeneous and Heterogeneous Catalysis. Topics in Catalysis, 2022, 65, 6-39.	1.3	27
154	Cleavage of C F bonds in oxidative conditions mediated by transition metal complexes. Advances in Inorganic Chemistry, 2022, , 23-63.	0.4	2
155	High-throughput navigation of the sequence space. , 2022, , 123-146.		0
156	Enzyme-metal nanobiohybrids in chemobiocatalytic cascade processes. , 2022, , 189-210.		Ο

#	Article	IF	CITATIONS
157	Combining chemistry and protein engineering for new-to-nature biocatalysis. , 2022, 1, 18-23.		80
158	Mass-based biocatalyst metrics to guide protein engineering and bioprocess development. Nature Catalysis, 2022, 5, 2-4.	16.1	15
159	Accurate computational evolution of proteins and its dependence on deep learning and machine learning strategies. Biocatalysis and Biotransformation, 2022, 40, 169-181.	1.1	2
160	Bioprocess intensification: A route to efficient and sustainable biocatalytic transformations for the future. Chemical Engineering and Processing: Process Intensification, 2022, 172, 108793.	1.8	41
161	Engineered Cyclohexylamine Oxidase with Improved Activity and Stereoselectivity for Asymmetric Synthesis of a Bulky Dextromethorphan Precursor and Its Analogues. ChemCatChem, 2022, 14, .	1.8	3
162	Heme-Based Gas Sensors in Nature and Their Chemical and Biotechnological Applications. Biochem, 2022, 2, 43-63.	0.5	7
163	Local Electric Fields Dictate Function: The Different Product Selectivities Observed for Fatty Acid Oxidation by Two Deceptively Very Similar P450-Peroxygenases OleT and BSβ. Journal of Chemical Information and Modeling, 2022, 62, 1025-1035.	2.5	12
164	Tools for computational design and high-throughput screening of therapeutic enzymes. Advanced Drug Delivery Reviews, 2022, 183, 114143.	6.6	23
165	Corrole–protein interactions in H-NOX and HasA. RSC Chemical Biology, 0, , .	2.0	2
166	Editorial: Chemical Biology Tools for Peptide and Protein Research. Frontiers in Chemistry, 2022, 10, 861699.	1.8	1
167	The future of Organic Chemistry: an irreversible path towards sustainability. Mini-Reviews in Organic Chemistry, 2022, 19, .	0.6	1
168	In silico evolution of nucleic acid-binding proteins from a nonfunctional scaffold. Nature Chemical Biology, 2022, 18, 403-411.	3.9	4
170	Stereoselective Synthesis of the IDO Inhibitor Navoximod. Journal of Organic Chemistry, 2022, 87, 4955-4960.	1.7	8
171	What Have We Learned from Design of Function in Large Proteins?. Biodesign Research, 2022, 2022, .	0.8	6
172	Biocatalysis as Key to Sustainable Industrial Chemistry. ChemSusChem, 2022, 15, e202102709.	3.6	52
173	Biocatalytic Baeyer–Villiger Reactions: Uncovering the Source of Regioselectivity at Each Evolutionary Stage of a Mutant with Scrutiny of Fleeting Chiral Intermediates. ACS Catalysis, 2022, 12, 3669-3680.	5.5	6
174	Making Enzymes Suitable for Organic Chemistry by Rational Protein Design. ChemBioChem, 2022, 23, .	1.3	28
175	Whole ell Biotransformation of Penicillin G by a Threeâ€enzyme Coâ€expression System with Engineered Deacetoxycephalosporin C Synthase. ChemBioChem, 2022, , .	1.3	1

#	Article	IF	CITATIONS
176	New Insights and Predictions into Complex Homogeneous Reactions Enabled by Computational Chemistry in Synergy with Experiments: Isotopes and Mechanisms. Accounts of Chemical Research, 2022, 55, 1109-1123.	7.6	18
177	Rational design of fatty acid photodecarboxylase enables the efficient decarboxylation of medium- and short-chain fatty acids for the production of gasoline bio-alkanes. Molecular Catalysis, 2022, 524, 112261.	1.0	9
178	Revolution of vitamin E production by starting from microbial fermented farnesene to isophytol. Innovation(China), 2022, 3, 100228.	5.2	13
179	LoopGrafter: a web tool for transplanting dynamical loops for protein engineering. Nucleic Acids Research, 2022, 50, W465-W473.	6.5	11
180	Distal Mutations Shape Substrate-Binding Sites during Evolution of a Metallo-Oxidase into a Laccase. ACS Catalysis, 2022, 12, 5022-5035.	5.5	9
181	Enzyme Kits to Facilitate the Integration of Biocatalysis into Organic Chemistry – First Aid for Synthetic Chemists. ChemCatChem, 2022, 14, .	1.8	6
182	Conformationally engineering flexible peptides on silver nanoparticles. IScience, 2022, 25, 104324.	1.9	3
183	Unlocking New Reactivities in Enzymes by Iminium Catalysis. Angewandte Chemie, 2022, 134, .	1.6	4
184	Unlocking New Reactivities in Enzymes by Iminium Catalysis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	17
185	Three-dimensional Structure Databases of Biological Macromolecules. Methods in Molecular Biology, 2022, 2449, 43-91.	0.4	2
186	New Horizons for Biocatalytic Science. Frontiers in Catalysis, 2022, 2, .	1.8	2
187	Buy one, get one free. , 2022, 1, 420-421.		2
188	From Semirational to Rational Design: Developing a Substrate-Coupled System of Glucose Dehydrogenase for Asymmetric Synthesis. ACS Catalysis, 2022, 12, 6746-6755.	5.5	13
190	Learning Strategies in Protein Directed Evolution. Methods in Molecular Biology, 2022, , 225-275.	0.4	5
191	Plant Physiology Synthetic Biology initiative. Plant Physiology, 0, , .	2.3	0
192	Insertions and deletions in protein evolution and engineering. Biotechnology Advances, 2022, 60, 108010.	6.0	17
193	Ketoreductase Catalyzed (Dynamic) Kinetic Resolution for Biomanufacturing of Chiral Chemicals. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	4
194	Witnessing the Birth of Directed Evolution of Stereoselective Enzymes as Catalysts in Organic Chemistry. Advanced Synthesis and Catalysis, 2022, 364, 3326-3335.	2.1	8

#	Article	IF	CITATIONS
195	Directed evolution of cytochrome P450DA hydroxylase activity for stereoselective biohydroxylation. Catalysis Science and Technology, 2022, 12, 5703-5708.	2.1	5
196	Mutations of Asn321 and Glu322 Improve Resistance of 4-Hydroxyphenylpyruvate Dioxygenase <i>Sp</i> HPPDm to Topramezone. Journal of Agricultural and Food Chemistry, 2022, 70, 9703-9710.	2.4	3
197	Sustainable isomaltulose production in Corynebacterium glutamicum by engineering the thermostability of sucrose isomerase coupled with one-step simplified cell immobilization. Frontiers in Microbiology, 0, 13, .	1.5	2
198	Functional Biology and Evolutionary Biology: A Different View of the Origin of Living Things. , 2022, 5, 134-146.		0
199	Recognition in the Domain of Molecular Chirality: From Noncovalent Interactions to Separation of Enantiomers. Chemical Reviews, 2022, 122, 13235-13400.	23.0	77
200	Clean biocatalysis in sponge-like ionic liquids. , 2022, , 155-182.		1
201	Biocatalysis for the asymmetric synthesis of Active Pharmaceutical Ingredients (APIs): this time is for real. Expert Opinion on Drug Discovery, 2022, 17, 1159-1171.	2.5	7
202	Evolution im Reagenzglas. Nachrichten Aus Der Chemie, 2022, 70, 66-67.	0.0	0
203	Enantioselective [2+2]-cycloadditions with triplet photoenzymes. Nature, 2022, 611, 715-720.	13.7	54
204	Synthetic Biology: Bottom-Up Assembly of Molecular Systems. Chemical Reviews, 2022, 122, 16294-16328.	23.0	32
205	Enzymes based biocatalysis for the treatment of organic pollutants and bioenergy production. Current Opinion in Green and Sustainable Chemistry, 2022, , 100709.	3.2	2
206	Coupled Natural Fusion Enzymes in a Novel Biocatalytic Cascade Convert Fatty Acids to Amines. ACS Catalysis, 2022, 12, 12701-12710.	5.5	4
207	Lipase and Its Unique Selectivity: A Mini-Review. Journal of Chemistry, 2022, 2022, 1-11.	0.9	5
208	Supramolecular approaches to mediate chemical reactivity. Beilstein Journal of Organic Chemistry, 0, 18, 1463-1465.	1.3	0
209	Key Selectivity Controlling Elements in Rhodium-Catalyzed C–H Functionalization with Donor/Acceptor Carbenes. ACS Catalysis, 2022, 12, 13446-13456.	5.5	6
210	Lipase-Catalyzed Phospha-Michael Addition Reactions under Mild Conditions. Molecules, 2022, 27, 7798.	1.7	4
211	Structure determinants defining the specificity of papain-like cysteine proteases. Computational and Structural Biotechnology Journal, 2022, 20, 6552-6569.	1.9	4
212	Miniprotein-Based Artificial Retroaldolase. ACS Catalysis, 2022, 12, 15424-15430.	5.5	3

#	Article	IF	CITATIONS
213	A growth selection system for the directed evolution of amine-forming or converting enzymes. Nature Communications, 2022, 13, .	5.8	14
214	Reactivity and mechanism in chemical and synthetic biology. Philosophical Transactions of the Royal Society B: Biological Sciences, 2023, 378, .	1.8	0
215	Recombination. , 2024, , 375-396.		0
219	Hallucinating functional protein sequences. Nature Biotechnology, 0, , .	9.4	0
220	Metagenomics and new enzymes for the bioeconomy to 2030. , 2023, , 165-178.		1
222	A primer to directed evolution: current methodologies and future directions. RSC Chemical Biology, 2023, 4, 271-291.	2.0	12
223	The past, present, and future of artificial zinc finger proteins: design strategies and chemical and biological applications. Journal of Biological Inorganic Chemistry, 2023, 28, 249-261.	1.1	5
224	The community-function landscape of microbial consortia. Cell Systems, 2023, 14, 122-134.	2.9	22
226	A Flow Cytometryâ€Based Ultrahighâ€Throughput Screening Method for Directed Evolution of Oxidases. Angewandte Chemie, 0, , .	1.6	0
227	A Flow Cytometryâ€Based Ultrahighâ€Throughput Screening Method for Directed Evolution of Oxidases. Angewandte Chemie - International Edition, 2023, 62, .	7.2	2
228	Enzymes for consumer products to achieve climate neutrality. Oxford Open Climate Change, 0, , .	0.6	0
229	Engineering of a P450-based Kemp eliminase with a new mechanism. Chinese Journal of Catalysis, 2023, 47, 191-199.	6.9	1
230	Optimizing human α-galactosidase for treatment of Fabry disease. Scientific Reports, 2023, 13, .	1.6	2
231	From Ambergris to (â^)-Ambrox: Chemistry Meets Biocatalysis for Sustainable (â^)-Ambrox Production. Journal of Agricultural and Food Chemistry, 2023, 71, 5042-5052.	2.4	7
234	Rapid, Labelâ€Free Screening of Diverse Biotransformations by Flowâ€Injection Mass Spectrometry. ChemBioChem, 0, , .	1.3	0
235	Enhanced Photosynthetic Efficiency for Increased Carbon Assimilation and Woody Biomass Production in Engineered Hybrid Poplar. Forests, 2023, 14, 827.	0.9	1
236	Continuous flow-mode synthesis of (chiral) amines with transaminase: a strategic biocatalytic approach to essential building blocks. Reaction Chemistry and Engineering, 2023, 8, 1505-1544.	1.9	4
237	Software Tools for Optimization of Biocatalysts. , 2022, , .		0

#	Article	IF	CITATIONS
241	Recent approaches and innovations for enzyme engineering used in industrial biotechnology. , 2023, , 161-175.		0
243	Versatile Chemo-Biocatalytic Cascade Driven by a Thermophilic and Irreversible C–C Bond-Forming α-Oxoamine Synthase. ACS Sustainable Chemistry and Engineering, 2023, 11, 7997-8002.	3.2	0
244	Genmutagenese. , 2023, , 131-159.		0
247	Status check: biocatalysis; its use with and without chemocatalysis. How does the fine chemicals industry view this area?. Green Chemistry, 2023, 25, 6092-6107.	4.6	7
248	Comment on: "Computer Simulations Reveal an Entirely Entropic Activation Barrier for the Chemical Step in a Designer Enzyme― ACS Catalysis, 2023, 13, 10527-10530.	5.5	2
258	Perfecting antibodies with language models. Nature Biotechnology, 2024, 42, 185-186.	9.4	1
259	Protein engineering using mutability landscapes: Controlling site-selectivity of P450-catalyzed steroid hydroxylation. Methods in Enzymology, 2023, , 191-229.	0.4	0
260	Catalytic, asymmetric carbon–nitrogen bond formation using metal nitrenoids: from metal–ligand complexes <i>via</i> metalloporphyrins to enzymes. Chemical Science, 2023, 14, 12447-12476. 	3.7	2
270	Reducing Immunogenicity by Design: Approaches to Minimize Immunogenicity of Monoclonal Antibodies. BioDrugs, 2024, 38, 205-226.	2.2	0