Toward the Internet of Underground Things: A Systema

IEEE Communications Surveys and Tutorials 21, 3443-3466 DOI: 10.1109/comst.2019.2934365

Citation Report

#	Article	IF	CITATIONS
1	Urban Underground Infrastructure Monitoring IoT: The Path Loss Analysis. , 2019, , .		16
2	Empirical Model of Radio Wave Propagation in the Presence of Vegetation inside Greenhouses Using Regularized Regressions. Sensors, 2020, 20, 6621.	2.1	16
3	Around the World of IoT/Climate Monitoring Using Internet of X-Things. IEEE Internet of Things Magazine, 2020, 3, 82-83.	2.0	10
4	Research on Security Detection Technology for Internet of Things Terminal Based on Firmware Code Genes. IEEE Access, 2020, 8, 150226-150241.	2.6	10
5	Visible Light Communications for Industrial Applications—Challenges and Potentials. Electronics (Switzerland), 2020, 9, 2157.	1.8	50
6	A Survey on Subsurface Signal Propagation. Smart Cities, 2020, 3, 1513-1561.	5.5	16
7	On-Site and External Energy Harvesting in Underground Wireless. Electronics (Switzerland), 2020, 9, 681.	1.8	23
8	Theoretical and Experimental Studies on the Signal Propagation in Soil for Wireless Underground Sensor Networks. Sensors, 2020, 20, 2580.	2.1	23
9	Wireless Underground Communications in Sewer and Stormwater Overflow Monitoring: Radio Waves through Soil and Asphalt Medium. Information (Switzerland), 2020, 11, 98.	1.7	36
10	LoRaWAN Performances for Underground to Aboveground Data Transmission. , 2020, , .		13
11	The Internet of Bodies: A Systematic Survey on Propagation Characterization and Channel Modeling. IEEE Internet of Things Journal, 2022, 9, 321-345.	5.5	36
12	LoRaWAN Versus NB-IoT: Transmission Performance Analysis Within Critical Environments. IEEE Internet of Things Journal, 2022, 9, 1068-1081.	5.5	33
13	Investigation of the LoRa Transceiver in Conditions of Multipath Propagation of Radio Signals. Advances in Science, Technology and Engineering Systems, 2021, 6, 1106-1111.	0.4	0
14	Low-Power Beam-Switching Technique for Power-Efficient Collaborative IoT Edge Devices. Applied Sciences (Switzerland), 2021, 11, 1608.	1.3	1
15	Adaptive Selection of Transmission Configuration for LoRa-based Wireless Underground Sensor Networks. , 2021, , .		3
16	Data Collection in MI-Assisted Wireless Powered Underground Sensor Networks: Directions, Recent Advances, and Challenges. IEEE Communications Magazine, 2021, 59, 132-138.	4.9	93
17	Signal Propagation Models in Soil Medium for the Study of Wireless Underground Sensor Networks: A Review of Current Trends. Wireless Communications and Mobile Computing, 2021, 2021, 1-12.	0.8	6
18	Radio frequency identification in internet of underground things using a soil dielectric attenuator and microstrip antenna as tag sensor. Microwave and Optical Technology Letters, 2021, 63, 2408-2413.	0.9	1

TATION PEDO

#	Article	IF	CITATIONS
19	Performance Analysis of Multihop Underground Magnetic Induction Communication. Electronics (Switzerland), 2021, 10, 1255.	1.8	3
20	Pilot Analysis on Soil Moisture Impact on Underground to Aboveground LoRaWAN Transmissions for loUT Contexts. , 2021, , .		3
21	Energy-efficient and self-organizing Internet of Things networks for soil monitoring in smart farming. Computers and Electrical Engineering, 2021, 92, 107142.	3.0	10
22	Deep Learning in the Industrial Internet of Things: Potentials, Challenges, and Emerging Applications. IEEE Internet of Things Journal, 2021, 8, 11016-11040.	5.5	102
23	Signal Propagation in Soil Medium: A Two Dimensional Finite Element Procedure. , 0, , .		0
24	Data Aggregation Mechanisms on the Internet of Things: A Systematic Literature Review. Internet of Things (Netherlands), 2021, 15, 100427.	4.9	19
25	VeriMask. , 2021, 5, 1-29.		1
27	Ontology-based modelling of lifecycle underground utility information to support operation and maintenance. Automation in Construction, 2021, 132, 103933.	4.8	11
28	LoRaWAN Underground to Aboveground Data Transmission Performances for Different Soil Compositions. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-13.	2.4	23
29	BER Analysis and Optimization of Direct Antenna Modulation for Magnetic Induction Communication. , 2021, , .		0
30	Demur and Routing Protocols With application in Underwater Wireless Sensor Networks for Smart City. Advances in Environmental Engineering and Green Technologies Book Series, 2021, , 262-278.	0.3	3
31	Internet of Things for Sustainability: Perspectives in Privacy, Cybersecurity, and Future Trends. Internet of Things, 2020, , 299-327.	1.3	28
32	Internet of Things in Agricultural Innovation and Security. Internet of Things, 2020, , 71-112.	1.3	32
33	Signals in the Soil: An Introduction to Wireless Underground Communications. , 2020, , 3-38.		7
34	Current Advances in Internet of Underground Things. , 2020, , 321-356.		3
35	Integration of Digital Technologies into Underground Utility Asset Management. Open Journal of Civil Engineering, 2020, 10, 403-428.	0.2	5
36	t-SNE and variational auto-encoder with a bi-LSTM neural network-based model for prediction of gas concentration in a sealed-off area of underground coal mines. Soft Computing, 2021, 25, 14183-14207.	2.1	12
37	Path Loss Analysis for the IoT Applications in the Urban and Indoor Environments. , 2020, , .		0

CITATION REPORT

#	Article	IF	CITATIONS
38	An overview on IoUT and the performance of WiFi low-cost nodes for IoUT Applications. , 2020, , .		1
39	Reconfigurable Intelligent Surfaces in Challenging Environments: Underwater, Underground, Industrial and Disaster. IEEE Access, 2021, 9, 150214-150233.	2.6	24
40	Deep Learning for the Industrial Internet of Things (IIoT): A Comprehensive Survey of Techniques, Implementation Frameworks, Potential Applications, and Future Directions. Sensors, 2021, 21, 7518.	2.1	56
41	Regression analysisâ€based identification model of key impactful parameters on buried antennas. International Journal of Communication Systems, 2022, 35, e5051.	1.6	3
42	Bayesian Multidimensional Scaling for Location Awareness in Hybrid-Internet of Underwater Things. IEEE/CAA Journal of Automatica Sinica, 2022, 9, 496-509.	8.5	11
43	Evaluation of LoRa technology in 433-MHz and 868-MHz for underground to aboveground data transmission. Computers and Electronics in Agriculture, 2022, 194, 106770.	3.7	13
44	A Reinforcement-Learning-Based Opportunistic Routing Protocol for Energy-Efficient and Void-Avoided UASNs. IEEE Sensors Journal, 2022, 22, 13589-13601.	2.4	21
45	Graph Layer Security: Encrypting Information via Common Networked Physics. Sensors, 2022, 22, 3951.	2.1	3
46	Embedded intelligence and the data-driven future of application-specific Internet of Things for smart environments. International Journal of Distributed Sensor Networks, 2022, 18, 155013292211023.	1.3	2
47	Efficient Energy Mechanism in Heterogeneous WSNs for Underground Mining Monitoring Applications. IEEE Access, 2022, 10, 72907-72924.	2.6	12
48	Communication for Underwater Sensor Networks: A Comprehensive Summary. ACM Transactions on Sensor Networks, 2023, 19, 1-44.	2.3	7
49	Data Collection from Buried Sensor Nodes by Means of an Unmanned Aerial Vehicle. Sensors, 2022, 22, 5926.	2.1	7
50	Optimization Scheme of Trusted Task Offloading in IIoT Scenario Basedç^‹n燚QN. Computers, Materials and Continua, 2023, 74, 2055-2071.	1.5	1
51	Application of Dielectric-Artificial Magnetic Conductor Composite Substrate to Design Miniaturized P-Band Microstrip Antenna for Wireless Underground Sensor Network. IEEE Antennas and Wireless Propagation Letters, 2022, 21, 2352-2356.	2.4	4
52	A Q-Learning-based distributed routing protocol for frequency-switchable magnetic induction-based wireless underground sensor networks. Future Generation Computer Systems, 2023, 139, 253-266.	4.9	37
53	Virtual-Range-Forwarding-Based Opportunistic Routing for Mine Goaf Sensor Networks. IEEE Sensors Journal, 2022, 22, 22244-22254.	2.4	3
54	A Top-Down Survey on Optical Wireless Communications for the Internet of Things. IEEE Communications Surveys and Tutorials, 2023, 25, 1-45.	24.8	25
55	Throughput optimization in backscatter-assisted wireless-powered underground sensor networks for smart agriculture. Internet of Things (Netherlands), 2022, 20, 100637.	4.9	8

CITATION REPORT

#	Article	IF	CITATIONS
56	Evolutionary Algorithm with Geometrical Heuristics for Solving the Close Enough Traveling Salesman Problem: Application to the Trajectory Planning of an Unmanned Aerial Vehicle. Algorithms, 2023, 16, 44.	1.2	3
57	On the Road to 6G: Visions, Requirements, Key Technologies, and Testbeds. IEEE Communications Surveys and Tutorials, 2023, 25, 905-974.	24.8	151
58	Estimating Volumetric Water Content in Soil for IoUT Contexts by Exploiting RSSI-Based Augmented Sensors via Machine Learning. Sensors, 2023, 23, 2033.	2.1	9
59	SENS+: A Co-Existing Fabrication System for a Smart DFA Environment Based on Energy Fusion Information. Sensors, 2023, 23, 2890.	2.1	0
60	Taking Wireless Underground: A Comprehensive Summary. ACM Transactions on Sensor Networks, 2024, 20, 1-44.	2.3	2
61	Internet of Underground Things in Agriculture 4.0: Challenges, Applications and Perspectives. Sensors, 2023, 23, 4058.	2.1	6
62	Recent Advancements in IoT Implementation for Environmental, Safety, and Production Monitoring in Underground Mines. IEEE Internet of Things Journal, 2023, 10, 14507-14526.	5.5	7
63	A study on precision agriculture using internet of underground things. AIP Conference Proceedings, 2023, , .	0.3	0
64	Effective and Secure Task Offloading in IoT Edge Computing through a Multi-feedback Trust Mechanism. , 2023, , .		0
67	Artificial Magnetic Conductor based Composite substrate Antenna for Low Frequency Wireless Underground Sensor Networks. , 2023, , .		0
70	Adaptive Robot Control Based on Wireless Undergroud Sensor Network in Agriculture 4.0. , 2023, , .		1
73	Soil Volumetric Water Content Measurement Based on LoRa RSSI and UAV. , 2023, , .		0
74	Imagining the Sustainable Future With Industry 6.0. Advances in Systems Analysis, Software Engineering, and High Performance Computing Book Series, 2023, , 318-331.	0.5	0
75	Performance Analysis of LoRa for Internet of Underground Things in Agriculture 4.0. , 2023, , .		0
76	Determination of Suitable Frequency for Underground Electromagnetic Wave Propagation. Studies in Autonomic, Data-driven and Industrial Computing, 2024, , 753-762.	0.4	0