Teosinte ligule allele narrows plant architecture and en

Science 365, 658-664 DOI: 10.1126/science.aax5482

Citation Report

#	Article	IF	CITATIONS
1	Using wild relatives to improve maize. Science, 2019, 365, 640-641.	6.0	10
2	Abscisic Acid Represses Rice Lamina Joint Inclination by Antagonizing Brassinosteroid Biosynthesis and Signaling. International Journal of Molecular Sciences, 2019, 20, 4908.	1.8	18
3	Flag leaf size and posture of bread wheat: genetic dissection, QTL validation and their relationships with yield-related traits. Theoretical and Applied Genetics, 2020, 133, 297-315.	1.8	53
4	Genetic variation in <i>ZmTIP1</i> contributes to root hair elongation and drought tolerance in maize. Plant Biotechnology Journal, 2020, 18, 1271-1283.	4.1	85
5	<i>ZmlLl1</i> regulates leaf angle by directly affecting <i>liguleless1</i> expression in maize. Plant Biotechnology Journal, 2020, 18, 881-883.	4.1	30
6	<i>UPA2</i> and <i>ZmRAVL1</i> : Promising targets of genetic improvement of maize plant architecture. Journal of Integrative Plant Biology, 2020, 62, 394-397.	4.1	10
7	Evaluation of the contribution of teosinte to the improvement of agronomic, grain quality and yield traits in maize (<i>Zea mays</i>). Plant Breeding, 2020, 139, 589-599.	1.0	11
8	The Past, Present, and Future of Maize Improvement: Domestication, Genomics, and Functional Genomic Routes toward Crop Enhancement. Plant Communications, 2020, 1, 100010.	3.6	68
9	Leaf Angle eXtractor: A highâ€throughput image processing framework for leaf angle measurements in maize and sorghum. Applications in Plant Sciences, 2020, 8, e11385.	0.8	14
10	Spatiotemporal Resolved Leaf Angle Establishment Improves Rice Grain Yield via Controlling Population Density. IScience, 2020, 23, 101489.	1.9	9
11	Genome assembly of wild tea tree DASZ reveals pedigree and selection history of tea varieties. Nature Communications, 2020, 11, 3719.	5.8	108
12	Synergistic Interaction of Phytohormones in Determining Leaf Angle in Crops. International Journal of Molecular Sciences, 2020, 21, 5052.	1.8	25
13	DROOPY LEAF1 controls leaf architecture by orchestrating early brassinosteroid signaling. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21766-21774.	3.3	39
14	Phased diploid genome assemblies and pan-genomes provide insights into the genetic history of apple domestication. Nature Genetics, 2020, 52, 1423-1432.	9.4	168
15	Revisiting CRISPR/Cas-mediated crop improvement: Special focus on nutrition. Journal of Biosciences, 2020, 45, 1.	0.5	18
16	Root morphological and physiological characteristics in maize seedlings adapted to low iron stress. PLoS ONE, 2020, 15, e0239075.	1.1	7
17	Maize Introgression Library Provides Evidence for the Involvement of <i>liguleless1</i> in Resistance to Northern Leaf Blight. G3: Genes, Genomes, Genetics, 2020, 10, 3611-3622.	0.8	17
18	Plant Domestication: Reconstructing the Route toÂModern Tomatoes. Current Biology, 2020, 30, R359-R361.	1.8	10

TATION REDO

# 19	ARTICLE Combined physiological, transcriptome, and genetic analysis reveals a molecular network of nitrogen remobilization in maize. Journal of Experimental Botany, 2020, 71, 5061-5073.	IF 2.4	CITATIONS
20	The genetic architecture of the maize progenitor, teosinte, and how it was altered during maize domestication. PLoS Genetics, 2020, 16, e1008791.	1.5	27
21	Genetic dissection of husk number and length across multiple environments and fine-mapping of a major-effect QTL for husk number in maize (Zea mays L.). Crop Journal, 2020, 8, 1071-1080.	2.3	5
22	Tripsazea, a Novel Trihybrid of <i>Zea mays</i> , <i>Tripsacum dactyloides</i> , and <i>Zeaperennis</i> . G3: Genes, Genomes, Genetics, 2020, 10, 839-848.	0.8	9
23	Expression of Three Related to ABI3/VP1 Genes in Medicago truncatula Caused Increased Stress Resistance and Branch Increase in Arabidopsis thaliana. Frontiers in Plant Science, 2020, 11, 611.	1.7	19
24	Toward a "Green Revolution―for Soybean. Molecular Plant, 2020, 13, 688-697.	3.9	162
25	Designed Manipulation of the Brassinosteroid Signal to Enhance Crop Yield. Frontiers in Plant Science, 2020, 11, 854.	1.7	16
26	Mapping regulatory variants controlling gene expression in drought response and tolerance in maize. Genome Biology, 2020, 21, 163.	3.8	76
27	How Crisp is CRISPR? CRISPR-Cas-mediated crop improvement with special focus on nutritional traits. , 2020, , 159-197.		5
28	<i>dlf1</i> promotes floral transition by directly activating <i>ZmMADS4</i> and <i>ZmMADS67</i> in the maize shoot apex. New Phytologist, 2020, 228, 1386-1400.	3.5	26
29	ZEAMAP, a Comprehensive Database Adapted to the Maize Multi-Omics Era. IScience, 2020, 23, 101241.	1.9	63
30	Altering Plant Architecture to Improve Performance and Resistance. Trends in Plant Science, 2020, 25, 1154-1170.	4.3	63
31	Exploring the Brassinosteroid Signaling in Monocots Reveals Novel Components of the Pathway and Implications for Plant Breeding. International Journal of Molecular Sciences, 2020, 21, 354.	1.8	25
32	Characterization of a major quantitative trait locus on the short arm of chromosome 4B for spike number per unit area in common wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2020, 133, 2259-2269.	1.8	12
33	QTL mapping and validation of bread wheat flag leaf morphology across multiple environments in different genetic backgrounds. Theoretical and Applied Genetics, 2021, 134, 261-278.	1.8	24
34	A novel plant growth regulator improves the grain yield of high-density maize crops by reducing stalk lodging and promoting a compact plant type. Field Crops Research, 2021, 260, 107982.	2.3	37
35	Designing future crops: challenges and strategies for sustainable agriculture. Plant Journal, 2021, 105, 1165-1178.	2.8	110
36	CLA4 regulates leaf angle through multiple hormone signaling pathways in maize. Journal of Experimental Botany, 2021, 72, 1782-1794.	2.4	12

#	Article	IF	CITATIONS
37	Network analyses identify a transcriptomic proximodistal prepattern in the maize leaf primordium. New Phytologist, 2021, 230, 218-227.	3.5	10
38	<i>Oryza sativa LIGULELESS 2s</i> determine lamina joint positioning and differentiation by inhibiting auxin signaling. New Phytologist, 2021, 229, 1832-1839.	3.5	7
39	Characterization and potential application of an α-amylase (BmAmy1) selected during silkworm domestication. International Journal of Biological Macromolecules, 2021, 167, 1102-1112.	3.6	7
40	Harnessing Knowledge from Maize and Rice Domestication for New Crop Breeding. Molecular Plant, 2021, 14, 9-26.	3.9	58
41	Using Interactome Big Data to Crack Genetic Mysteries and Enhance Future Crop Breeding. Molecular Plant, 2021, 14, 77-94.	3.9	34
42	Overexpression of <i>GmMYB14</i> improves highâ€density yield and drought tolerance of soybean through regulating plant architecture mediated by the brassinosteroid pathway. Plant Biotechnology Journal, 2021, 19, 702-716.	4.1	78
43	Increased planting density combined with reduced nitrogen rate to achieve high yield in maize. Scientific Reports, 2021, 11, 358.	1.6	25
44	Novel insights of maize structural feature in China. Euphytica, 2021, 217, 1.	0.6	4
45	Mapping quantitative trait loci and predicting candidate genes for leaf angle in maize. PLoS ONE, 2021, 16, e0245129.	1.1	7
46	Modification of cereal plant architecture by genome editing to improve yields. Plant Cell Reports, 2021, 40, 953-978.	2.8	18
48	Developmental genetics of maize vegetative shoot architecture. Molecular Breeding, 2021, 41, 1.	1.0	8
49	Genome-wide Identification and Characterization of FCS-Like Zinc Finger (FLZ) Family Genes in Maize (Zea mays) and Functional Analysis of ZmFLZ25 in Plant Abscisic Acid Response. International Journal of Molecular Sciences, 2021, 22, 3529.	1.8	14
50	Diversification of maize (Zea mays L.) through teosinte (Zea mays subsp. parviglumis Iltis & Doebley) allelic. Genetic Resources and Crop Evolution, 2021, 68, 2983-2995.	0.8	3
51	Identification of QTL for leaf angle at canopy-wide levels in maize. Euphytica, 2021, 217, 1.	0.6	5
52	The brassinosteroid biosynthesis gene, ZmD11, increases seed size and quality in rice and maize. Plant Physiology and Biochemistry, 2021, 160, 281-293.	2.8	18
53	New genomic approaches for enhancing maize genetic improvement. Current Opinion in Plant Biology, 2021, 60, 101977.	3.5	9
55	Use of Wild Progenitor Teosinte in Maize (Zea mays subsp. mays) Improvement: Present Status and Future Prospects. Tropical Plant Biology, 2021, 14, 156-179.	1.0	11
56	Transcriptome dynamic landscape underlying the improvement of maize lodging resistance under coronatine treatment. BMC Plant Biology, 2021, 21, 202.	1.6	5

#	Article	IF	CITATIONS
57	Maize transcription factor ZmNF-YC13 regulates plant architecture. Journal of Experimental Botany, 2021, 72, 4757-4772.	2.4	8
58	Application of homobrassinolide enhances growth, yield and quality of tomato. Saudi Journal of Biological Sciences, 2021, 28, 4800-4806.	1.8	8
59	Genomic mapping and identification of candidate genes encoding nulliplex-branch trait in sea-island cotton (Gossypium barbadense L.) by multi-omics analysis. Molecular Breeding, 2021, 41, 1.	1.0	7
60	Leaf direction: Lamina joint development and environmental responses. Plant, Cell and Environment, 2021, 44, 2441-2454.	2.8	17
61	Brassinosteroids modulate nitrogen physiological response and promote nitrogen uptake in maize (Zea mays L.). Crop Journal, 2022, 10, 166-176.	2.3	19
62	Xa7, a new executor R gene that confers durable and broad-spectrum resistance to bacterial blight disease in rice. Plant Communications, 2021, 2, 100143.	3.6	52
63	PlantDeepSEA, a deep learning-based web service to predict the regulatory effects of genomic variants in plants. Nucleic Acids Research, 2021, 49, W523-W529.	6.5	20
64	Genetic analysis of three maize husk traits by QTL mapping in a maize-teosinte population. BMC Genomics, 2021, 22, 386.	1.2	4
65	<i>ZmbHLH124</i> identified in maize recombinant inbred lines contributes to drought tolerance in crops. Plant Biotechnology Journal, 2021, 19, 2069-2081.	4.1	14
66	The genetic mechanism of heterosis utilization in maize improvement. Genome Biology, 2021, 22, 148.	3.8	69
67	Natural Variation in Crops: Realized Understanding, Continuing Promise. Annual Review of Plant Biology, 2021, 72, 357-385.	8.6	73
68	Singleâ€molecule longâ€read sequencing reveals extensive genomic and transcriptomic variation between maize and its wild relative teosinte (<i>Zea mays</i> ssp. <i>parviglumis</i>). Molecular Ecology Resources, 2022, 22, 272-282.	2.2	4
69	Enhancing rice grain production by manipulating the naturally evolved cis-regulatory element-containing inverted repeat sequence of OsREM20. Molecular Plant, 2021, 14, 997-1011.	3.9	19
70	Breeding plant type for adaptation to high plant density in tropical maize—A step towards productivity enhancement. Plant Breeding, 2021, 140, 509-518.	1.0	6
71	Overexpression of MtRAV3 enhances osmotic and salt tolerance and inhibits growth of Medicago truncatula. Plant Physiology and Biochemistry, 2021, 163, 154-165.	2.8	11
73	Genetic regulation of shoot architecture in cucumber. Horticulture Research, 2021, 8, 143.	2.9	20
74	Development and application of microsatellite markers within transcription factors in flare tree peony (Paeonia rockii) based on next-generation and single-molecule long-read RNA-seq. Journal of Integrative Agriculture, 2021, 20, 1832-1848.	1.7	4
75	Genetic basis of maize kernel oil-related traits revealed by high-density SNP markers in a recombinant inbred line population. BMC Plant Biology, 2021, 21, 344.	1.6	10

#	Article	IF	CITATIONS
76	Ecological and evolutionary approaches to improving crop variety mixtures. Nature Ecology and Evolution, 2021, 5, 1068-1077.	3.4	53
77	AUXIN RESPONSE FACTORS 6 and 17 control the flag leaf angle in rice by regulating secondary cell wall biosynthesis of lamina joints. Plant Cell, 2021, 33, 3120-3133.	3.1	41
78	Genome-wide association studies of leaf angle in maize. Molecular Breeding, 2021, 41, 1.	1.0	9
79	High resolution 3D terrestrial LiDAR for cotton plant main stalk and node detection. Computers and Electronics in Agriculture, 2021, 187, 106276.	3.7	18
80	A natural singleâ€nucleotide polymorphism variant in <i>sulfite reductase</i> influences sulfur assimilation in maize. New Phytologist, 2021, 232, 692-704.	3.5	2
81	Construction of maize–teosinte introgression line population and identification of major quantitative trait loci. Euphytica, 2021, 217, 1.	0.6	3
82	CRISPR/Cas9 mediated targeted mutagenesis of <i>LIGULELESSâ€1</i> in sorghum provides a rapidly scorable phenotype by altering leaf inclination angle. Biotechnology Journal, 2021, 16, e2100237.	1.8	12
83	Plasticity of root anatomy during domestication of a maize-teosinte derived population. Journal of Experimental Botany, 2022, 73, 139-153.	2.4	11
84	OsWRKY108 is an integrative regulator of phosphorus homeostasis and leaf inclination in rice. Plant Signaling and Behavior, 2021, 16, 1976545.	1.2	1
85	Wild Progenitor and Landraces Led Genetic Gain in the Modern-Day Maize (Zea mays L.). , 0, , .		3
86	Kinase activity is required for the receptor kinase DROOPY LEAF1 to control leaf droopiness. Plant		
	Signaling and Behavior, 2021, 16, 1976561.	1.2	2
87		1.2 0.9	2
87 88	Signaling and Behavior, 2021, 16, 1976561. CRISPR/Cas-mediated genome editing in sorghum — recent progress, challenges and prospects. In Vitro		
	 Signaling and Behavior, 2021, 16, 1976561. CRISPR/Cas-mediated genome editing in sorghum â€" recent progress, challenges and prospects. In Vitro Cellular and Developmental Biology - Plant, 2021, 57, 720-730. The dynamics of maize leaf development: Patterned to grow while growing a pattern. Current Opinion 	0.9	5
88	 Signaling and Behavior, 2021, 16, 1976561. CRISPR/Cas-mediated genome editing in sorghum â€" recent progress, challenges and prospects. In Vitro Cellular and Developmental Biology - Plant, 2021, 57, 720-730. The dynamics of maize leaf development: Patterned to grow while growing a pattern. Current Opinion in Plant Biology, 2021, 63, 102038. Using Genetic Engineering Techniques to Develop Banana Cultivars With Fusarium Wilt Resistance and 	0.9 3.5	5 16
88 89	 Signaling and Behavior, 2021, 16, 1976561. CRISPR/Cas-mediated genome editing in sorghum — recent progress, challenges and prospects. In Vitro Cellular and Developmental Biology - Plant, 2021, 57, 720-730. The dynamics of maize leaf development: Patterned to grow while growing a pattern. Current Opinion in Plant Biology, 2021, 63, 102038. Using Genetic Engineering Techniques to Develop Banana Cultivars With Fusarium Wilt Resistance and Ideal Plant Architecture. Frontiers in Plant Science, 2020, 11, 617528. Grain-filling characteristics and yield differences of maize cultivars with contrasting nitrogen 	0.9 3.5 1.7	5 16 24
88 89 90	 Signaling and Behavior, 2021, 16, 1976561. CRISPR/Cas-mediated genome editing in sorghum â€" recent progress, challenges and prospects. In Vitro Cellular and Developmental Biology - Plant, 2021, 57, 720-730. The dynamics of maize leaf development: Patterned to grow while growing a pattern. Current Opinion in Plant Biology, 2021, 63, 102038. Using Genetic Engineering Techniques to Develop Banana Cultivars With Fusarium Wilt Resistance and Ideal Plant Architecture. Frontiers in Plant Science, 2020, 11, 617528. Grain-filling characteristics and yield differences of maize cultivars with contrasting nitrogen efficiencies. Crop Journal, 2020, 8, 990-1001. Creation of two hyperactive variants of phytochrome B1 for attenuating shade avoidance syndrome in 	0.9 3.5 1.7 2.3	5 16 24 18

#	Article	IF	CITATIONS
98	Parallel selection of distinct Tof5 alleles drove the adaptation of cultivated and wild soybean to high latitudes. Molecular Plant, 2022, 15, 308-321.	3.9	48
99	The arches and spandrels of maize domestication, adaptation, and improvement. Current Opinion in Plant Biology, 2021, 64, 102124.	3.5	2
103	Systematic Characterization of TCP Gene Family in Four Cotton Species Revealed That GhTCP62 Regulates Branching in Arabidopsis. Biology, 2021, 10, 1104.	1.3	11
105	Deletion of a cyclin-dependent protein kinase inhibitor, CsSMR1, leads to dwarf and determinate growth in cucumber (Cucumis sativus L.). Theoretical and Applied Genetics, 2022, 135, 915-927.	1.8	10
106	Identification and molecular mapping of a major quantitative trait locus underlying branch angle in soybean. Theoretical and Applied Genetics, 2022, 135, 777-784.	1.8	9
107	Genetic dissection of maize plant architecture using a novel nested association mapping population. Plant Genome, 2022, 15, e20179.	1.6	5
108	ChAPC8 regulates leaf blade angle by modulating multiple hormones in cotton (Gossypium hirsutum) Tj ETQq0 0	0,rgBT /O	verlock 10 1
109	Leaf angle: a target of genetic improvement in cereal crops tailored for highâ€density planting. Plant Biotechnology Journal, 2022, 20, 426-436.	4.1	37
110	Architectural plasticity in response to population density in <i>Abutilon theophrasti</i> (Malvaceae). Ecological Research, 2022, 37, 228-239.	0.7	8
111	Back to the wild: mining maize (Zea mays L.) disease resistance using advanced breeding tools. Molecular Biology Reports, 2022, 49, 5787-5803.	1.0	8
112	Extraction of Maize Leaf Base and Inclination Angles Using Terrestrial Laser Scanning (TLS) Data. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-17.	2.7	4
113	Genotype-specific models for leaf architecture as affected by leaf position and age. Model development and parameterisation using smartphone-based 3D plant scans. Biosystems Engineering, 2022, 215, 249-261.	1.9	3
114	Wild soybean resists the stress of low phosphorus by increasing nutrient reuse between the young and old leaves. Plant Growth Regulation, 2022, 97, 21-31.	1.8	4
115	Brassinosteroids regulate rice seed germination through the BZR1- <i>RAmy3D</i> transcriptional module. Plant Physiology, 2022, 189, 402-418.	2.3	33
116	Genetic analysis and gene mapping of a dwarf and liguleless mutation in barley. Crop Journal, 2022, , .	2.3	2
118	Population genomics of Zea species identifies selection signatures during maize domestication and adaptation. BMC Plant Biology, 2022, 22, 72.	1.6	9
120	Rice OsIAA6 interacts with OsARF1 and regulates leaf inclination. Crop Journal, 2022, , .	2.3	6
121	Convergent selection of a WD40 protein that enhances grain yield in maize and rice. Science, 2022, 375, eabg7985.	6.0	110

#	Article	IF	CITATIONS
122	The power of classic maize mutants: Driving forward our fundamental understanding of plants. Plant Cell, 2022, 34, 2505-2517.	3.1	10
123	Introgression of chromosome 1P from Agropyron cristatum reduces leaf size and plant height to improve the plant architecture of common wheat. Theoretical and Applied Genetics, 2022, 135, 1951-1963.	1.8	11
124	3D reconstruction identifies loci linked to variation in angle of individual sorghum leaves. PeerJ, 2021, 9, e12628.	0.9	4
125	Genomic Design for Abiotic Stress Resistance in Pigeonpea. , 2022, , 169-248.		2
126	Identification of Quantitative Trait Loci Associated With Iron Deficiency Tolerance in Maize. Frontiers in Plant Science, 2022, 13, 805247.	1.7	3
128	Maize Breeding. , 2022, , 221-258.		4
129	GmPIN1â€mediated auxin asymmetry regulates leaf petiole angle and plant architecture in soybean. Journal of Integrative Plant Biology, 2022, 64, 1325-1338.	4.1	20
130	Integrated strategies for increasing rapeseed yield. Trends in Plant Science, 2022, 27, 742-745.	4.3	16
131	The transcription factor <i>bZIP68</i> negatively regulates cold tolerance in maize. Plant Cell, 2022, 34, 2833-2851.	3.1	42
132	A lineageâ€specific arginine in <scp>POS1</scp> is required for fruit size control in Physaleae (Solanaceae) via gene coâ€option. Plant Journal, 2022, 111, 183-204.	2.8	3
133	Changes in antioxidant system and sucrose metabolism in maize varieties exposed to Cd. Environmental Science and Pollution Research, 2022, 29, 64999-65011.	2.7	6
134	Major gene with polygene inheritance analysis of shoot architecture traits in Viola cornuta. Scientia Horticulturae, 2022, 303, 111204.	1.7	0
135	Retrieving a disrupted gene encoding phospholipase A for fibre enhancement in allotetraploid cultivated cotton. Plant Biotechnology Journal, 2022, 20, 1770-1785.	4.1	0
136	Expanding the gene pool for soybean improvement with its wild relatives. ABIOTECH, 2022, 3, 115-125.	1.8	9
137	The integrated genomics of crop domestication and breeding. Cell, 2022, 185, 2828-2839.	13.5	47
139	<scp><i>LsNRL4</i></scp> enhances photosynthesis and decreases leaf angles in lettuce. Plant Biotechnology Journal, 2022, 20, 1956-1967.	4.1	4
140	The Organ Size and Morphological Change During the Domestication Process of Soybean. Frontiers in Plant Science, 0, 13, .	1.7	4
141	Genome sequence of Gossypium anomalum facilitates interspecific introgression breeding. Plant Communications, 2022, 3, 100350.	3.6	14

CITATION REPORT ARTICLE IF CITATIONS Zmdwf1 Regulates Leaf Angle in Maize. SSRN Electronic Journal, 0, , . 0.4 0 De Novo Domestication in the Multi-Omics Era. Plant and Cell Physiology, 0, , . 1.5 Characterization of regulatory modules controlling leaf angle in maize. Plant Physiology, 2022, 190, 2.3 10 500-515. <scp>ABA</scp>â€inducible <scp><i>DEEPER ROOTING</i></scp><i>1</i> improves adaptation of maize to water deficiency. Plant Biotechnology Journal, 2022, 20, 2077-2088. 3dCAP-Wheat: An Open-Source Comprehensive Computational Framework Precisely Quantifies Wheat 2.5 5 Foliar, Nonfoliar, and Canopy Photosynthesis. Plant Phenomics, 2022, 2022, . <i>cis</i> â€regulatory variation affecting gene expression contributes to the improvement of maize 2.8 kernel size. Plant Journal, O, , . Advances in research and utilization of maize wild relatives. Chinese Science Bulletin, 2022, 67, 0.4 1 4370-4387. The brassinosteroid biosynthesis gene TaD11-2A controls grain size and its elite haplotype improves 1.8 wheat grain yields. Theoretical and Applied Genetics, 2022, 135, 2907-2923. Genome-wide association study and metabolic pathway prediction of barrenness in maize as a response 1.7 5 to high planting density. Journal of Integrative Agriculture, 2022, 21, 3514-3523. Use of 3D modeling to refine predictions of canopy light utilization: A comparative study on canopy 1.7 photosynthesis models with different dimensions. Frontiers in Plant Science, 0, 13, . Transcriptome-Based Weighted Correlation Network Analysis of Maize Leaf Angle Regulation by 1.3 0 Exogenous Brassinosteroid. Agronomy, 2022, 12, 1895. Genome-Wide Analysis of the RAV Gene Family in Wheat and Functional Identification of TaRAV1 in Salt Stress. International Journal of Molecular Sciences, 2022, 23, 8834. A pan-Zea genome map for enhancing maize improvement. Genome Biology, 2022, 23, . 3.8 21 ZmDWF1 regulates leaf angle in maize. Plant Science, 2022, 325, 111459. 1.7 Teosinte confers specific alleles and yield potential to maize improvement. Theoretical and Applied 1.8 7 Genetics, 2022, 135, 3545-3562. Identifying QTL and candidate genes for prolificacy in maize. Crop Journal, 2023, 11, 531-539. Natural variations of ZmSRO1d modulate the trade-off between drought resistance and yield by

160	A teosinteâ€derived allele of an <scp>HKT1</scp> family sodium transporter improves salt tolerance in maize. Plant Biotechnology Journal, 2023, 21, 97-108.	4.1	23
-----	--	-----	----

affecting ZmRBOHC-mediated stomatal ROS production in maize. Molecular Plant, 2022, 15, 1558-1574.

3.9

26

143

144

145

146

147

148

149

150

151

153

155

157

	CITATION R	EPORT	
#	Article	IF	Citations
161	躷åè¿'ç¼~野生ç§çš"亲ç¼~关系åŠå…¶å^©ç"¨ç"ç©¶. Acta Agronomica Sinica(China), 2022, 48, 267-279.	0.1	0
162	Developing genetic resources and genetic analysis of plant architecture-related traits in teosinte-introgressed maize populations. Plant Genetic Resources: Characterisation and Utilisation, 0, , 1-11.	0.4	0
163	<scp> <i>ZmCCT10</i> </scp> â€relayed photoperiod sensitivity regulates natural variation in the arithmetical formation of male germinal cells in maize. New Phytologist, 0, , .	3.5	1
164	Natural variation and domestication selection of ZmSULTR3;4 is associated with maize lateral root length in response to salt stress. Frontiers in Plant Science, 0, 13, .	1.7	1
165	Genome-wide meta-analysis of QTL for morphological related traits of flag leaf in bread wheat. PLoS ONE, 2022, 17, e0276602.	1.1	3
166	Analysis of the Utilization and Prospects of CRISPR-Cas Technology in the Annotation of Gene Function and Creation New Germplasm in Maize Based on Patent Data. Cells, 2022, 11, 3471.	1.8	3
167	The soybean ubiquitinâ€proteasome system: Current knowledge and future perspective. Plant Genome, 0, , .	1.6	2
168	Candidate loci for leaf angle in maize revealed by a combination of genome-wide association study and meta-analysis. Frontiers in Genetics, 0, 13, .	1.1	3
169	Genome-wide dissection of changes in maize root system architecture during modern breeding. Nature Plants, 2022, 8, 1408-1422.	4.7	32
170	Roles of auxin response factors in rice development and stress responses. Plant, Cell and Environment, 2023, 46, 1075-1086.	2.8	12
171	CsIAGLU Regulates the Angle of Leaf Petiole by Affecting Endogenous Content of Auxin in Cucumber (Cucumis sativus L.). Genes, 2022, 13, 2216.	1.0	2
172	USDA's revised biotechnology regulation's contribution to increasing agricultural sustainability and responding to climate change. Frontiers in Plant Science, 0, 13, .	1.7	3
173	Natural variation in CRABS CLAW contributes to fruit length divergence in cucumber. Plant Cell, 2023, 35, 738-755.	3.1	11
174	Increasing plant group productivity through latent genetic variation for cooperation. PLoS Biology, 2022, 20, e3001842.	2.6	12
175	Characterization and genetic dissection of maize ear leaf midrib acquired by 3D digital technology. Frontiers in Plant Science, 0, 13, .	1.7	2
176	Phenotypic analysis of Longya-10 × pale flax hybrid progeny and identification of candidate genes regulating prostrate/erect growth in flax plants. Frontiers in Plant Science, 0, 13, .	1.7	1
177	Plant pan-genomics and its applications. Molecular Plant, 2023, 16, 168-186.	3.9	19
178	Throwing shade: Limitations to photosynthesis at high planting densities and how to overcome them. Plant Physiology, 2023, 191, 825-827.	2.3	2

\sim		<u>_</u>	
		Repo	DT
\sim	IIAI	KLPU	ALC L

#	Article	IF	CITATIONS
179	Integrating GWAS, linkage mapping and gene expression analyses reveal the genetic control of first branch height in Brassica napus L. Frontiers in Plant Science, 0, 13, .	1.7	1
180	CRISPR-Cas technology opens a new era for the creation of novel maize germplasms. Frontiers in Plant Science, 0, 13, .	1.7	6
181	Ideal Type 1 is caused by a point mutation in the α-tubulin gene that affects microtubule arrangement in soybean. Crop Journal, 2022, , .	2.3	0
182	Effects of Planting Density and Nitrogen (N) Application Rate on Light Energy Utilization and Yield of Maize. Sustainability, 2022, 14, 16707.	1.6	2
183	The genetic basis of high-latitude adaptation in wild soybean. Current Biology, 2023, 33, 252-262.e4.	1.8	13
184	Gene expression and DNA methylation altering lead to the high oil content in wild allotetraploid peanut (A. monticola). Frontiers in Plant Science, 0, 13, .	1.7	0
185	<scp>SEMIâ€ROLLED LEAF</scp> 10 stabilizes catalase isozyme B to regulate leaf morphology and thermotolerance in rice (<i>Oryza sativa</i> L.). Plant Biotechnology Journal, 2023, 21, 819-838.	4.1	13
186	The battle of crops against drought: Genetic dissection and improvement. Journal of Integrative Plant Biology, 2023, 65, 496-525.	4.1	25
187	Nitrogen responsiveness of leaf growth, radiation use efficiency and grain yield of maize (Zea mays L.) in Northeast China. Field Crops Research, 2023, 291, 108806.	2.3	12
188	Combined linkage mapping and association analysis uncovers candidate genes for 25 leaf-related traits across three environments in maize. Theoretical and Applied Genetics, 2023, 136, .	1.8	1
189	Nitrogen partitioning in maize organs and underlined mechanisms from different plant density levels and N application rate in China. Field Crops Research, 2023, 294, 108874.	2.3	9
190	Genetic linkage map construction and QTL mapping of blade length and width in Saccharina japonica using SSR and SNP markers. Frontiers in Marine Science, 0, 10, .	1.2	2
191	QTL Mapping and a Transcriptome Integrative Analysis Uncover the Candidate Genes That Control the Cold Tolerance of Maize Introgression Lines at the Seedling Stage. International Journal of Molecular Sciences, 2023, 24, 2629.	1.8	2
192	Integrated single-molecule real-time sequencing and RNA sequencing reveal the molecular mechanisms of salt tolerance in a novel synthesized polyploid genetic bridge between maize and its wild relatives. BMC Genomics, 2023, 24, .	1.2	1
193	QTL Analysis Reveals Conserved and Differential Genetic Regulation of Maize Lateral Angles above the Ear. Plants, 2023, 12, 680.	1.6	0
194	Identification of a new QTL underlying seminal root number in a maize-teosinte population. Frontiers in Plant Science, 0, 14, .	1.7	2
196	Disentangling the Heterosis in Biomass Production and Radiation Use Efficiency in Maize: A Phytomer-Based 3D Modelling Approach. Plants, 2023, 12, 1229.	1.6	2
197	An LTR retrotransposon insertion inside CsERECTA for an LRR receptor-like serine/threonine-protein kinase results in compact (cp) plant architecture in cucumber. Theoretical and Applied Genetics, 2023, 136, .	1.8	1

#	Article	IF	CITATIONS
198	Genetic basis controlling rice plant architecture and its modification for breeding. Breeding Science, 2023, 73, 3-45.	0.9	12
199	GWAS across multiple environments and WGCNA suggest the involvement of ZmARF23 in embryonic callus induction from immature maize embryos. Theoretical and Applied Genetics, 2023, 136, .	1.8	7
200	Novel insights into maize (Zea mays) development and organogenesis for agricultural optimization. Planta, 2023, 257, .	1.6	1
201	Genetic dissection of crown root traits and their relationships with aboveground agronomic traits in maize. Journal of Integrative Agriculture, 2023, 22, 3394-3407.	1.7	3
202	Radiation Use Efficiency (RUE)Âas Target for Improving Yield Potential: Current Status and Future Prospect. , 2023, , 177-195.		1
203	Small RNAs as emerging regulators of agricultural traits of food crops. , 2023, , 69-106.		0
252	Gene action and combining ability of erect and narrow leaves angles maize inbred lines. AIP Conference Proceedings, 2024, , .	0.3	0