Selective Catalytic Reduction of NO<sub><i>x</i></sub Novel Catalysts: State of the Art and Future Prospects

Chemical Reviews 119, 10916-10976

DOI: 10.1021/acs.chemrev.9b00202

Citation Report

#	Article	IF	CITATIONS
1	<i>In situ</i> decorated MOF-derived Mn–Fe oxides on Fe mesh as novel monolithic catalysts for NO _x reduction. New Journal of Chemistry, 2020, 44, 2357-2366.	1.4	36
2	Promoting effects of water on the NH3-SCR reaction over Cu-SAPO-34 catalysts: transient and permanent influences on Cu species. Dalton Transactions, 2020, 49, 764-773.	1.6	15
3	Tuning composition on B sites of LaM0.5Mn0.5O3 (MÂ=ÂCu, Co, Fe, Ni, Cr) perovskite catalysts in NOx efficient reduction. Applied Surface Science, 2020, 508, 145158.	3.1	27
4	Excellent low-temperature NH3-SCR NO removal performance and enhanced H2O resistance by Ce addition over the Cu0.02Fe0.2CeyTi1-yOx (yÂ= 0.1, 0.2, 0.3) catalysts. Chemosphere, 2020, 243, 125309.	4.2	53
5	Density functional theory (DFT) studies of vanadium-titanium based selective catalytic reduction (SCR) catalysts. Journal of Environmental Sciences, 2020, 90, 119-137.	3.2	31
6	Facile Fabrication of Ce/Vâ€Modified Multiâ€Channel TiO 2 Nanotubes and Their Enhanced Selective Catalytic Reduction Performance. Chemistry - an Asian Journal, 2020, 15, 371-379.	1.7	4
7	Hierarchical three-dimensionally ordered macroporous Fe-V binary metal oxide catalyst for low temperature selective catalytic reduction of NOx from marine diesel engine exhaust. Applied Catalysis B: Environmental, 2020, 268, 118455.	10.8	44
8	Selective Catalytic Reduction of NO by NH3 Using a Combination of Non-Thermal Plasma and Mn-Cu/ZSM5 Catalyst. Catalysts, 2020, 10, 1044.	1.6	7
9	SO ₂ -Tolerant NO _{<i>x</i>} Reduction by Marvelously Suppressing SO ₂ Adsorption over Fe _Î Ce _{1â^Î} VO ₄ Catalysts. Environmental Science & Technology, 2020, 54, 14066-14075.	4.6	76
10	Promotional effects of modified TiO ₂ - and carbon-supported V ₂ O ₅ - and MnO _x -based catalysts for the selective catalytic reduction of NO _x : a review. Catalysis Science and Technology, 2020, 10, 7795-7813.	2.1	23
11	Cu/SSZ-13 and Cu/SAPO-34 catalysts for deNOx in diesel exhaust: Current status, challenges, and future perspectives. Applied Catalysis A: General, 2020, 607, 117855.	2.2	56
12	Controlling Catalytic Selectivity Mediated by Stabilization of Reactive Intermediates in Small-Pore Environments: A Study of Mn/TiO ₂ in the NH ₃ -SCR Reaction. ACS Catalysis, 2020, 10, 12017-12030.	5.5	40
13	Selective Catalytic Reduction of NO Using Phase-Pure Anatase, Rutile, and Brookite TiO ₂ Nanocrystals. Inorganic Chemistry, 2020, 59, 15324-15334.	1.9	23
14	Synthesis of Co-doped MnO2 catalysts with the assistance of PVP for low-temperature SCR. Catalysis Science and Technology, 2020, 10, 8086-8093.	2.1	9
15	Facile synthesis of cost-effective iron enhanced hetero-structure activated carbon/geopolymer composite catalyst for NH3-SCR: Insight into the role of iron species. Applied Catalysis A: General, 2020, 605, 117804.	2.2	19
16	Understanding of NOx storage property of impregnated Ba species after crystallization of mesoporous alumina powders. Journal of Hazardous Materials, 2020, 398, 122791.	6.5	11
17	Improved Activity and SO ₂ Resistance by Sm-Modulated Redox of MnCeSmTiO _{<i>x</i>} Mesoporous Amorphous Oxides for Low-Temperature NH ₃ -SCR of NO. ACS Catalysis, 2020, 10, 9034-9045.	5.5	182
18	Tailored Alkali Resistance of DeNOx Catalysts by Improving Redox Properties and Activating Adsorbed Reactive Species. IScience, 2020, 23, 101173.	1.9	27

#	Article	IF	CITATIONS
19	Spatially Nanoconfined Architectures: A Promising Design for Selective Catalytic Reduction of NO _x . ChemCatChem, 2020, 12, 5599-5610.	1.8	15
20	Comparative study of Ce-Nb-Ti oxide catalysts prepared by different methods for selective catalytic reduction of NO with NH3. Molecular Catalysis, 2020, 496, 111161.	1.0	6
21	Rationally Tailored Redox Properties of a Mesoporous Mn–Fe Spinel Nanostructure for Boosting Low-Temperature Selective Catalytic Reduction of NO <i>_x</i> with NH ₃ . ACS Sustainable Chemistry and Engineering, 2020, 8, 17727-17739.	3.2	52
22	Environmental Reactions of Air-Quality Protection on Eco-Friendly Iron-Based Catalysts. Catalysts, 2020, 10, 1415.	1.6	11
23	Distinct NO ₂ Effects on Cu-SSZ-13 and Cu-SSZ-39 in the Selective Catalytic Reduction of NO _{<i>x</i>} with NH ₃ . Environmental Science & Technology, 2020, 54, 15499-15506.	4.6	48
24	Excellent performance of one-pot synthesized Fe-containing MCM-22 zeolites for the selective catalytic reduction of NO _x with NH ₃ . Catalysis Science and Technology, 2020, 10, 6583-6598.	2.1	21
25	Comparison of Selective Catalytic Reduction Performance of Mn–Co Biâ€Metal Oxides Prepared by Different Methods. ChemistrySelect, 2020, 5, 9409-9416.	0.7	4
26	Selective catalytic reduction of NO _x with NH ₃ over TiO ₂ supported metal sulfate catalysts prepared <i>via</i> a sol–gel protocol. New Journal of Chemistry, 2020, 44, 13598-13605.	1.4	19
27	Modification of composite catalytic material Cu _m V _n O _x @CeO ₂ core–shell nanorods with tungsten for NH ₃ -SCR. Nanoscale, 2020, 12, 16366-16380.	2.8	30
28	Selective catalytic oxidation of NH ₃ over noble metal-based catalysts: state of the art and future prospects. Catalysis Science and Technology, 2020, 10, 5792-5810.	2.1	82
29	The poisoning effect of KCl and K2O on CeO2-TiO2 catalyst for selective catalytic reduction of NO with NH3. Fuel, 2020, 280, 118638.	3.4	24
30	Single-atom site catalysts for environmental catalysis. Nano Research, 2020, 13, 3165-3182.	5.8	252
31	Morphology-Sensitive Sulfation Effect on Ceria Catalysts for NH3-SCR. Topics in Catalysis, 2020, 63, 932-943.	1.3	24
32	Advances in the synthesis, characterisation, and mechanistic understanding of active sites in Fe-zeolites for redox catalysts. Dalton Transactions, 2020, 49, 14749-14757.	1.6	15
33	Mechanistic insights of selective syngas conversion over Zn grafted on ZSM-5 zeolite. Catalysis Science and Technology, 2020, 10, 8173-8181.	2.1	6
34	Singleâ€atom Automobile Exhaust Catalysts. ChemNanoMat, 2020, 6, 1659-1682.	1.5	27
35	Alkali-Resistant NO _{<i>x</i>} Reduction over SCR Catalysts via Boosting NH ₃ Adsorption Rates by In Situ Constructing the Sacrificed Sites. Environmental Science & Technology, 2020, 54, 13314-13321.	4.6	70
36	Computational Study of Urea–Water Solution Sprays for the Analysis of the Injection Process in SCR-like Conditions. Industrial & Engineering Chemistry Research, 2020, 59, 18659-18673.	1.8	8

	CITATION R	EPORT	
#	Article	IF	Citations
37	Ambient electrosynthesis of ammonia with efficient denitration. Nano Energy, 2020, 78, 105321.	8.2	110
38	Hydrocarbon and Soot Oxidation over Cerium and Iron Doped Vanadium SCR Catalysts. ChemCatChem, 2020, 12, 6272-6284.	1.8	9
39	Novel Methods for Assessing the SO ₂ Poisoning Effect and Thermal Regeneration Possibility of MO _{<i>x</i>} –WO ₃ /TiO ₂ (M = Fe, Mn, Cu, and V) Catalysts for NH ₃ -SCR. Environmental Science & Technology, 2020, 54, 12612-12620.	4.6	69
40	Effect of Formaldehyde in Selective Catalytic Reduction of NO <i>_x</i> by Ammonia (NH ₃ -SCR) on a Commercial V ₂ O ₅ -WO ₃ /TiO ₂ Catalyst under Model Conditions. Environmental Science & amp: Technology, 2020, 54, 11753-11761.	4.6	26
41	Spectroscopic identification of the •SSNO isomers. Journal of Chemical Physics, 2020, 153, 094303.	1.2	3
42	Self-Protected CeO ₂ –SnO ₂ @SO ₄ ^{2–} /TiO _{2Catalysts with Extraordinary Resistance to Alkali and Heavy Metals for NO_x Reduction. Environmental Science & Technology, 2020, 54, 12752-12760.}	> 4.6	79
43	Morphology-Controlled Synthesis of TiO2 with Different Structural Units and Applied for the Selective Catalytic Reduction of NOx with NH3. Catalysis Surveys From Asia, 2020, 24, 300-312.	1.0	2
44	New Insight into the Effects of NH ₃ on SO ₂ Poisoning for In Situ Removal of Metal Sulfates in Low-Temperature NH ₃ -SCR over an Fe–V Catalyst. Journal of Physical Chemistry C, 2020, 124, 21396-21406.	1.5	25
45	Promotional mechanism of activity <i>via</i> three-dimensional ordered macroporous Cu-doped Ce–Fe mixed oxides for the CO-SCR reaction. Environmental Science: Nano, 2020, 7, 3136-3154.	2.2	27
46	Recent Progress on Improving Low-Temperature Activity of Vanadia-Based Catalysts for the Selective Catalytic Reduction of NOx with Ammonia. Catalysts, 2020, 10, 1421.	1.6	27
47	High Surface Area VOx/TiO2/SBA-15 Model Catalysts for Ammonia SCR Prepared by Atomic Layer Deposition. Catalysts, 2020, 10, 1386.	1.6	13
48	Copper Aluminum Spinels Doped with Cerium as Catalysts for NO Removal. Catalysts, 2020, 10, 1388.	1.6	4
49	A highly active VO -MnO /CeO2 for selective catalytic reduction of NO: The balance between redox property and surface acidity. Journal of Rare Earths, 2021, 39, 1370-1381.	2.5	9
50	Effect of Calcination Temperature on the Activation Performance and Reaction Mechanism of Ce–Mn–Ru/TiO ₂ Catalysts for Selective Catalytic Reduction of NO with NH ₃ . ACS Omega, 2020, 5, 33357-33371.	1.6	18
51	Migration of cations and shell functionalization for Cu-Ce-La/SSZ-13@ZSM-5: The contribution to activity and hydrothermal stability in the selective catalytic reduction reaction. Journal of Catalysis, 2020, 392, 217-230.	3.1	41
52	FeSTi Superacid Catalyst for NH ₃ -SCR with Superior Resistance to Metal Poisons in Flue Gas. ACS Sustainable Chemistry and Engineering, 2020, 8, 16878-16888.	3.2	24
53	Facet-, composition- and wavelength-dependent photocatalysis of Ag ₂ MoO ₄ . RSC Advances, 2020, 10, 18377-18383.	1.7	13
54	Unraveling the Unexpected Offset Effects of Cd and SO ₂ Deactivation over CeO ₂ -WO ₃ /TiO ₂ Catalysts for NO _{<i>x</i>} Reduction. Environmental Science & Technology, 2020, 54, 7697-7705.	4.6	91

#	Article	IF	CITATIONS
55	Environmental benign synthesis of Nano-SSZ-13 via FAU trans-crystallization: Enhanced NH3-SCR performance on Cu-SSZ-13 with nano-size effect. Journal of Hazardous Materials, 2020, 398, 122986.	6.5	58
56	Challenges and opportunities for manganese oxides in low-temperature selective catalytic reduction of NOx with NH3: H2O resistance ability. Journal of Solid State Chemistry, 2020, 289, 121464.	1.4	42
57	Design of practical Ce/CoMnAl-LDO catalyst for low-temperature NH3-SCR. Catalysis Communications, 2020, 142, 106037.	1.6	10
58	Boosting the Alkali/Heavy Metal Poisoning Resistance for NO Removal by Using Iron-Titanium Pillared Montmorillonite Catalysts. Journal of Hazardous Materials, 2020, 399, 122947.	6.5	34
59	A MnOx@Eu-CeOx nanorod catalyst with multiple protective effects: Strong SO2-tolerance for low temperature DeNOx processes. Journal of Hazardous Materials, 2020, 399, 123011.	6.5	26
60	Recent advances in layered double hydroxides (LDHs) derived catalysts for selective catalytic reduction of NOx with NH3. Journal of Hazardous Materials, 2020, 400, 123260.	6.5	53
61	A new insight into the promotional effect of nitrogen-doping in activated carbon for selective catalytic reduction of NOX with NH3. Science of the Total Environment, 2020, 740, 140158.	3.9	33
62	Low-temperature selective catalytic reduction of NOx with NH3 over zeolite catalysts: A review. Chinese Chemical Letters, 2020, 31, 2549-2555.	4.8	50
63	Novel Niâ€Mn Biâ€oxides Doped Active Coke Catalysts for NH 3 â€SCR Deâ€NOx at Low Temperature. ChemistrySelect, 2020, 5, 6494-6503.	0.7	10
64	Insights into the structure-activity relationships of highly efficient CoMn oxides for the low temperature NH3-SCR of NOx. Applied Catalysis B: Environmental, 2020, 277, 119215.	10.8	68
65	Porous TiO2 aerogel-modified SiC ceramic membrane supported MnOx catalyst for simultaneous removal of NO and dust. Journal of Membrane Science, 2020, 611, 118366.	4.1	37
66	Ligand-Assisted Solid-State Transformation of Nanoparticles. Chemistry of Materials, 2020, 32, 3271-3277.	3.2	13
67	Recent Developments in the Recycling of Spent Selective Catalytic Reduction Catalyst in South Korea. Catalysts, 2020, 10, 182.	1.6	10
68	Sequential Cleavage of Lignin Systems by Nitrogen Monoxide and Hydrazine. Advanced Synthesis and Catalysis, 2020, 362, 1485-1489.	2.1	3
69	Alkali and Phosphorus Resistant Zeolite-like Catalysts for NO _{<i>x</i>} Reduction by NH ₃ . Environmental Science & Technology, 2020, 54, 9132-9141.	4.6	66
70	Dual roles of cellulose monolith in the continuous-flow generation and support of gold nanoparticles for green catalyst. Carbohydrate Polymers, 2020, 247, 116723.	5.1	14
71	Effect of oxygen vacancies on ceria catalyst for selective catalytic reduction of NO with NH3. Applied Surface Science, 2020, 529, 147068.	3.1	60
72	Catalytic removal of NO and dioxins over W-Zr-Ox/Ti-Ce-Mn-Ox from flue gas: Performance and mechanism study. Catalysis Today, 2022, 388-389, 372-382.	2.2	13

#	Article	IF	CITATIONS
73	Superfast flow reactor derived from the used cigarette filter for the degradation of pollutants in water. Journal of Hazardous Materials, 2020, 400, 123303.	6.5	15
74	Synergetic catalytic removal of chlorobenzene and NO from waste incineration exhaust over MnNb0.4Ce0.2O catalysts: Performance and mechanism study. Journal of Rare Earths, 2020, 38, 1178-1189.	2.5	20
75	Severe deactivation and artificial enrichment of thallium on commercial SCR catalysts installed in cement kiln. Applied Catalysis B: Environmental, 2020, 277, 119194.	10.8	20
76	Investigation on optimal active layer thickness and pore size in dual-layer NH3-SCR monolith for low SO2 oxidation by numerical simulation. Fuel, 2020, 279, 118420.	3.4	14
77	Nanosized V-Ce Oxides Supported on TiO2 as a Superior Catalyst for the Selective Catalytic Reduction of NO. Catalysts, 2020, 10, 202.	1.6	6
78	Deactivation mechanism of Cu active sites in Cu/SSZ-13 — Phosphorus poisoning and the effect of hydrothermal aging. Applied Catalysis B: Environmental, 2020, 269, 118781.	10.8	45
79	Component synergistic catalysis of Ce-Sn-W-Ba-Ox/TiO2 in selective catalytic reduction of NO with ammonia. Applied Surface Science, 2020, 512, 145757.	3.1	15
80	The Structure Effect on the Activity and Strength of an Industrial Honeycomb Catalyst Derived from Different Ti Sources. Catalysts, 2020, 10, 42.	1.6	1
81	The poisoning mechanism of gaseous HCl on low-temperature SCR catalysts: MnO â^'CeO2 as an example. Applied Catalysis B: Environmental, 2020, 267, 118668.	10.8	82
82	Titania–Samarium–Manganese Composite Oxide for the Low-Temperature Selective Catalytic Reduction of NO with NH ₃ . Environmental Science & Technology, 2020, 54, 2530-2538.	4.6	75
83	Preparation of Mesoporous Mn–Ce–Ti–O Aerogels by a One-Pot Sol–Gel Method for Selective Catalytic Reduction of NO with NH3. Materials, 2020, 13, 475.	1.3	11
84	Enhancement of the Hydrothermal Stability of WO ₃ /Ce _{0.68} Zr _{0.32} O ₂ Catalyst by Silica Modification for NH ₃ -SCR. ACS Applied Energy Materials, 2020, 3, 1161-1170.	2.5	19
85	In Situ Investigations on the Facile Synthesis and Catalytic Performance of CeO2-Pt/Al2O3 Catalyst. Catalysts, 2020, 10, 143.	1.6	7
86	Effect of SO2 treatment in the presence and absence of O2 over ceria–titania oxides for selective catalytic reduction. Journal of Materials Science, 2020, 55, 4570-4577.	1.7	3
87	The deactivation effect of Na2O and NaCl on CeO2–TiO2 catalysts for selective catalytic reduction of NO with NH3. Journal of the Energy Institute, 2020, 93, 1332-1340.	2.7	13
88	Synergistic effect of mixer and mixing chamber on flow mixing and NOx reduction in a marine urea-SCR system. Chemical Engineering and Processing: Process Intensification, 2020, 150, 107888.	1.8	23
89	Novel shielding and synergy effects of Mn-Ce oxides confined in mesoporous zeolite for low temperature selective catalytic reduction of NOx with enhanced SO2/H2O tolerance. Journal of Hazardous Materials, 2020, 396, 122592.	6.5	79
90	Unveiling the traits of rare earth metal (RM)-substituted bimetallic Ce0.5RM0.5V1O4 phases to activate selective NH3 oxidation and NOX reduction. Applied Surface Science, 2020, 518, 146238.	3.1	21

#	Article	IF	CITATIONS
91	Poisoning-Resistant NO _{<i>x</i>} Reduction in the Presence of Alkaline and Heavy Metals over H-SAPO-34-Supported Ce-Promoted Cu-Based Catalysts. Environmental Science & Technology, 2020, 54, 6396-6405.	4.6	101
92	The role of surface sulfation in mediating the acidity and oxidation ability of nickel modified ceria catalyst for the catalytic elimination of chlorinated organics. Journal of Colloid and Interface Science, 2020, 574, 251-259.	5.0	30
93	A facile and controllable in situ sulfation strategy for CuCeZr catalyst for NH3-SCR. Applied Catalysis A: General, 2020, 597, 117554.	2.2	33
94	Partial Oxidation of NO by H ₂ O ₂ and afterward Reduction by NH ₃ -Selective Catalytic Reduction: An Efficient Method for NO Removal. Industrial & Engineering Chemistry Research, 2020, 59, 9393-9397.	1.8	14
95	Simultaneous removal of particulates and NO by the catalytic bag filter containing V2O5-MoO3/TiO2. Korean Journal of Chemical Engineering, 2020, 37, 633-640.	1.2	14
96	Gas-Phase Photoelectrocatalytic Oxidation of NO <i>via</i> TiO ₂ Nanorod Array/FTO Photoanodes. Environmental Science & Technology, 2020, 54, 5902-5912.	4.6	42
97	Theory and practice of metal oxide catalyst design for the selective catalytic reduction of NO with NH3. Catalysis Today, 2021, 376, 292-301.	2.2	71
98	Acid-pretreated red mud for selective catalytic reduction of NO with NH3: Insights into inhibition mechanism of binders. Catalysis Today, 2021, 376, 247-254.	2.2	21
99	Utilization of electrochemical treatment and surface reconstruction to achieve long lasting catalyst for NOx removal. Journal of Hazardous Materials, 2021, 401, 123440.	6.5	21
100	Low-temperature NO reduction performance of peanut shell-derived few-layer graphene loaded CeCo _x Mn _{1-x} O ₃ catalyst. Journal of Dispersion Science and Technology, 2021, 42, 900-909.	1.3	8
101	Coinage metal clusters: From superatom chemistry to genetic materials. Coordination Chemistry Reviews, 2021, 429, 213643.	9.5	57
102	Understanding the high performance of an iron-antimony binary metal oxide catalyst in selective catalytic reduction of nitric oxide with ammonia and its tolerance of water/sulfur dioxide. Journal of Colloid and Interface Science, 2021, 581, 427-441.	5.0	28
103	Structure and mechanistic relevance of Ni2+–NO adduct in model HC SCR reaction over NiZSM-5 catalyst – Insights from standard and correlation EPR and IR spectroscopic studies corroborated by molecular modeling. Journal of Catalysis, 2021, 394, 206-219.	3.1	14
104	Comprehensive understanding of the superior performance of Sm-modified Fe2O3 catalysts with regard to NO conversion and H2O/SO2 resistance in the NH3-SCR reaction. Chinese Journal of Catalysis, 2021, 42, 417-430.	6.9	67
105	Selective catalytic reduction of NO with NH3 and CH4 over zeolite supported indium-cerium bimetallic catalysts for lean-burn natural gas engines. Chemical Engineering Journal, 2021, 403, 126394.	6.6	30
106	Regeneration of alkali poisoned TiO2-based catalyst by various acids in NO selective catalytic reduction with NH3. Fuel, 2021, 285, 119069.	3.4	17
107	Environmental-friendly production of FeNbTi catalyst with significant enhancement in SCR activity and SO2 resistance for NOx removal. Fuel, 2021, 285, 119133.	3.4	32
108	In situ/operando spectroscopic studies on NH3–SCR reactions catalyzed by a phosphorus-modified Cu-CHA zeolite. Catalysis Today, 2021, 376, 73-80.	2.2	12

#	Article	IF	CITATIONS
109	Potassium Titanate Nanobelts: A Unique Support for Au and AuRh Nanoparticles in the Catalytic Reduction of NO with CO. ChemCatChem, 2021, 13, 438-444.	1.8	7
110	One-pot hydrothermal synthesis of dual metal incorporated CuCe-SAPO-34 zeolite for enhancing ammonia selective catalytic reduction. Journal of Hazardous Materials, 2021, 405, 124177.	6.5	25
111	Unveiling the importance of reactant mass transfer in environmental catalysis: Taking catalytic chlorobenzene oxidation as an example. Chinese Chemical Letters, 2021, 32, 1206-1209.	4.8	24
112	Synthesis and characterisation of monolithic <scp>PTFE</scp> â€modified <scp>MnO_X</scp> / <scp>FeO_X</scp> catalysts for selective catalytic reduction (<scp>SCR</scp>) of <scp>NO_X</scp> at low temperature. Journal of Chemical Technology and Biotechnology. 2021. 96. 1016-1029.	1.6	5
113	Superior Ce–Nb–Ti oxide catalysts for selective catalytic reduction of NO with NH3. Journal of the Energy Institute, 2021, 94, 73-84.	2.7	15
114	Sulfate of potash and yellow phosphorus to simultaneously remove SO2–NO and obtain a complete fertilizer. Atmospheric Pollution Research, 2021, 12, 147-158.	1.8	9
115	The microscopic oxidation mechanism of NH3 on CuO(111): A first-principles study. Fuel Processing Technology, 2021, 213, 106712.	3.7	15
116	Significant differences of NH ₃ -SCR performances between monoclinic and hexagonal WO ₃ on Ce-based catalysts. Environmental Science: Nano, 2021, 8, 2988-3000.	2.2	11
117	Core–Shell Confinement MnCeOx@ZSM-5 Catalyst for NOx Removal with Enhanced Performances to Water and SO2 Resistance. Nanostructure Science and Technology, 2021, , 165-179.	0.1	1
118	Rationalizing the promotional effect of Mn oxides in benzene combustion using an O 2p-band center descriptor. Chemical Communications, 2021, 57, 4942-4945.	2.2	3
119	A review of Mn-based catalysts for low-temperature NH ₃ -SCR: NO _x removal and H ₂ O/SO ₂ resistance. Nanoscale, 2021, 13, 7052-7080.	2.8	109
120	Titanium–silicon ferrierites and their delaminated forms modified with copper as effective catalysts for low-temperature NH3-SCR. RSC Advances, 2021, 11, 10847-10859.	1.7	7
121	Copper Doping Promotion on Ce/CAC-CNT Catalysts with High Sulfur Dioxide Tolerance for Low-Temperature NH ₃ –SCR. ACS Sustainable Chemistry and Engineering, 2021, 9, 987-997.	3.2	28
122	Effect of FeO _x and MnO _x doping into the CeO ₂ –V ₂ O ₅ /TiO ₂ nanocomposite on the performance and mechanism in selective catalytic reduction of NO _x with NH ₃ . Catalysis Science and Technology. 2021, 11, 2852-2863.	2.1	12
123	Porous g-C ₃ N ₄ /TiO ₂ foam photocatalytic filter for treating NO indoor gas. Environmental Science: Nano, 2021, 8, 1571-1579.	2.2	10
124	Bulk tungsten-substituted vanadium oxide for low-temperature NOx removal in the presence of water. Nature Communications, 2021, 12, 557.	5.8	92
125	Recent advances in metal/ceria catalysts for air pollution control: mechanism insight and application. Environmental Science: Nano, 2021, 8, 2760-2779.	2.2	8
126	Enhancing catalytic performance of Cu-SSZ-13 for the NH ₃ -SCR reaction <i>via in situ</i> introduction of Fe ³⁺ with diatomite. Materials Chemistry Frontiers, 2021, 5, 7787-7795.	3.2	14

#	Article	IF	CITATIONS
127	Nanoarchitectonics: what's coming next after nanotechnology?. Nanoscale Horizons, 2021, 6, 364-378.	4.1	221
128	SO ₂ Resisting Pdâ€doped Pr _{1â€x} Ce _x MnO ₃ Perovskites for Efficient Denitration at Low Temperature. Chemistry - an Asian Journal, 2021, 16, 530-537.	1.7	4
129	NO <i>_X</i> and SO <i>_X</i> Flue Gas Treatment System Based on Sulfur-Enriched Organic Oil in Water Emulsion. ACS Omega, 2021, 6, 2570-2575.	1.6	3
130	FeVO ₄ -supported Mn–Ce oxides for the low-temperature selective catalytic reduction of NO _{<i>x</i>} by NH ₃ . Catalysis Science and Technology, 2021, 11, 6770-6781.	2.1	16
131	Creating self-assembled arrays of mono-oxo (MoO ₃) ₁ species on TiO ₂ (101) via deposition and decomposition of (MoO ₃) _n oligomers. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	10
132	Promotional Effects on NH3-SCR Performance of CeO2–SnO2 Catalysts Doped by TiO2: A Mechanism Study. Catalysis Surveys From Asia, 2021, 25, 48-57.	1.0	11
133	Controlling the dispersion of ceria using nanoconfinement: application to CeO ₂ /SBA-15 catalysts for NH ₃ -SCR. Materials Advances, 2021, 2, 7400-7412.	2.6	6
134	Application of ReO _x /TiO ₂ catalysts with excellent SO ₂ tolerance for the selective catalytic reduction of NO _x by NH ₃ . Catalysis Science and Technology, 0, , .	2.1	63
135	Tailored activity of Cu–Fe bimetallic Beta zeolite with promising C ₃ H ₆ resistance for NH ₃ -SCR. Catalysis Science and Technology, 2021, 11, 646-655.	2.1	9
136	Solvent-free elaboration of Ni-doped MnOx catalysts with high performance for NH3-SCR in low and medium temperature zones. Molecular Catalysis, 2021, 501, 111376.	1.0	7
137	Simple physical mixing of zeolite prevents sulfur deactivation of vanadia catalysts for NOx removal. Nature Communications, 2021, 12, 901.	5.8	49
138	Cu-IM-5 as the Catalyst for Selective Catalytic Reduction of NOx with NH3: Role of Cu Species and Reaction Mechanism. Catalysts, 2021, 11, 221.	1.6	8
139	Organotemplate-free synthesis of MOR zeolite from coal fly ash through simultaneously effective extraction of Si and Al. Microporous and Mesoporous Materials, 2021, 314, 110872.	2.2	10
140	Iron-Based Composite Oxide Catalysts Tuned by CTAB Exhibit Superior NH3–SCR Performance. Catalysts, 2021, 11, 224.	1.6	7
141	Mechanism of Ce-Modified Birnessite-MnO ₂ in Promoting SO ₂ Poisoning Resistance for Low-Temperature NH ₃ -SCR. ACS Catalysis, 2021, 11, 4125-4135.	5.5	138
142	Improving the Performance of Gd Addition on Catalytic Activity and SO2 Resistance over MnOx/ZSM-5 Catalysts for Low-Temperature NH3-SCR. Catalysts, 2021, 11, 324.	1.6	16
143	High-Throughput NO _{<i>x</i>} Removal by Two-Stage Plasma Honeycomb Monolith Catalyst. Environmental Science & Technology, 2021, 55, 6386-6396.	4.6	11
144	State-of-Art Review of NO Reduction Technologies by CO, CH4 and H2. Processes, 2021, 9, 563.	1.3	19

#	ARTICLE	IF	CITATIONS
145	CuW/CeZr Catalysts: A Dual-Function Catalyst for Selective Catalytic Reduction of NO and CO Oxidation Under Oxygen-Rich Conditions. Catalysis Letters, 2021, 151, 3361-3371.	1.4	6
146	Study on the Synthesis of Chabazite Zeolites via Interzeolite Conversion of Faujasites. Journal of Analytical Methods in Chemistry, 2021, 2021, 1-10.	0.7	4
147	Superior Oxidative Dehydrogenation Performance toward NH ₃ Determines the Excellent Low-Temperature NH ₃ -SCR Activity of Mn-Based Catalysts. Environmental Science & Technology, 2021, 55, 6995-7003.	4.6	83
148	Role of silver species in H2-NH3-SCR of NOx over Ag/Al2O3 catalysts: Operando spectroscopy and DFT calculations. Journal of Catalysis, 2021, 395, 1-9.	3.1	29
149	Thulium modified MnOx/TiO2 catalyst for the low-temperature selective catalytic reduction of NO with ammonia. Journal of Cleaner Production, 2021, 290, 125858.	4.6	44
150	Mobility of Cu Ions in Cu-SSZ-13 Determines the Reactivity of Selective Catalytic Reduction of NO _{<i>x</i>xx, 2021, 12, 3210-3216.}	2.1	33
151	Ca Doping Effect on the Competition of NH ₃ –SCR and NH ₃ Oxidation Reactions over Vanadium-Based Catalysts. Journal of Physical Chemistry C, 2021, 125, 6128-6136.	1.5	32
152	Advanced Synthesis and Characterization of Vanadia/Titania Catalysts through a Molecular Approach. Catalysts, 2021, 11, 322.	1.6	4
153	Advances in De-NO _{<i>x</i>} Methods and Catalysts for Direct Catalytic Decomposition of NO: A Review. Energy & Fuels, 2021, 35, 6443-6464.	2.5	24
154	Ce–Si Mixed Oxide: A High Sulfur Resistant Catalyst in the NH ₃ –SCR Reaction through the Mechanism-Enhanced Process. Environmental Science & Technology, 2021, 55, 4017-4026.	4.6	66
155	Insight into the activity and SO2 tolerance of hierarchically ordered MnFe1-δCoδOx ternary oxides for low-temperature selective catalytic reduction of NOx with NH3. Journal of Catalysis, 2021, 395, 195-209.	3.1	50
156	Confined Catalysts Application in Environmental Catalysis: Current Research Progress and Future Prospects. ChemCatChem, 2021, 13, 2313-2336.	1.8	28
157	High-performance Fe _a Ti _b O _x catalyst loaded on ceramic filter for NO _x x reduction. Materials Research Express, 2021, 8, 045509.	0.8	4
158	Mixed Use of Bio-Oil in Oil Power Plants: Should It Be Considered When Developing NH3 Emission Factors?. International Journal of Environmental Research and Public Health, 2021, 18, 4235.	1.2	Ο
159	NiMn2O4 sphere catalyst for the selective catalytic reduction of NO by NH3: Insight into the enhanced activity via solvothermal method. Journal of Environmental Chemical Engineering, 2021, 9, 105152.	3.3	9
160	Active sites adjustable phosphorus promoted CeO2/TiO2 catalysts for selective catalytic reduction of NO by NH3. Chemical Engineering Journal, 2021, 409, 128242.	6.6	27
161	One-pot synthesis of highly dispersed mesoporous Cu/ZrO2 catalysts for NH3-SCR. Catalysis Today, 2022, 384-386, 113-121.	2.2	13
162	Critical Roles of Surface Oxygen Vacancy in Heterogeneous Catalysis over Ceria-based Materials: A Selected Review. Chemistry Letters, 2021, 50, 856-865.	0.7	26

#	ARTICLE	IF	CITATIONS
163	MnOx location on MnOx-ZSM-5 to influence the catalytic activity for selective catalytic reduction of NOx by NH3. Applied Catalysis A: General, 2021, 617, 118128.	2.2	27
164	Insight into the Promoting Role of Er Modification on SO2 Resistance for NH3-SCR at Low Temperature over FeMn/TiO2 Catalysts. Catalysts, 2021, 11, 618.	1.6	8
165	Multi-pollutant control (MPC) of NO and chlorobenzene from industrial furnaces using a vanadia-based SCR catalyst. Applied Catalysis B: Environmental, 2021, 285, 119835.	10.8	54
166	Enhanced sulfur resistance of H3PW12O40-modified Fe2O3 catalyst for NH3-SCR: Synergistic effect of surface acidity and oxidation ability. Chemical Engineering Journal, 2021, 412, 128712.	6.6	44
167	Facile Preparation of CeO ₂ Supported on Graphene Oxide Sheets for NH ₃ ‧CR: Improvement of Catalytic Activity and SO ₂ Tolerance. ChemistrySelect, 2021, 6, 4859-4865.	0.7	6
168	Deactivation of CeO2-TiO2 catalyst by K2SO4 for NH3-SCR: An experimental and DFT study. Applied Surface Science, 2021, 547, 149196.	3.1	31
169	One-Pot Three-Dimensional Printing Robust Self-Supporting MnO _x /Cu-SSZ-13 Zeolite Monolithic Catalysts for NH ₃ -SCR. CCS Chemistry, 2022, 4, 1708-1719.	4.6	14
170	Preparation of MnOx/CNTs Catalyst by In situ Precipitation Method for Low-Temperature NO Reduction with NH3. Current Nanoscience, 2021, 17, 298-306.	0.7	3
171	Tungsten-Based Catalysts for Environmental Applications. Catalysts, 2021, 11, 703.	1.6	49
172	Green rusts-derived iron oxide nanostructures catalyze NO reduction by CO. Green Energy and Environment, 2023, 8, 499-508.	4.7	5
173	Evaluation of a Data-Driven, Machine Learning Approach for Identifying Potential Candidates for Environmental Catalysts: From Database Development to Prediction. ACS ES&T Engineering, 2021, 1, 1246-1257.	3.7	8
174	Improved NO _{<i>x</i>} Reduction over Phosphate-Modified Fe ₂ O ₃ /TiO ₂ Catalysts <i>Via</i> Tailoring Reaction Paths by <i>In Situ</i> Creating Alkali-Poisoning Sites. Environmental Science & Technology, 2021, 55, 9276-9284.	4.6	40
175	Enhanced hydrothermal stability of Cu/SSZ-39 with increasing Cu contents, and the mechanism of selective catalytic reduction of NO. Microporous and Mesoporous Materials, 2021, 320, 111060.	2.2	21
176	Reaction Pathways of the Selective Catalytic Reduction of NO with NH ₃ on the α-Fe ₂ O ₃ (012) Surface: a Combined Experimental and DFT Study. Environmental Science & Technology, 2021, 55, 10967-10974.	4.6	48
177	Low temperature <scp>SCR</scp> of <scp>NO_x</scp> over Mn/Fe mixed oxides catalyst: comparison of synthesis methods. Journal of Chemical Technology and Biotechnology, 2021, 96, 2681-2695.	1.6	6
178	Construction of Fe2O3 loaded and mesopore confined thin-layer titania catalyst for efficient NH3-SCR of NOx with enhanced H2O/SO2 tolerance. Applied Catalysis B: Environmental, 2021, 287, 119982.	10.8	64
179	In Search of the Active Sites for the Selective Catalytic Reduction on Tungsten-Doped Vanadia Monolayer Catalysts Supported by TiO ₂ . ACS Catalysis, 2021, 11, 7411-7421.	5.5	14
180	Facile synthesis of hollow nanotube MnCoOx catalyst with superior resistance to SO2 and alkali metal poisons for NH3-SCR removal of NOx. Separation and Purification Technology, 2021, 265, 118517.	3.9	52

#	Article	IF	CITATIONS
181	Unraveling Reactivity Descriptors and Structure Sensitivity in Low-Temperature NH ₃ -SCR Reaction over CeTiO <i>_x</i> Catalysts: A Combined Computational and Experimental Study. ACS Catalysis, 2021, 11, 7613-7636.	5.5	75
182	New Insights on Competitive Adsorption of NO/SO ₂ on TiO ₂ Anatase for Photocatalytic NO Oxidation. Environmental Science & amp; Technology, 2021, 55, 9285-9292.	4.6	24
183	Adsorption of nitrate and nitrite from aqueous solution by magnetic Mg/Fe hydrotalcite. Water Science and Technology: Water Supply, 2021, 21, 4287-4300.	1.0	6
184	Selective catalytic reduction of NOx in marine engine exhaust gas over supported transition metal oxide catalysts. Chemical Engineering Journal, 2021, 414, 128794.	6.6	23
185	Theoretical Study on the NO <i>_x</i> Selective Catalytic Reduction on Single-Cu Sites and BrĄ̃,nsted Acid Sites in Cu-SSZ-13. Journal of Physical Chemistry C, 2021, 125, 12594-12602.	1.5	10
186	Comparative DFT study of the oxy(hydr)oxides of iron and aluminum – structural, electronic and surface properties Surface Science, 2021, 708, 121821.	0.8	3
187	Cu-ZSM-5 Catalyst Impregnated with Mn–Co Oxide for the Selected Catalytic Reduction of NO: Physicochemical Property–Catalytic Activity Relationship and In Situ DRIFTS Study for the Reaction Mechanism. ACS Catalysis, 2021, 11, 7702-7718.	5.5	59
188	Pragmatic Approach toward Catalytic CO Emission Mitigation in Fluid Catalytic Cracking (FCC) Units. Catalysts, 2021, 11, 707.	1.6	3
189	Impact of toluene poisoning on MnCe/HZSM-5 SCR catalyst. Chemical Engineering Journal, 2021, 414, 128838.	6.6	46
190	Enhanced activity of vanadia supported on microporous titania for the selective catalytic reduction of NO with NH3: Effect of promoters. Chemosphere, 2021, 275, 130105.	4.2	7
191	Synergistic effect of cobalt and niobium in Co3-Nb-Ox on performance of selective catalytic reduction of NO with NH3. Rare Metals, 2022, 41, 166-178.	3.6	19
192	Promoting nitric oxide electroreduction to ammonia over electron-rich Cu modulated by Ru doping. Science China Chemistry, 2021, 64, 1493-1497.	4.2	83
193	Cleavage of Organosolv Lignin to Phenols Using Nitrogen Monoxide and Hydrazine. ACS Omega, 2021, 6, 19400-19408.	1.6	0
194	Enhanced performance of iron-cerium NO reduction catalysts by sulfuric acid treatment: The synergistic effect of surface acidity and redox capacity. Applied Catalysis A: General, 2021, 621, 118200.	2.2	14
195	Promotion of NH3-SCR activity by sulfate-modification over mesoporous Fe doped CeO2 catalyst: Structure and mechanism. Journal of Hazardous Materials, 2021, 414, 125565.	6.5	41
196	Design of High-Performance Iron–Niobium Composite Oxide Catalysts for NH ₃ -SCR: Insights into the Interaction between Fe and Nb. ACS Catalysis, 2021, 11, 9825-9836.	5.5	66
197	Molybdenum oxide as an efficient promoter to enhance the NH3-SCR performance of CeO2-SiO2 catalyst for NO removal. Catalysis Today, 2022, 397-399, 475-483.	2.2	19
198	Influence of CePO4 with different crystalline phase on selective catalytic reduction of NO with ammonia. Journal of Rare Earths, 2022, 40, 1219-1231.	2.5	5

#	Article	IF	CITATIONS
199	N2O inhibition by toluene over Mn-Fe spinel SCR catalyst. Journal of Hazardous Materials, 2021, 414, 125468.	6.5	38
200	First-principles insights into the adsorption and interaction mechanism of selenium on selective catalytic reduction catalyst. Chemosphere, 2021, 275, 130057.	4.2	10
201	Alkali-Resistant Catalytic Reduction of NO <i>_x</i> via Naturally Coupling Active and Poisoning Sites. Environmental Science & Technology, 2021, 55, 11255-11264.	4.6	32
202	Insights into the co-doping effect of Fe3+ and Zr4+ on the anti-K performance of CeTiOx catalyst for NH3-SCR reaction. Journal of Hazardous Materials, 2021, 416, 125821.	6.5	38
203	Revealing the effect of paired redox-acid sites on metal oxide catalysts for efficient NO removal by NH3-SCR. Journal of Hazardous Materials, 2021, 416, 125826.	6.5	43
204	Promotional effect of ceria on the catalytic behaviour of new V2O5–WO3–TiO2 aerogel solids for the DeNOx process. Journal of Solid State Chemistry, 2021, 300, 122261.	1.4	10
205	Alkali-Resistant Catalytic Reduction of NO _{<i>x</i>} by Using Ce–O–B Alkali-Capture Sites. Environmental Science & Technology, 2021, 55, 11970-11978.	4.6	51
206	Hierarchically Hollow MnO ₂ @CeO ₂ Heterostructures for NO Oxidation: Remarkably Promoted Activity and SO ₂ Tolerance. ACS Catalysis, 2021, 11, 10988-10996.	5.5	36
207	Facet-dependent catalytic activity of anatase TiO2 for the selective catalytic reduction of NO with NH3: A dispersion-corrected density functional theory study. Applied Catalysis A: General, 2021, 623, 118250.	2.2	9
208	Support promotion effect on the SO2 and K+ co-poisoning resistance of MnO2/TiO2 for NH3-SCR of NO. Journal of Hazardous Materials, 2021, 416, 126117.	6.5	53
209	Catalytic Reduction of NOx With NH3 Over CeO2 and SiO2 Supported Tungstophosphoric Acid: Promoting Effects of Ceria Support and Cobalt Proton Substitute. Catalysis Letters, 0, , 1.	1.4	2
210	Study of Cu/Mn Catalysts for Coreactions of NH3-SCR and CO Oxidation. Catalysis Letters, 2022, 152, 1752-1759.	1.4	17
211	Recent Advances in Catalysis Based on Transition Metals Supported on Zeolites. Frontiers in Chemistry, 2021, 9, 716745.	1.8	20
212	Activity enhancement of acetate precursor prepared on MnOx-CeO2 catalyst for low-temperature NH3-SCR: Effect of gaseous acetone addition. Chinese Chemical Letters, 2021, 32, 2509-2512.	4.8	14
213	Analogous Mechanistic Features of NH ₃ -SCR over Vanadium Oxide and Copper Zeolite Catalysts. ACS Catalysis, 2021, 11, 11180-11192.	5.5	33
214	AgY zeolite as catalyst for the selective catalytic oxidation of NH3. Microporous and Mesoporous Materials, 2021, 323, 111230.	2.2	15
215	Recent progress of Pd/zeolite as passive NOx adsorber: Adsorption chemistry, structure-performance relationships, challenges and prospects. Chinese Chemical Letters, 2022, 33, 1169-1179.	4.8	20
216	Ammonia removal in selective catalytic oxidation: Influence of catalyst structure on the nitrogen selectivity. Journal of Hazardous Materials, 2021, 416, 125782.	6.5	15

#	Article	IF	CITATIONS
217	Titania-Clay Mineral Composites for Environmental Catalysis and Photocatalysis. Catalysts, 2021, 11, 1087.	1.6	11
218	Transformation of Highly Stable Pt Single Sites on Defect Engineered Ceria into Robust Pt Clusters for Vehicle Emission Control. Environmental Science & Technology, 2021, 55, 12607-12618.	4.6	21
219	Highâ€₽erformance Electrochemical NO Reduction into NH ₃ by MoS ₂ Nanosheet. Angewandte Chemie, 2021, 133, 25467-25472.	1.6	102
220	Current progress on catalytic oxidation of toluene: a review. Environmental Science and Pollution Research, 2021, 28, 62030-62060.	2.7	38
221	Insight into the enhancing activity and stability of Ce modified V2O5/AC during cyclic desulfurization-regeneration-denitrification. Journal of Hazardous Materials, 2022, 424, 127397.	6.5	9
222	Poisoning effect of K with respect to Cu/ZSM-5 used for NO reduction. Colloids and Interface Science Communications, 2021, 44, 100465.	2.0	11
223	Toward rational design of a novel hierarchical porous Cu-SSZ-13 catalyst with boosted low-temperature NO reduction performance. Journal of Catalysis, 2021, 401, 309-320.	3.1	30
224	MoO3/TiO2 catalyst with atomically dispersed O-Mo-O structures toward improving NH4HSO4 poisoning resistance for selective catalytic reduction of nitrogen oxides. Journal of Hazardous Materials, 2021, 418, 126289.	6.5	12
225	ZSM-5-supported V-Cu bimetallic oxide catalyst for remarkable catalytic oxidation of toluene in coal-fired flue gas. Chemical Engineering Journal, 2021, 419, 129675.	6.6	44
226	Toward a viable ecological method for regenerating a commercial SCR catalyst – Selectively leaching surface deposits and reconstructing a pore landscape. Journal of Cleaner Production, 2021, 316, 128291.	4.6	10
227	Relationships between Adsorption Amount of Surface Sulfate and NH ₃ -SCR Performance over CeO ₂ . Journal of Physical Chemistry C, 2021, 125, 21964-21974.	1.5	19
228	Excellent low-temperature NH3-SCR of NO activity and resistance to H2O and SO2 over WaCeOx (aÂ=Â0.06, 0.12, 0.18, 0.24) catalysts: Key role of acidity derived from tungsten addition. Applied Catalysis A: General, 2021, 627, 118374.	2.2	16
229	Research progress on NH3-SCR mechanism of metal-supported zeolite catalysts. Journal of Fuel Chemistry and Technology, 2021, 49, 1294-1315.	0.9	20
230	Ultralow specific surface area vermiculite supporting Mn-Ce-Fe mixed oxides as "curling catalysts― for selective catalytic reduction of NO with NH3. Green Chemical Engineering, 2021, 2, 284-293.	3.3	10
231	A strategy for constructing highly efficient yolk-shell Ce@Mn@TiOx catalyst with dual active sites for low-temperature selective catalytic reduction of NO with NH3. Chemical Engineering Journal, 2021, 419, 129572.	6.6	66
232	Thermally activated epoxy-functionalized carbon as an electrocatalyst for efficient NOx reduction. Carbon, 2021, 182, 516-524.	5.4	16
233	Highâ€₽erformance Electrochemical NO Reduction into NH ₃ by MoS ₂ Nanosheet. Angewandte Chemie - International Edition, 2021, 60, 25263-25268.	7.2	180
234	Catalytic performance and mechanistic evaluation of sulfated CeO2 cubes for selective catalytic reduction of NOx with ammonia. Journal of Hazardous Materials, 2021, 420, 126545.	6.5	27

#	Article	IF	CITATIONS
235	Water: A promoter of ammonia selective catalytic reduction over copper-exchanged LTA zeolites. Applied Catalysis B: Environmental, 2021, 294, 120244.	10.8	20
236	Effects of Sm modification on biochar supported Mn oxide catalysts for low-temperature NH3-SCR of NO. Journal of the Energy Institute, 2021, 98, 234-243.	2.7	47
237	Single-atom iron as a promising low-temperature catalyst for selective catalytic reduction of NO with NH3: A theoretical prediction. Fuel, 2021, 302, 121041.	3.4	36
238	Oxygen-vacancy mediated acidity and redox properties on WOx/Cu-doped CeO2 for the removal of NOx. Journal of Environmental Chemical Engineering, 2021, 9, 106024.	3.3	13
239	Balancing redox and acidic properties for optimizing catalytic performance of SCR catalysts: A case study of nanopolyhedron CeO -supported WO. Journal of Environmental Chemical Engineering, 2021, 9, 105828.	3.3	7
240	Fabrication of molten nitrate/nitrite dual-phase four-channel hollow fiber membranes for nitrogen oxides separation. Journal of Membrane Science, 2021, 635, 119506.	4.1	6
241	Effects of SO2 on standard and fast SCR over CeWO : A quantitative study of the reaction pathway and active sites. Applied Catalysis B: Environmental, 2022, 301, 120784.	10.8	24
242	Improved NH3-SCR deNOx activity and tolerance to H2O & SO2 at low temperature over the NbmCu0.1-mCe0.9Ox catalysts: Role of acidity by niobium doping. Fuel, 2021, 303, 121239.	3.4	24
243	The structural evolution of MnOx with calcination temperature and their catalytic performance for propane total oxidation. Applied Surface Science, 2021, 565, 150596.	3.1	17
244	Effects of phosphorus modification on the catalytic properties and performance of CuCeZr mixed metal catalyst for simultaneous removal of CO and NOx. Chemical Engineering Journal, 2021, 423, 130228.	6.6	32
245	Chitosan based adsorbents for the removal of phosphate and nitrate: A critical review. Carbohydrate Polymers, 2021, 274, 118671.	5.1	91
246	Electron structure and reaction pathway regulation on porous cobalt-doped CeO2/graphene aerogel: A free-standing cathode for flexible and advanced Li-CO2 batteries. Energy Storage Materials, 2021, 42, 484-492.	9.5	38
247	Effect of the oxygen carrier ilmenite on NOX formation in chemical-looping combustion. Fuel Processing Technology, 2021, 222, 106962.	3.7	9
248	Enhanced activity and water resistance of hierarchical flower-like Mn-Co binary oxides for ammonia-SCR reaction at low temperature. Applied Surface Science, 2021, 569, 150989.	3.1	35
249	Insights into high CO-SCR performance of CuCoAlO catalysts derived from LDH/MOFs composites and study of H2O/SO2 and alkali metal resistance. Chemical Engineering Journal, 2021, 426, 131873.	6.6	50
250	Enhanced selective catalytic reduction of NO with NH3 over homoatomic dinuclear sites in defective α-Fe2O3. Chemical Engineering Journal, 2021, 426, 131845.	6.6	13
251	Recent progress of metal-exchanged zeolites for selective catalytic reduction of NOx with NH3 in diesel exhaust. Fuel, 2021, 305, 121482.	3.4	47
252	Acid modification enhances selective catalytic reduction activity and sulfur dioxide resistance of manganese-cerium-cobalt catalysts: Insight into the role of phosphotungstic acid. Journal of Colloid and Interface Science, 2021, 603, 291-306.	5.0	21

#	Article	IF	CITATIONS
253	Insight into the praseodymium effect on the NH3-SCR reaction pathways over W or Nb supported ceria-zirconia based catalysts. Applied Catalysis B: Environmental, 2021, 298, 120563.	10.8	17
254	A novel CNTs functionalized CeO2/CNTs–GAC catalyst with high NO conversion and SO2 tolerance for low temperature selective catalytic reduction of NO by NH3. Chemosphere, 2021, 284, 131377.	4.2	8
255	The water resistance enhanced strategy of Mn based SCR catalyst by construction of TiO2 shell and superhydrophobic coating. Chemical Engineering Journal, 2021, 426, 131334.	6.6	33
256	Promoting effect of Ti addition on three-dimensionally ordered macroporous Mn-Ce catalysts for NH3-SCR reaction: Enhanced N2 selectivity and remarkable water resistance. Applied Surface Science, 2021, 569, 151047.	3.1	34
257	Synergistic effect and mechanism of FeO and CeO co-doping on the superior catalytic performance and SO2 tolerance of Mn-Fe-Ce/ACN catalyst in low-temperature NH3-SCR of NO. Journal of Environmental Chemical Engineering, 2021, 9, 106360.	3.3	44
258	Effects of sulfation on hematite for selective catalytic reduction of nitrogen oxides with ammonia. Journal of Colloid and Interface Science, 2022, 606, 1445-1456.	5.0	21
259	NH3-SCR performance and SO2 resistance comparison of CeO2 based catalysts with Fe/Mo additive surface decoration. Chemical Engineering Journal, 2022, 428, 131372.	6.6	33
260	Unraveling SO2-tolerant mechanism over Fe2(SO4)3/TiO2 catalysts for NO reduction. Journal of Environmental Sciences, 2022, 111, 340-350.	3.2	25
261	Catalytic performance and reaction mechanisms of NO removal with NH3 at low and medium temperatures on Mn-W-Sb modified siderite catalysts. Journal of Environmental Sciences, 2022, 115, 126-139.	3.2	15
262	Microwave-assisted preparation of porous fibrous ceramic-based catalytic filter elements for the simultaneous removal of NO and dust from high-temperature gases. Separation and Purification Technology, 2021, 278, 119549.	3.9	11
263	A thermodynamic approach toward selective and reversible sub-ppm H ₂ S sensing using ultra-small CuO nanorods impregnated with Nb ₂ O ₅ nanoparticles. Journal of Materials Chemistry A, 2021, 9, 17425-17433.	5.2	16
264	Vanadium Substitution as an Effective Way to Enhance the Redox Ability of Tungstophosphoric Acid and for Application of NH3-SCR. Catalysis Letters, 2021, 151, 2250.	1.4	2
265	Decision tree analysis on the performance of zeolite-based SCR catalysts. IFAC-PapersOnLine, 2021, 54, 55-60.	0.5	4
266	High Temperature Stable Maghemite Nanoparticles Sandwiched between Hectorite Nanosheets. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2020, 646, 1110-1115.	0.6	9
267	SO2-tolerant NOx reduction over ceria-based catalysts: Shielding effects of hollandite Mn-Ti oxides. Chemical Engineering Journal, 2020, 397, 125535.	6.6	52
268	The insight into the role of Al2O3 in promoting the SO2 tolerance of MnOx for low-temperature selective catalytic reduction of NOx with NH3. Chemical Engineering Journal, 2020, 398, 125572.	6.6	65
269	Highly dispersed MnO _x –FeO _x supported by silicalite-1 for the selective catalytic reduction of NO _x with NH ₃ at low temperatures. Catalysis Science and Technology, 2020, 10, 5525-5534.	2.1	6
270	Synthesis of oxygen functionalized carbon nanotubes and their application for selective catalytic reduction of NO _x with NH ₃ . RSC Advances, 2020, 10, 16700-16708.	1.7	27

#	Article	IF	CITATIONS
272	Pollutant Control by Catalytic Methods. Advanced Topics in Science and Technology in China, 2021, , 21-103.	0.0	0
273	High-efficiency electrohydrogenation of nitric oxide to ammonia on a Ni ₂ P nanoarray under ambient conditions. Journal of Materials Chemistry A, 2021, 9, 24268-24275.	5.2	68
274	Selective catalytic reduction of NO _x with NH ₃ assisted by non-thermal plasma over CeMnZrO _x @TiO ₂ core–shell catalyst. Plasma Science and Technology, 2022, 24, 054006.	0.7	2
275	Aluminum Doped Titania as a Support of Copper Catalysts for SCR of Nitrogen Oxides. Materials, 2021, 14, 6021.	1.3	1
276	Review of Sulfur Promotion Effects on Metal Oxide Catalysts for NO _{<i>x</i>} Emission Control. ACS Catalysis, 2021, 11, 13119-13139.	5.5	69
277	Promotion effect of niobium on ceria catalyst for selective catalytic reduction of NO with NH3. Journal of Rare Earths, 2022, 40, 1535-1545.	2.5	9
278	Advances in Catalytic Applications of Zeoliteâ€&upported Metal Catalysts. Advanced Materials, 2021, 33, e2104442.	11.1	113
279	Low-temperature NH3-SCR activity of M (M = Zr, Ni and Co) doped MnO supported biochar catalysts. Journal of Environmental Chemical Engineering, 2021, 9, 106504.	3.3	42
280	Research on the deactivation mechanism of a denitration catalyst WO ₃ –V ₂ 0 ₅ /TiO ₂ at a coal-fired power plant. RSC Advances, 2020, 10, 44025-44033.	1.7	6
281	Extremum Seeking Control for the Catalytic Oxidation of Ammonia in Non-stationary Conditions. Advances in Intelligent Systems and Computing, 2021, , 502-514.	0.5	0
282	Unravelling Phosphorus-Induced Deactivation of Pd-SSZ-13 for Passive NO _{<i>x</i>} Adsorption and CO Oxidation. ACS Catalysis, 2021, 11, 13891-13901.	5.5	25
283	Progressive regulation of Al sites and Cu distribution to increase hydrothermal stability of hierarchical SSZ-13 for the selective catalytic reduction reaction. Applied Catalysis B: Environmental, 2022, 303, 120867.	10.8	10
284	Significant promoting effect of La doping on the wide temperature NH3-SCR performance of Ce and Cu modified ZSM-5 catalysts. Journal of Solid State Chemistry, 2022, 305, 122700.	1.4	28
285	Single Mo atoms paired with neighbouring Ti atoms catalytically decompose ammonium bisulfate formed in low-temperature SCR. Journal of Materials Chemistry A, 2022, 10, 6065-6072.	5.2	6
286	High-temperature selective catalytic reduction of NO with NH3: Optimization of ZrO2 and WO3 complex oxides. Fuel, 2022, 310, 122261.	3.4	8
287	Investigation of the activity of unburned carbon as a catalyst in the decomposition of NO and NH3. Fuel, 2022, 309, 122170.	3.4	2
288	Mercury/oxygen reaction mechanism over CuFe2O4 catalyst. Journal of Hazardous Materials, 2022, 424, 127556.	6.5	20
289	Mesopore creation in zeolite ZSM-5: Influence of NaOH concentration, temperature and treatment duration. Tehnika, 2020, 75, 9-14.	0.0	О

#	Article	IF	CITATIONS
290	Combination of Pilot Injection and a NH ₃ -SCR System To Reduce NOx Emissions of a Nonroad Compression Ignition Engine. ACS Omega, 2021, 6, 28871-28879.	1.6	4
291	Renewable Ammonia as an Energy Fuel for Ocean Exploration and Transportation. Marine Technology Society Journal, 2020, 54, 126-136.	0.3	5
292	Rational construction of thermally stable single atom catalysts: From atomic structure to practical applications. Chinese Journal of Catalysis, 2022, 43, 71-91.	6.9	15
293	Electronic structure tailoring of Al3+- and Ta5+-doped CeO2 for the synergistic removal of NO and chlorinated organics. Applied Catalysis B: Environmental, 2022, 304, 120939.	10.8	42
294	Electrochemical Ammonia Synthesis via NO Reduction on 2Dâ€MOF. ChemPhysChem, 2022, 23, .	1.0	16
295	Deoxygenation of Nitrous Oxide and Nitro Compounds Using Bis(Nâ€Heterocyclic Silylene)Amido Iron Complexes as Catalysts. Angewandte Chemie - International Edition, 2022, 61, .	7.2	17
296	Vanadium-based catalytic fibers for selective reduction of NO by NH3 and their potential use on co-processing of dust and NOx. Chemical Engineering Journal, 2022, 431, 133694.	6.6	8
297	Influence of phosphorus on the NH3-SCR performance of CeO2-TiO2 catalyst for NO removal from co-incineration flue gas of domestic waste and municipal sludge. Journal of Colloid and Interface Science, 2022, 610, 463-473.	5.0	38
298	Insight into the Potassium Poisoning Effect for Selective Catalytic Reduction of NO _{<i>x</i>} with NH ₃ over Fe/Beta. ACS Catalysis, 2021, 11, 14727-14739.	5.5	69
299	Heterogeneous Single Atom Environmental Catalysis: Fundamentals, Applications, and Opportunities. Advanced Functional Materials, 2022, 32, 2108381.	7.8	51
300	Precise regulation of acid pretreatment for red mud SCR catalyst: Targeting on optimizing the acidity and reducibility. Frontiers of Environmental Science and Engineering, 2022, 16, 1.	3.3	12
301	Insight Into the CuOx Interacts with Oxygen Vacancies on the Surface of Black-TiO2 for NO Oxidation. Catalysis Letters, 2022, 152, 2869-2879.	1.4	5
302	Review on the selective catalytic reduction of NO with H2 by using novel catalysts. Journal of Environmental Chemical Engineering, 2021, 9, 106770.	3.3	21
303	MnO2 nanoarray with oxygen vacancies: An efficient catalyst for NO electroreduction to NH3 at ambient conditions. Materials Today Physics, 2022, 22, 100586.	2.9	54
304	Deoxygenation of Nitrous Oxide and Nitro Compounds Using Bis(Nâ€Heterocyclic Silylene)Amido Iron Complexes as Catalysts. Angewandte Chemie, 0, , .	1.6	2
305	Zeolite-driven Ag species during redox treatments and catalytic implications for SCO of NH ₃ . Journal of Materials Chemistry A, 2021, 9, 27448-27458.	5.2	11
306	Insights into Samarium Doping Effects on Catalytic Activity and SO ₂ Tolerance of MnFeO _x Catalyst for Low-Temperature NH ₃ -SCR Reaction. SSRN Electronic Journal, 0, , .	0.4	0
307	Time-resolved <i>in situ</i> DRIFTS study on NH ₃ -SCR of NO on a CeO ₂ /TiO ₂ catalyst. Catalysis Science and Technology, 2022, 12, 1245-1256.	2.1	43

#	Article	IF	CITATIONS
308	Enhancing the K-poisoning resistance of CeO2-SnO2 catalyst by hydrothermal method for NH3-SCR reaction. Applied Surface Science, 2022, 579, 152176.	3.1	23
309	Constructing TiO2@CeMnOx nanocages by self-sacrificial hydrolytic etching MIL-125 for efficient wide-temperature selective catalytic reduction of nitrogen oxides. Chemical Engineering Journal, 2022, 432, 134236.	6.6	22
310	Electrothermal alloy embedded V2O5-WO3/TiO2 catalyst for NH3-SCR with promising wide operating temperature window. Chemical Engineering Research and Design, 2022, 159, 213-220.	2.7	17
311	One-step calcination synthesis of accordion-like MXene-derived TiO2@C coupled with g-C3N4: Z-scheme heterojunction for enhanced photocatalytic NO removal. Separation and Purification Technology, 2022, 285, 120329.	3.9	18
312	Phosphate on ceria with controlled active sites distribution for wide temperature NH3-SCR. Journal of Hazardous Materials, 2022, 427, 128148.	6.5	22
313	NH3-SCR of NO over M/ZSM-5 (MÂ=ÂMn, Co, Cu) catalysts: An in-situ DRIFTS study. Surfaces and Interfaces, 2022, 29, 101722.	1.5	14
314	High-performance NH ₃ production <i>via</i> NO electroreduction over a NiO nanosheet array. Chemical Communications, 2021, 57, 13562-13565.	2.2	51
315	Unveiling the Role of High-Valent Copper Cations in the Selective Catalytic Reduction of NO _x with NH ₃ at Low Temperature. SSRN Electronic Journal, 0, , .	0.4	0
316	Promoting NO _x Reduction Via CO Oxidation Over CuO Promoted V ₂ O ₅ -WO ₃ /TiO ₂ Catalysts Under Oxygen-Rich Conditions. SSRN Electronic Journal, 0, , .	0.4	0
317	The enhanced resistance to Na+-poisoning of MnCoCrOx SCR catalyst by acidity regulation: The mechanism of sulfuric acid pretreatment. Molecular Catalysis, 2022, 518, 112084.	1.0	2
318	Cu-Containing Polyoxotitanate Cluster as a Catalyst Precursor for Understanding the Importance of Cu(II)–TiOx Interface on Selective Catalytic Reduction of NO. Journal of Cluster Science, 2023, 34, 255-260.	1.7	1
319	Multi-stage ammonia production for sorption selective catalytic reduction of NOx. Frontiers in Energy, 2022, 16, 840-851.	1.2	3
320	Removal of NO by carbon-based catalytic reduction bed loaded with Mn induced by dielectric barrier discharge at low temperature. Environmental Engineering Research, 2023, 28, 210500-0.	1.5	1
321	Operation principles for hydrogen spark ignited direct injection engines for passenger car applications. International Journal of Hydrogen Energy, 2022, 47, 5638-5649.	3.8	30
322	Insights into the effect of flue gas on synergistic elimination of toluene and NO over V2O5-MoO3(WO3)/TiO2 catalysts. Chemical Engineering Journal, 2022, 435, 134914.	6.6	26
323	Encapsulation of ultra-small Cu–Fe into ZSM-5 zeolites for NH3-SCR with broad reaction-temperature ranges. Microporous and Mesoporous Materials, 2022, 331, 111675.	2.2	21
324	Recent advances and perspectives in the resistance of SO ₂ and H ₂ O of cerium-based catalysts for NO _{<i>x</i>} selective catalytic reduction with ammonia. New Journal of Chemistry, 2022, 46, 2053-2067.	1.4	9
325	CeO2 doping boosted low-temperature NH3-SCR activity of FeTiOx catalyst: A microstructure analysis and reaction mechanistic study. Frontiers of Environmental Science and Engineering, 2022, 16, 1.	3.3	5

#	Article	IF	CITATIONS
326	Bi nanodendrites for highly efficient electrocatalytic NO reduction to NH3 at ambient conditions. Materials Today Physics, 2022, 22, 100611.	2.9	36
327	Tailor the crystal planes of MIL-101(Fe) derivatives to enhance the activity of SCR reaction at medium and low temperature. Journal of Colloid and Interface Science, 2022, 615, 432-444.	5.0	7
328	N2O Hydrogenation on Silver Doped Gold Catalysts, a DFT Study. Nanomaterials, 2022, 12, 394.	1.9	0
329	Enhanced activity and sulfur resistance of Cu- and Fe-modified activated carbon for the reduction of NO by CO from regeneration gas. Catalysis Science and Technology, 2022, 12, 737-749.	2.1	5
330	Understanding the role of redox properties and NO adsorption over MnFeO _{<i>x</i>} for NH ₃ -SCR. Catalysis Science and Technology, 2022, 12, 2030-2041.	2.1	16
331	Structure–activity relationship and the inhibitory effect of sulfur dioxide and water on nitrous oxide formation in selective catalytic reduction of nitrogen oxides by ammonia over hollow Co3O4@CoMn2O4 catalyst. Journal of Colloid and Interface Science, 2022, 616, 55-66.	5.0	8
332	Effects of MoO on dispersion of vanadia and low-temperature NH3-SCR activity of titania supported catalysts: Liquid acidity and steric hindrance. Applied Surface Science, 2022, 585, 152710.	3.1	7
333	Understanding the dual-acting of iron and sulfur dioxide over Mn-Fe/AC catalysts for low-temperature SCR of NO. Molecular Catalysis, 2022, 519, 112150.	1.0	14
334	Selective Catalytic Reduction of NO <i>_x</i> by Methanol on Metal-Free Zeolite with BrÃ,nsted and Lewis Acid Pair. ACS Catalysis, 2022, 12, 2403-2414.	5.5	10
335	One-pot synthesis, characterization and ammonia-selective catalytic reduction performance of MnSAPO-18 molecular sieves. Journal of Cleaner Production, 2022, 336, 130163.	4.6	9
336	Efficient NO _{<i>x</i>} Abatement over Alkali-Resistant Catalysts via Constructing Durable Dimeric VO _{<i>x</i>} Species. Environmental Science & Technology, 2022, 56, 2647-2655.	4.6	35
337	Promotional effect of phosphorus addition on improving the SO2 resistance of V2O5-MoO3/TiO2 catalyst for NH3-SCR of NO. Journal of Physics and Chemistry of Solids, 2022, 163, 110566.	1.9	19
338	Superior catalytic performance within H2O-vapor of W-modified CoMn2O4/TiO2 catalyst for selective catalytic reduction of NOx with NH3. Chemical Engineering Journal, 2022, 434, 134770.	6.6	25
339	Structural control for inhibiting SO2 adsorption in porous MnCe nanowire aerogel catalysts for low-temperature NH3-SCR. Chemical Engineering Journal, 2022, 434, 134729.	6.6	33
340	Promoting effect of Co-doped CeO2 nanorods activity and SO2 resistance for Hg0 removal. Fuel, 2022, 317, 123320.	3.4	26
341	The effect of non-redox promoters (AlOx, POx, SiOx and ZrOx) and surface sulfates on supported V2O5-WO3/TiO2 catalysts in selective catalytic reduction of NO with NH3. Applied Catalysis B: Environmental, 2022, 306, 121128.	10.8	3
342	Sulfur-resistance iron catalyst in sulfur-containing VOCs abatement modulated through H2 reduction. Applied Surface Science, 2022, 584, 152631.	3.1	5
343	低æ,©NH3-SCR脱ç¡å,¬åŒ–å‰,抖SO2䏿⁻'性能ç"ç©¶èį›å±•. Scientia Sinica Chimica, 2022, , .	0.2	Ο

#	Article	IF	CITATIONS
344	Efficient nitric oxide electroreduction toward ambient ammonia synthesis catalyzed by a CoP nanoarray. Inorganic Chemistry Frontiers, 2022, 9, 1366-1372.	3.0	58
345	Redistributing Cu species in Cu-SSZ-13 zeolite as NH3-SCR catalyst via a simple ion-exchange. Chinese Journal of Chemical Engineering, 2022, 41, 329-341.	1.7	15
346	Fabrication of carbon doped Cu-based oxides as superior NH3-SCR catalysts via employing sodium dodecyl sulfonate intercalating CuMgAl-LDH. Journal of Catalysis, 2022, 407, 265-280.	3.1	30
347	Insight into the remarkable enhancement of NH3-SCR performance of Ce-Sn oxide catalyst by tungsten modification. Catalysis Today, 2023, 410, 36-44.	2.2	10
348	Recent progress of low-temperature selective catalytic reduction of NO _x with NH ₃ over manganese oxide-based catalysts. Physical Chemistry Chemical Physics, 2022, 24, 6363-6382.	1.3	19
349	Revealing TheÂPromotional Effect of CE Doping on the Low-Temperature Activity AndÂSo2ÂToleranceÂOf Ce/Fevo4ÂCatalysts in Nh3-Scr. SSRN Electronic Journal, 0, , .	0.4	0
350	Ceria–tungsten–tin oxide catalysts with superior regeneration capacity after sulfur poisoning for NH ₃ -SCR process. Catalysis Science and Technology, 2022, 12, 2471-2481.	2.1	10
351	Mechanistic insights into the photocatalytic reduction of nitric oxide to nitrogen on oxygen-deficient quasi-two-dimensional bismuth-based perovskites. Environmental Science: Nano, 2022, 9, 1453-1465.	2.2	11
352	Insights into Samarium Doping Effects on Catalytic Activity and So2 Tolerance of Mnfeox Catalyst for Low-Temperature Nh3-Scr Reaction. SSRN Electronic Journal, 0, , .	0.4	0
353	Amorphous Feox–Mn0.1oy Catalyst with Rich Oxygen Vacancies for Ammonia Selective Catalytic Reduction of Nitrogen Oxide at Low Temperatures. SSRN Electronic Journal, 0, , .	0.4	0
354	Coupling denitrification and ammonia synthesis <i>via</i> selective electrochemical reduction of nitric oxide over Fe ₂ O ₃ nanorods. Journal of Materials Chemistry A, 2022, 10, 6454-6462.	5.2	52
355	Like Cures like: Detoxification Effect between Alkali Metals and Sulfur over the V ₂ O ₅ /TiO ₂ deNO _{<i>x</i>} Catalyst. Environmental Science & Technology, 2022, 56, 3739-3747.	4.6	38
356	Selective catalytic reduction of NO by NH3 over V2O5-WO3 supported by titanium isopropoxide (TTIP)-treated TiO2. Journal of Industrial and Engineering Chemistry, 2022, 109, 422-430.	2.9	6
357	Key Properties and Parameters of Pd/CeO ₂ Passive NO <i>_x</i> Adsorbers. Industrial & Engineering Chemistry Research, 2022, 61, 3329-3341.	1.8	3
358	Synergistic Catalytic Elimination of NO <i>_x</i> and Chlorinated Organics: Cooperation of Acid Sites. Environmental Science & Technology, 2022, 56, 3719-3728.	4.6	41
359	Enhancing the Selective Catalytic Reduction of NO _{<i>x</i>} at Low Temperature by Pretreatment of Hydrocarbons in a Gliding Arc Plasma. Industrial & Engineering Chemistry Research, 2022, 61, 3365-3373.	1.8	7
360	Dynamic Change of Active Sites of Supported Vanadia Catalysts for Selective Catalytic Reduction of Nitrogen Oxides. Environmental Science & Technology, 2022, 56, 3710-3718.	4.6	21
361	Impact of Biodiesel-Based Phosphorus and Sulfur on Copper Speciation of Cu-SSZ-13 Catalysts: XAFS Scanning during H ₂ -TPR. Journal of Physical Chemistry C, 2022, 126, 3385-3396.	1.5	7

#	Article	IF	CITATIONS
362	FeP nanorod array: A high-efficiency catalyst for electroreduction of NO to NH3 under ambient conditions. Nano Research, 2022, 15, 4008-4013.	5.8	61
363	Unraveling the Promotion Effects of Dynamically Constructed CuO _{<i>x</i>} -OH Interfacial Sites in the Selective Catalytic Oxidation of Ammonia. ACS Catalysis, 2022, 12, 3955-3964.	5.5	28
364	Bi nanoparticles/carbon nanosheet composite: A high-efficiency electrocatalyst for NO reduction to NH3. Nano Research, 2022, 15, 5032-5037.	5.8	32
365	Pollution to solution: A universal electrocatalyst for reduction of all NOx-based species to NH3. Chem Catalysis, 2022, 2, 622-638.	2.9	27
366	Determining hydrothermal deactivation mechanisms on Cu/SAPO-34 NH3-SCR catalysts at low- and high-reaction regions: establishing roles of different reaction sites. Rare Metals, 2022, 41, 1899-1910.	3.6	18
367	Breaking the Activity–Selectivity Trade-Off for Simultaneous Catalytic Elimination of Nitric Oxide and Chlorobenzene via FeVO ₄ –Fe ₂ O ₃ Interfacial Charge Transfer. ACS Catalysis, 2022, 12, 3797-3806.	5.5	43
368	Fabrication of wide temperature FexCe1-xVO4 modified TiO2-graphene catalyst with excellent NH3-SCR performance and strong SO2/H2O tolerance. Environmental Science and Pollution Research, 2022, 29, 53259-53268.	2.7	4
369	Designing Sites in Heterogeneous Catalysis: Are We Reaching Selectivities Competitive With Those of Homogeneous Catalysts?. Chemical Reviews, 2022, 122, 8594-8757.	23.0	118
370	Amorphous Boron Carbide on Titanium Dioxide Nanobelt Arrays for Highâ€Efficiency Electrocatalytic NO Reduction to NH ₃ . Angewandte Chemie, 0, , .	1.6	6
371	Investigation of RuOx doping stimulated the high catalytic activity of CeOx-MnOx/TiO2 catalysts in the NH3-SCR reaction: Structure-activity relationship and reaction mechanism. Journal of Alloys and Compounds, 2022, 910, 164814.	2.8	9
372	Interaction Mechanism for Simultaneous Elimination of Nitrogen Oxides and Toluene over the Bifunctional CeO ₂ –TiO ₂ Mixed Oxide Catalyst. Environmental Science & Technology, 2022, 56, 4467-4476.	4.6	47
373	Efficient Electron Transfer by Plasmonic Silver in SrTiO ₃ for Low-Concentration Photocatalytic NO Oxidation. Environmental Science & Technology, 2022, 56, 3604-3612.	4.6	29
374	Self-Defense Effects of Ti-Modified Attapulgite for Alkali-Resistant NO _{<i>x</i>} Catalytic Reduction. Environmental Science & amp; Technology, 2022, 56, 4386-4395.	4.6	35
375	Perspectives in Adsorptive and Catalytic Mitigations of NO _{<i>x</i>} Using Metal–Organic Frameworks. Energy & Fuels, 2022, 36, 3347-3371.	2.5	13
376	Amorphous Boron Carbide on Titanium Dioxide Nanobelt Arrays for Highâ€Efficiency Electrocatalytic NO Reduction to NH ₃ . Angewandte Chemie - International Edition, 2022, 61, .	7.2	121
377	Unravelling the functional complexity of oxygen-containing groups on carbon for the reduction of NO with NH3. Journal of the Taiwan Institute of Chemical Engineers, 2022, 133, 104261.	2.7	4
378	Co-doped MnCeOx/ZrO2 catalysts for low temperature selective catalytic reduction of NO. Research on Chemical Intermediates, 2022, 48, 2627-2640.	1.3	2
379	Alkali and Heavy Metal Copoisoning Resistant Catalytic Reduction of NO _{<i>x</i>} via Liberating Lewis Acid Sites. Environmental Science & Technology, 2022, 56, 5141-5149.	4.6	31

#	Article	IF	CITATIONS
380	SO ₂ - and H ₂ O-Tolerant Catalytic Reduction of NO _{<i>x</i>} at a Low Temperature via Engineering Polymeric VO _{<i>x</i>} Species by CeO ₂ . Environmental Science & Technology, 2022, 56, 5170-5178.	4.6	45
381	The influencing mechanism of NH3 and NOx addition on the catalytic oxidation of toluene over Mn2Cu1Al1Ox catalyst. Journal of Cleaner Production, 2022, 348, 131152.	4.6	16
382	Single–atom Ir1 supported on rutile TiO2 for excellent selective catalytic oxidation of ammonia. Journal of Hazardous Materials, 2022, 432, 128670.	6.5	19
383	Unveiling the role of high-valent copper cations in the selective catalytic reduction of NOx with NH3 at low temperature. Fuel, 2022, 318, 123607.	3.4	6
384	Revealing the promotional effect of Ce doping on the low-temperature activity and SO2 tolerance of Ce/FeVO4 catalysts in NH3-SCR. Journal of Environmental Chemical Engineering, 2022, 10, 107588.	3.3	8
385	Cu- and Ce-promoted nano-heterostructures on vanadate catalysts for low-temperature NH3–SCR activity with improved SO2 and water resistance. Chemical Engineering Journal, 2022, 437, 135427.	6.6	35
386	The effects of Mn-based catalysts on the selective catalytic reduction of NOx with NH3 at low temperature: A review. Fuel Processing Technology, 2022, 230, 107213.	3.7	85
387	High-efficiency NO electroreduction to NH3 over honeycomb carbon nanofiber at ambient conditions. Journal of Colloid and Interface Science, 2022, 616, 261-267.	5.0	26
388	Effects of IrO2 nanoparticle sizes on Ir/Al2O3 catalysts for the selective catalytic oxidation of ammonia. Chemical Engineering Journal, 2022, 437, 135398.	6.6	14
389	Na co-cations promoted stability and activity of Pd/SSZ-13 for low-temperature NO adsorption. Applied Catalysis B: Environmental, 2022, 309, 121266.	10.8	13
390	Insights into co-doping effect of Sm and Fe on anti-Pb poisoning of Mn-Ce/AC catalyst for low-temperature SCR of NO with NH3. Fuel, 2022, 319, 123763.	3.4	70
391	Insights into samarium doping effects on catalytic activity and SO2 tolerance of MnFeO catalyst for low-temperature NH3-SCR reaction. Fuel, 2022, 321, 124113.	3.4	85
392	Low-temperature NOx reduction over hydrothermally stable SCR catalysts by engineering low-coordinated Mn active sites. Chemical Engineering Journal, 2022, 442, 136182.	6.6	27
393	Modulation of photocatalytic activity of SrBi2Ta2O9 nanosheets in NO removal by tuning facets exposure. Journal of Materials Science and Technology, 2022, 122, 91-100.	5.6	12
394	Converting Poisonous Sulfate Species to an Active Promoter on TiO ₂ Predecorated MnO _{<i>x</i>} Catalysts for the NH ₃ -SCR Reaction. ACS Applied Materials & Interfaces, 2021, 13, 61237-61247.	4.0	16
395	Advances in emission control of diesel vehicles in China. Journal of Environmental Sciences, 2023, 123, 15-29.	3.2	30
396	SO ₂ -Induced Alkali Resistance of FeVO ₄ /TiO ₂ Catalysts for NO <i>_x</i> Reduction. Environmental Science & Technology, 2022, 56, 605-613.	4.6	47
397	Recent Breakthroughs and Advancements in NOx and SOx Reduction Using Nanomaterials-Based Technologies: A State-of-the-Art Review. Nanomaterials, 2021, 11, 3301.	1.9	6

#	Article	IF	CITATIONS
398	SO ₂ -Tolerant catalytic reduction of NO _{<i>x</i>} by confining active species in TiO ₂ nanotubes. Environmental Science: Nano, 2022, 9, 2121-2133.	2.2	8
399	A Bifunctional Multishell Catalyst with a Wide Operating Temperature Window for NO _{<i>x</i>} Abatement by Ammonia-Selective Catalytic Reduction. Industrial & Engineering Chemistry Research, 2022, 61, 5410-5418.	1.8	3
400	Effect of acidic components (SO42- and WO3) on the surface acidity, redox ability and NH3-SCR activity of new CeO2-TiO2 nanoporous aerogel catalysts: A comparative study. Inorganic Chemistry Communication, 2022, 140, 109494.	1.8	12
401	Rationally engineered ReO -CuSO4/TiO2 catalyst with superior NH3-SCO efficiency and remarkably boosted SO2 tolerance: Synergy of acid sites and surface adsorbed oxygen. Chemical Engineering Journal, 2022, 442, 136356.	6.6	26
402	SO ₂ -Tolerant Catalytic Reduction of NO _{<i>x</i>} via Tailoring Electron Transfer between Surface Iron Sulfate and Subsurface Ceria. Environmental Science & Technology, 2022, 56, 5840-5848.	4.6	48
403	Rational design of porous Ce _{<i>x</i>} Nb _{1â^³<i>x</i>} oxide hollow nanospheres as a novel NH ₃ -SCR catalyst. Journal of Materials Chemistry A, 2022, 10, 12269-12277.	5.2	10
404	Enhanced hydrothermal stability and SO ₂ -tolerance of Cu–Fe modified AEI zeolite catalysts in NH ₃ -SCR of NO _{<i>x</i>} . Catalysis Science and Technology, 2022, 12, 3898-3911.	2.1	14
405	The Promoting Mechanism of CE on the Hydrothermal Stability of Fe-Beta Catalyst for Nh3-Scr Reaction. SSRN Electronic Journal, 0, , .	0.4	Ο
406	Insight on the anti-poisoning mechanism of <i>in situ</i> coupled sulfate over iron oxide catalysts in NO _{<i>x</i>} reduction. Catalysis Science and Technology, 2022, 12, 4020-4031.	2.1	6
407	Improvement of So2 Resistance of Cu-Ssz-13 with Heteropoly Compounds in Selective Catalytic Reduction of No. SSRN Electronic Journal, 0, , .	0.4	Ο
408	Low-Temperature NH3-SCR on Cex-Mn-Tiy Mixed Oxide Catalysts: Improved Performance by the Mutual Effect between Ce and Ti. Catalysts, 2022, 12, 471.	1.6	4
409	NO <i>_x</i> Reduction over Smart Catalysts with Self-Created Targeted Antipoisoning Sites. Environmental Science & Technology, 2022, 56, 6668-6677.	4.6	31
410	A theoretical descriptor for screening efficient NO reduction electrocatalysts from transition-metal atoms on N-doped BP monolayer. Journal of Colloid and Interface Science, 2022, 623, 432-444.	5.0	36
411	Structure-resolved CFD simulations to guide catalyst packing of selective NO reduction. Chemical Engineering Journal, 2022, 446, 136888.	6.6	7
412	Role of V and W Sites in V2O5â€WO3/TiO2 Catalysts and Effect of Formaldehyde during NH3 CR of NOx. ChemCatChem, 0, , .	1.8	1
413	Application and Development of Selective Catalytic Reduction Technology for Marine Low-Speed Diesel Engine: Trade-Off among High Sulfur Fuel, High Thermal Efficiency, and Low Pollution Emission. Atmosphere, 2022, 13, 731.	1.0	39
414	Abatement of Nitrogen Oxides via Selective Catalytic Reduction over Ce ₁ –W ₁ Atom-Pair Sites. Environmental Science & Technology, 2022, 56, 6631-6638.	4.6	17
415	Poisoning of Mn-Ce/AC catalysts for low-temperature NH3-SCR of NO by K+ and its counter-ions (Clâ^'/NO3â^'/SO42â^'). Applied Catalysis A: General, 2022, 638, 118636.	2.2	11

#	Article	IF	CITATIONS
416	Enhancing Electrocatalytic NO Reduction to NH ₃ by the CoS Nanosheet with Sulfur Vacancies. Inorganic Chemistry, 2022, 61, 8096-8102.	1.9	26
417	New insight on N2O formation over MnOx/TiO2 catalysts for selective catalytic reduction of NOx with NH3. Molecular Catalysis, 2022, 525, 112356.	1.0	3
418	The promoting mechanism of Ce on the hydrothermal stability of Fe-Beta catalyst for NH3-SCR reaction. Microporous and Mesoporous Materials, 2022, 338, 111937.	2.2	8
419	Cerium manganese oxides coupled with ZSM-5: A novel SCR catalyst with superior K resistance. Chemical Engineering Journal, 2022, 445, 136530.	6.6	20
420	Promoting NH3-SCR denitration via CO oxidation over CuO promoted V2O5-WO3/TiO2 catalysts under oxygen-rich conditions. Fuel, 2022, 323, 124357.	3.4	18
421	High N2 selectivity of Pt-V-W/TiO2 oxidation catalyst for simultaneous control of NH3 and CO emissions. Chemical Engineering Journal, 2022, 444, 136517.	6.6	16
422	Deactivation of Pd/SSZ-13 passive NOx adsorber from the perspectives of phosphorus poisoning and hydrothermal aging. Chemical Engineering Journal, 2022, 446, 136779.	6.6	6
423	Insights to sulfur-resistant mechanisms of reduced graphene oxide supported MnOx-CeOy catalysts for low-temperature NH3-SCR. Journal of Physics and Chemistry of Solids, 2022, 167, 110782.	1.9	12
424	<i>In situ</i> reconstruction enhanced dual-site catalysis towards nitrate electroreduction to ammonia. Journal of Materials Chemistry A, 2022, 10, 12669-12678.	5.2	20
425	Promotional effect of Fe and Ce co-doping on a V ₂ O ₅ –WO ₃ /TiO ₂ catalyst for SCR of NO _{<i>x</i>} with high K and Pb resistance. Catalysis Science and Technology, 2022, 12, 4169-4180.	2.1	17
426	Design of nitrogen oxide detection system based on non-dispersive infrared technology. Optik, 2022, 262, 169351.	1.4	3
427	Effect of H2SO4 pretreatment on alkali-resistance performance of FeZrCeTiO /TNT catalyst for NH3-SCR reaction. Applied Surface Science, 2022, 598, 153774.	3.1	6
428	Alkali Metal Poisoning and Regeneration of Selective Catalytic Reduction Denitration Catalysts: Recent Advances and Future Perspectives. Energy & Fuels, 2022, 36, 5622-5646.	2.5	33
429	Unveiling remarkable resistance to Pb poisoning over an Fe–Mo catalyst for low-temperature NH ₃ -SCR: poison transforms into a promoter. Catalysis Science and Technology, 2022, 12, 4388-4400.	2.1	11
430	Low-Temperature Nh3-Scr of No Over Robust Runi/Al-Sba-15 Catalysts: Effect of Ru Loading. SSRN Electronic Journal, 0, , .	0.4	0
431	Electroreduction NO to NH3 over single metal atom anchored on pyrrole type defective graphene: A DFT study. Chinese Chemical Letters, 2023, 34, 107567.	4.8	6
432	Cytotoxicity, redox and immune status in African catfish, Clarias gariepinus (Burchell, 1822) exposed to bisphenol A (BPA) and its analogues. Environmental Science and Pollution Research, 2022, 29, 74185-74196.	2.7	7
433	Unraveling the structure and role of Mn and Ce for NOx reduction in application-relevant catalysts. Nature Communications, 2022, 13, .	5.8	39

#	Article	IF	CITATIONS
434	Effect of La/Ce modification over Cu based Y zeolite catalysts on high temperature selectivity for selective catalytic reduction with ammonia. Journal of Cleaner Production, 2022, 362, 132255.	4.6	7
435	Effect of MnOx∫α-Fe2O3 Prepared from Goethite on Selective Catalytic Reduction of NO with NH3. Journal of Chemistry, 2022, 2022, 1-13.	0.9	4
436	Fabrication of wide temperature lanthanum and cerium doped Cu/TNU-9 catalyst with excellent NH3-SCR performance and outstanding SO2+H2O tolerance. Journal of Rare Earths, 2023, 41, 1195-1202.	2.5	6
437	Elucidation of the reaction mechanism of indirect oxidative carbonylation of methanol to dimethyl carbonate on Pd/NaY catalyst: Direct identification of reaction intermediates. Journal of Catalysis, 2022, 412, 30-41.	3.1	16
438	Recent advances in NO reduction with CO over copper-based catalysts: reaction mechanisms, optimization strategies, and anti-inactivation measures. Chemical Engineering Journal, 2022, 450, 137374.	6.6	11
439	Influence of Urea Uneven Injection on the Performances of a Diesel Engine. Fluid Dynamics and Materials Processing, 2022, .	0.5	Ο
440	Promotion Effect of Fe Species on SO ₂ Resistance of Cu-SSZ-13 Catalysts for NO <i>_x</i> Reduction by NH ₃ . Industrial & Engineering Chemistry Research, 2022, 61, 8698-8707.	1.8	8
441	Single-Atom Ce-Modified α-Fe ₂ 0 ₃ for Selective Catalytic Reduction of NO with NH ₃ . Environmental Science & Technology, 2022, 56, 10442-10453.	4.6	52
442	Ultralow-Temperature NO <i>_x</i> Reduction over SmMn ₂ O ₅ Mullite Catalysts Via Modulating the Superficial Dual-Functional Active Sites. ACS Catalysis, 2022, 12, 7622-7632.	5.5	39
443	Structure-Directing Role of Support on Hg ^O Oxidation over V ₂ O ₅ /TiO ₂ Catalyst Revealed for NO <i>_x</i> and Hg ^O Simultaneous Control in an SCR Reactor. Environmental Science & amp; Technology, 2022, 56, 9702-9711.	4.6	20
444	Hydrothermal Aging Treatment Activates V ₂ O ₅ /TiO ₂ Catalysts for NO _{<i>x</i>} Abatement. Environmental Science & Technology, 2022, 56, 9744-9750.	4.6	23
445	Revealing the Promotion Effects of Nb on Alkali Resistance of FeVO ₄ /TiO ₂ Catalysts for NO _x Reduction. ChemCatChem, 2022, 14, .	1.8	2
446	Revealing M (M = Cu, Co and Zr) oxides doping effects on anti-PbCl2 poisoning over Mn-Ce/AC catalysts in low-temperature NH3-SCR reaction. Applied Catalysis A: General, 2022, 643, 118749.	2.2	18
447	Ordered Mesoporous MnAlOx Oxides Dominated by Calcination Temperature for the Selective Catalytic Reduction of NOx with NH3 at Low Temperature. Catalysts, 2022, 12, 637.	1.6	2
448	Recent advances for Zn-gas batteries beyond Zn-air/oxygen battery. Chinese Chemical Letters, 2023, 34, 107600.	4.8	8
449	Recent advances in catalytic filters for integrated removal of dust and NO from flue gas: fundamentals and applications. , 2022, , .		0
450	Low-Temperature Combustion of Toluene over Cu-Doped SmMn ₂ O ₅ Mullite Catalysts via Creating Highly Active Cu ²⁺ –O–Mn ⁴⁺ Sites. Environmental Science & Technology, 2022, 56, 10433-10441.	4.6	40
451	Improving NH3-SCR denitrification performance over WaCo0.4TiOx catalysts: Effect of surface acidity due to W addition on low-temperature and high-temperature activity. Applied Catalysis A: General, 2022, 643, 118705.	2.2	6

#	ARTICLE	IF	CITATIONS
452	Zero-waste strategy by means of valorization of bread waste. Journal of Cleaner Production, 2022, 365, 132795.	4.6	16
453	H3pw12o40-Modified Mnox: Efficient Catalyst for Nh3-Scr of Nox. SSRN Electronic Journal, 0, , .	0.4	0
454	Functionalized membranes for multipollutants bearing air treatment. , 2022, , 167-200.		0
455	Engineering yolk–shell MnFe@CeO _{<i>x</i>} @TiO _{<i>x</i>} nanocages as a highly efficient catalyst for selective catalytic reduction of NO with NH ₃ at low temperatures. Nanoscale, 2022, 14, 12281-12296.	2.8	13
456	Cu-VWT Catalysts for Synergistic Elimination of NO _{<i>x</i>} and Volatile Organic Compounds from Coal-Fired Flue Gas. Environmental Science & Technology, 2022, 56, 10095-10104.	4.6	15
457	Inspecting Promotive Functions of Antimony Oxides for NH3-Assisted Selective Catalytic NOX Reduction. Ceramist, 2022, 25, 159-171.	0.0	Ο
458	Lotus leavesâ€derived <scp>MnO_{<i>x</i>}</scp> /biochar as an efficient catalyst for lowâ€ŧemperature <scp>NH₃ CR</scp> removal of <scp>NO_{<i>x</i>}</scp> : effects of modification methods of biochar. Journal of Chemical Technology and Biotechnology, 2022, 97, 3100-3110.	1.6	10
459	In situ deposition of 0D CeO2 quantum dots on Fe2O3-containing solid waste NH3-SCR catalyst: Enhancing redox and NH3 adsorption ability. Waste Management, 2022, 149, 323-332.	3.7	17
460	Ce(SO4)2/α-Fe2O3 selective catalytic reduction of NOx with NH3: preparation, characterization, and performance. Environmental Science and Pollution Research, 2022, 29, 84421-84433.	2.7	7
461	Fe-promoted V/W/TiO2 catalysts for enhanced low-temperature denitrification efficiency. Applied Surface Science, 2022, 601, 154290.	3.1	7
462	Physicochemical Features and NH3-SCR Catalytic Performance of Natural Zeolite Modified with Iron—The Effect of Fe Loading. Catalysts, 2022, 12, 731.	1.6	5
463	Calcium poisoning mechanism on the selective catalytic reduction of NOx by ammonia over the γ-Fe2O3 (001) surface. Environmental Science and Pollution Research, 2022, 29, 88256-88268.	2.7	4
464	Tungsten Oxide Modified V2O5-Sb2O3/TiO2 Monolithic Catalyst: NH3-SCR Activity and Sulfur Resistance. Processes, 2022, 10, 1333.	1.3	0
465	The effect of CNTs on V-Ce/TiO2 for low-temperature selective catalytic reduction of NO. Korean Journal of Chemical Engineering, 2022, 39, 2334-2344.	1.2	6
466	Unveiling Secondary-Ion-Promoted Catalytic Properties of Cu-SSZ-13 Zeolites for Selective Catalytic Reduction of NO <i>_x</i> . Journal of the American Chemical Society, 2022, 144, 12816-12824.	6.6	51
467	Porous washcoat structure in CeO ₂ modified Cuâ€SSZâ€13 monolith catalyst for NH ₃ â€SCR with improved catalytic performance. AICHE Journal, 2022, 68, .	1.8	7
468	Low-temperature NH3-SCR of NO over robust RuNi/Al-SBA-15 catalysts: Effect of Ru loading. Journal of Environmental Chemical Engineering, 2022, 10, 108288.	3.3	15
469	Computational Screening and Synthesis of M (M = Mo and Cu)-Doped CeO ₂ /silicalite-1 for Medium-/Low-Temperature NH ₃ –SCR. Industrial & Engineering Chemistry Research, 2022, 61, 10091-10105.	1.8	8

#	Article	IF	CITATIONS
470	Selective catalytic reduction of NOx with NH3 over a novel MOF- derived MnOx catalyst. Applied Catalysis A: General, 2022, 643, 118754.	2.2	18
471	Surface insights into MnOx-based catalysts containing metal oxides for the selective catalytic reduction of NOX with NH3. Applied Catalysis A: General, 2022, 643, 118770.	2.2	10
472	Promoting H2O/SO2 resistance of Ce-Mn/TiO2 nanostructures by Sb5+/Sb3+ addition for Selective catalytic reduction of NO with NH3. Applied Surface Science, 2022, 600, 154146.	3.1	14
473	Dramatically promoted toluene destruction over Mn@Na-Al2O3@Al monolithic catalysts by Ce incorporation: Oxygen vacancy construction and reaction mechanism. Fuel, 2022, 326, 125051.	3.4	47
474	Superior indicative and regulative function of Fe doping amount for MnO2 catalyst with an oxygen vacancy in NH3-SCR reaction: A DFTÂ+ÂU study. Applied Surface Science, 2022, 601, 154162.	3.1	7
475	Red mud-based catalysts for the catalytic removal of typical air pollutants: A review. Journal of Environmental Sciences, 2023, 127, 628-640.	3.2	30
476	Ternary MnCoVO catalysts with remarkable deNO performance: Dual acid-redox sites control strategy. Applied Catalysis B: Environmental, 2022, 318, 121779.	10.8	20
477	Design of robust Co-doped Mn3O4 spinel catalysts for selective catalytic reduction of NO with NH3 at low temperatures. Applied Surface Science, 2022, 602, 154384.	3.1	6
478	Comparative study on potassium poisoning of Cu-CHA catalysts for NH3-SCR: Stability and transformation of Cu2+ ions. Journal of Environmental Chemical Engineering, 2022, 10, 108305.	3.3	3
479	The promoting/inhibiting effect of water vapor on the selective catalytic reduction of NOx. Journal of Hazardous Materials, 2022, 439, 129665.	6.5	23
480	Poly(heptazine imide) with Enlarged Interlayers Spacing for Efficient Photocatalytic NO Decomposition. Applied Catalysis B: Environmental, 2022, 317, 121719.	10.8	13
481	CeO2 Nanoparticle-Loaded MnO2 Nanoflowers for Selective Catalytic Reduction of NOx with NH3 at Low Temperatures. Molecules, 2022, 27, 4863.	1.7	5
482	Boosting SO ₂ -Resistant NO _{<i>x</i>} Reduction by Modulating Electronic Interaction of Short-Range Fe–O Coordination over Fe ₂ O ₃ /TiO ₂ Catalysts. Environmental Science & Technology, 2022, 56, 11646-11656.	4.6	25
483	Electrochemical Reduction of Nitric Oxide with 1.7% Solarâ€toâ€Ammonia Efficiency Over Nanostructured Coreâ€Shell Catalyst at Low Overpotentials. Advanced Science, 2022, 9, .	5.6	16
484	Bimetallic Ag-based catalysts for low-temperature SCR: Quo vadis?. Applied Catalysis A: General, 2022, 644, 118815.	2.2	3
485	Doping effect of rare earth metal ions Sm3+, Nd3+ and Ce4+ on denitration performance of MnO catalyst in low temperature NH3-SCR reaction. Journal of Rare Earths, 2023, 41, 1323-1335.	2.5	9
486	Strikingly distinctive NH3-SCR behavior over Cu-SSZ-13 in the presence of NO2. Nature Communications, 2022, 13, .	5.8	34
487	Investigation on the redox/acidic features of bimetallic MOF-derived CeMOx catalysts for low-temperature NH3-SCR of NOx. Applied Catalysis A: General, 2022, 643, 118796.	2.2	15

#	Article	IF	CITATIONS
488	Promotion effect of bulk sulfates over CeO2 for selective catalytic reduction of NO by NH3 at high temperatures. Chinese Chemical Letters, 2023, 34, 107769.	4.8	5
489	High-performance Fe-Cu composite oxide for selective catalytic reduction of NO with NH3: Driving of Cu on α-Fe2O3. Journal of Environmental Chemical Engineering, 2022, 10, 108481.	3.3	4
490	Dual single-atom Ce-Ti/MnO2 catalyst enhances low-temperature NH3-SCR performance with high H2O and SO2 resistance. Nano Research, 2023, 16, 299-308.	5.8	13
491	Formic Acid-Mediated Regeneration Strategy for As-Poisoned V ₂ O ₅ -WO ₃ /TiO ₂ Catalysts with Lossless Catalytic Activity and Simultaneous As Recycling. Environmental Science & Technology, 2022, 56, 12625-12634.	4.6	6
492	ZnO with Controllable Oxygen Vacancies for Photocatalytic Nitrogen Oxide Removal. ACS Catalysis, 2022, 12, 10004-10017.	5.5	45
493	Unique Compensation Effects of Heavy Metals and Phosphorus Copoisoning over NO _{<i>x</i>} Reduction Catalysts. Environmental Science & Technology, 2022, 56, 12553-12562.	4.6	17
494	Constructing n-type doped perovskite from Ti-bearing solid waste to boost the NO-to-NO2 oxidation. Journal of Cleaner Production, 2022, 372, 133553.	4.6	3
495	Large eddy simulation of hydrodynamics and deNOx process in a coal-fired power plant SCR system. Journal of Environmental Management, 2022, 320, 115800.	3.8	5
496	A review of the advances in catalyst modification using nonthermal plasma: Process, Mechanism and Applications. Advances in Colloid and Interface Science, 2022, 308, 102755.	7.0	23
497	Single-atom site catalysts for environmental remediation: Recent advances. Journal of Hazardous Materials, 2022, 440, 129772.	6.5	30
498	Implication of operation time on low-temperature catalytic oxidation of chloroaromatic organics over VOx/TiO2 catalysts: Deactivation mechanism analysis. Journal of Cleaner Production, 2022, 372, 133477.	4.6	3
499	Iron removal and titanium dioxide support recovery from spent V2O5-WO3/TiO2 catalyst. Separation and Purification Technology, 2022, 301, 121934.	3.9	13
500	Improved alkali-tolerance of FeOx-WO3 catalyst for NO removal via in situ reserving FeOx active species. Separation and Purification Technology, 2022, 300, 121824.	3.9	14
501	Tailoring the crystal structure of CaTiO3 by multielement doping for photo-assisted activation of NO. Chemical Engineering Journal, 2022, 450, 138255.	6.6	5
502	Interface Engineering of a Bifunctional Cu-SSZ-13@CZO Core–Shell Catalyst for Boosting Potassium Ion and SO ₂ Tolerance. ACS Catalysis, 2022, 12, 11281-11293.	5.5	49
503	Influence of CeO2 and WO3 Addition to Impregnated V2O5/TiO2 Catalysts on the Selective Catalytic Reduction of NOx with NH3. Catalysis Letters, 2023, 153, 2176-2195.	1.4	2
504	Structure-activity strategy comparison of (NH4)2CO3 and NH4OH precipitants on MnO catalyst for low-temperature NO abatement. Molecular Catalysis, 2022, 531, 112693.	1.0	2
505	Insight into the dynamic behaviors of reactants with temperature over a TiO -based catalyst for NO removal via NH3-SCR. Applied Surface Science, 2022, 605, 154689.	3.1	7

#	Article	IF	CITATIONS
506	Recent progress in NOx photocatalytic removal: Surface/interface engineering and mechanistic understanding. Journal of Environmental Chemical Engineering, 2022, 10, 108566.	3.3	15
507	Comparison of Mn doped CeO2 with different exposed facets for NH3-SCR at low temperature. Journal of the Energy Institute, 2022, 105, 114-120.	2.7	14
508	Bimetallic modification of MnFeO nanobelts with Nb and Nd for enhanced low-temperature de-NO performance and SO2 tolerance. Fuel, 2023, 331, 125861.	3.4	23
509	Balancing acid and redox sites of phosphorylated CeO2 catalysts for NOx reduction: The promoting and inhibiting mechanism of phosphorus. Journal of Hazardous Materials, 2023, 441, 129867.	6.5	17
510	Effects of Nb-modified CeVO4 to form surface Ce-O-Nb bonds on improving low-temperature NH3-SCR deNO activity and resistance to SO2 & H2O. Fuel, 2023, 331, 125799.	3.4	22
511	Mechanism, performance and modification methods for NH3-SCR catalysts: A review. Fuel, 2023, 331, 125885.	3.4	84
512	Spontaneous intra-electron transfer within rGO@Fe2O3-MnO catalyst promotes long-term NOx reduction at ambient conditions. Journal of Hazardous Materials, 2023, 441, 129951.	6.5	11
513	Extraordinary deactivation offset effect of zinc and arsenic on V2O5 â^WO3/TiO2 catalysts: Like cures like. Journal of Hazardous Materials, 2023, 441, 129894.	6.5	7
514	Mechanistic investigation of the enhanced SO2 resistance of Co-modified MnOx catalyst for the selective catalytic reduction of NOx by NH3. Chemical Engineering Journal, 2023, 452, 139207.	6.6	23
515	Efficient adsorption removal of NO2 by covalent triazine frameworks with fine-tuned binding sites. Journal of Hazardous Materials, 2023, 441, 129962.	6.5	9
516	Novel manganese-based assembled nanocatalyst with "nitrous oxide filter―for efficient NH3-SCR in wide low-temperature window: Optimization, design and mechanism. Fuel, 2023, 331, 125857.	3.4	10
517	Bimetallic Modification of Mnfeo X Nanobelts with Nb and Nd for Enhanced Low-Temperature De-No X Performance and So2 Tolerance. SSRN Electronic Journal, 0, , .	0.4	0
518	Effect of SO ₂ poisoning on undoped and doped Mn-based catalysts for selective catalytic reduction of NO. Catalysis Science and Technology, 2022, 12, 6838-6848.	2.1	1
519	Sm-Mno X /Tio2-{001} with Preferentially Exposed Anatase {001} Facet for Selective Catalytic Reduction of No X with Nh3. SSRN Electronic Journal, 0, , .	0.4	0
520	SrSnO3 Applied in the Reduction of NO by CO: Influence of Transition Metal Doping on the Catalytic Activity. Engineering Materials, 2022, , 111-147.	0.3	1
521	Comparative analysis of the dual origins of the N ₂ 0 byproduct on MnO _{<i>x</i>} , FeO _{<i>x</i>} , and MnFeO _{<i>x</i>} sphere catalysts for a low-temperature SCR of NO with NH ₃ . Journal of Materials Chemistry A, 2022, 10, 21474-21491.	5.2	45
522	Promotion of the selective catalytic reduction of NO _{<i>x</i>} with NH ₃ over microporous Cu-SSZ-13 by H ₂ O and OH groups at low temperatures: a density functional theory study. Catalysis Science and Technology, 2022, 12, 5524-5532.	2.1	6
523	Insight into the Dynamic Behaviors of Reactants with Temperature Over a Tiox-Based Catalyst for Nox Removal Via Nh3-Scr. SSRN Electronic Journal, 0, , .	0.4	О

ARTICLE IF CITATIONS Introduction, a short history of single site catalysis., 2022,,. 0 524 Confinement catalysis of a single atomic vacancy assisted by aliovalent ion doping enabled efficient 5.2 NO electroreductión to NH₃. Journal of Materials Chemistry A, 2022, 10, 18690-18700. A review on the characterization of metal active sites over Cu-based and Fe-based zeolites for 526 1.7 14 NH₃-SCR. RSC Advances, 2022, 12, 27746-27765. Synergistic effect of cyano defects and CaCO3 in graphitic carbon nitride nanosheets for efficient vísible-light-driven phótocatalytic NO removal. Journal of Hazardous Materials, 2023, 442, 130040. Insight into the N2O formation mechanism on the \hat{I}^2 -MnO2 (1 1 0) during low-temperature NH3-SCR: Reaction pathway and electronic analysis of different intermediates. Applied Surface Science, 2023, 528 3.14 607, 154981. Data-Driven Inference of Synthesis Guidelines for High-Performance Zeolite-Based Selective Catalytic 529 3.2 Reduction Catalysts at Low Temperatures. Chemistry of Materials, 2022, 34, 7761-7773. Tuning the high-temperature hydrothermal stability of one-pot derived Cu-SSZ-13 in the presence of 530 2.2 1 SO2 for selective catalytic reduction of NOx by ammonia. Catalysis Today, 2022, 405-406, 23-29. Three-Dimensional Graphene Supported CeCoxCu1–ÂxOÎ′ Catalysts for Low Temperature Selective 531 0.1 Catalytic Reduction of NOx by NH3. Russian Journal of Physical Chemistry A, 2022, 96, 1680-1686. Boosting SO₂-Tolerant Catalytic Reduction of NO_{<i>x</i>} <i>yia</i> 532 Adsorption and Activation of Reactants over Ce⁴⁺â€"SO₄^{2â€"} Pair 5.5 27 Sites. ACS Catalysis, 2022, 12, 11306-11317. Catalytic Performance and Sulfur Dioxide Resistance of One-Pot Synthesized Fe-MCM-22 in Selective Catalytic Reduction of Nitrogen Oxides with Ammonia (NH3-SCR)â€"The Effect of Iron Content. 1.8 International Journal of Molecular Sciences, 2022, 23, 10754. DeNO<i>x</i> Characteristics of Commercial SCR Catalyst Regenerated On-Line by Dry Ice Blasting in a 534 6 1.8 Coal-Fired Power Plant. Industrial & amp; Engineering Chemistry Research, 2022, 61, 14382-14392. Compensation or Aggravation: Pb and SO₂ Copoisoning Effects over Ceria-Based Catalysts 4.6 for NO_{<i>x</i>} Reduction. Environmental Science & amp; Technology, 2022, 56, 13368-13378. Metal Sites in Zeolites: Synthesis, Characterization, and Catalysis. Chemical Reviews, 2023, 123, 536 23.0 95 6039-6106. Rational Design of Mesoporous CuO–CeO₂ Catalysts for NH₃-SCR Applications Ğuided by Multiple <i>In Situ</i> Spectroscopies. AĆS Applied Materials & Interfaces, 4.0 2022, 14, 43407-43420. One-pot synthesis of CNT-SAPO-34 composite supported copper and cerium catalysts with excellent 538 2.55 surface resistance to SO2 and H2O in NH3-SCR. Journal of Rare Earths, 2023, 41, 1344-1352. Unravelling the phosphorus-induced effect on NH3-SCR catalytic performance, hydrothermal stability and SO2 resistance of Cu/SAPO-34. Applied Catalysis A: Genéral, 2022, 646, 118888. Chemistry of a Nitrosyl Ligand κ:Î-Bridging a Ditungsten Center: Rearrangement and N–O Bond Cleavage 540 1.9 2 Reactions. Inorganic Chemistry, 2022, 61, 14929-14933. CeO<sub>2a⁻¹I[<]/sub> Nanoparticles Supported on SnNb₂O₆ Nanosheets for 541 Selective Catalytic Reduction of NO<i>_x</i> with NH₃. ACS Applied Nano 2.4 Materials, 2022, 5, 13529-13541.

	Citation R	EPORT	
Article		IF	CITATIONS
Novel 2D Layered Manganese Silicate Nanosheets with Excellent Performance for Sele Reduction of NO with Ammonia. ChemCatChem, 2022, 14, .	ctive Catalytic	1.8	0
MnOx catalysts with different morphologies for low temperature synergistic removal of toluene: Structure–activity relationship and mutual inhibitory effects. Journal of Env Chemical Engineering, 2022, 10, 108646.	of NOx and ironmental	3.3	9
Novel development of VOx–CeOx–WOx/TiO2 catalyst for low-temperature cataly chloroaromatic organics. Waste Disposal & Sustainable Energy, 2022, 4, 259-269.	tic oxidation of	1.1	4
Nitrogen atom coordination tuned transition metal catalysts for NO oxidation and red Chemosphere, 2022, , 136735.	uction.	4.2	1
Microscopic impact mechanism of alkali earth metal poisoning and Ce modification or the Î ³ -Fe2O3 (0 0 1) surface. Applied Surface Science, 2023, 608, 155178.	ι the deNOx over	3.1	2
Unveiling the effect of Al2O3 on PbCl2 resistance over Mn-Ce/AC catalyst for low-tem NH3-SCR of NO. Journal of the Taiwan Institute of Chemical Engineers, 2022, 140, 104		2.7	10
One-pot synthesis of rare earth modified Cu/SAPO-34 for enhanced selective catalytic denitration performance. Separation and Purification Technology, 2022, 303, 122281		3.9	8
Ordered mesoporous TiO ₂ /SBA-15 confined Ce _{<i>x</i>} W <s catalysts="" catalytic="" for="" nh<sub="" no="" of="" reduction="" selective="" using="">3. New Journal of 2022, 46, 22030-22044.</s>		1.4	2
Catalytic ammonia reforming: alternative routes to net-zero-carbon hydrogen and fuel Science, 2022, 13, 12945-12956.	. Chemical	3.7	7
Phosphotungstic Acid-Modified MnOx for Selective Catalytic Reduction of NOx with N 2022, 12, 1248.	H3. Catalysts,	1.6	5
Insight into the effect of phosphorus poisoning of Cu/zeolites with different framewor NH3-SCR. Chemical Engineering Journal, 2023, 454, 140040.	k towards	6.6	1
Purification Technologies for NOx Removal from Flue Gas: A Review. Separations, 202.	2, 9, 307.	1.1	10
Manganeseâ€enhanced porous phosphoric acid–based geopolymer templated by ca NH ₃ â€6CR of NO <i>_x</i> . International Journal of Applied C		1.1	1

554	Manganeseâ€enhanced porous phosphoric acid–based geopolymer templated by carbon for efficient NH ₃ â€SCR of NO <i>_x</i> . International Journal of Applied Ceramic Technology, 2023, 20, 1235-1247.	1.1	1
555	Nitrogen-Doped Pitch-Based Activated Carbon Fibers with Multi-Dimensional Metal Nanoparticle Distribution for the Effective Removal of NO. Catalysts, 2022, 12, 1192.	1.6	4
556	Defect engineering for advanced electrocatalytic conversion of nitrogen-containing molecules. Science China Chemistry, 2023, 66, 1052-1072.	4.2	14
557	V2O5-WO3 catalysts treated with titanium isopropoxide using a one-step co-precipitation method for selective catalytic reduction with NH3. Catalysis Today, 2023, 411-412, 113924.	2.2	1
558	Effect of Fe doping on NH3 adsorption and resistance to sulfur poisoning on the surface of β-MnO2 (110): a DFT-D study. Journal of Materials Science, 2022, 57, 18468-18485.	1.7	3
559	Interface sites on vanadia-based catalysts are highly active for NO removal under realistic conditions. Journal of Environmental Sciences, 2024, 136, 523-536.	3.2	3

#

542

543

544

546

547

548

549

550

#	Article	IF	CITATIONS
560	Polyol-Mediated Synthesis of V2O5–WO3/TiO2 Catalysts for Low-Temperature Selective Catalytic Reduction with Ammonia. Nanomaterials, 2022, 12, 3644.	1.9	3
561	The Synergistic Catalysis of Chloroaromatic Organics and NOx over Monolithic Vanadium-Based Catalysts at Low Temperature. Catalysts, 2022, 12, 1342.	1.6	0
562	Improvement of Sb-Modified Mn-Ce/TiO2 Catalyst for SO2 and H2O Resistance at Low-Temperature SCR. Catalysis Letters, 2023, 153, 2838-2852.	1.4	3
563	Ordered mesoporous TiO2 framework confined CeSn catalyst exhibiting excellent high activity for selective catalytic reduction of NO with NH3 at low temperature. Chemical Engineering Journal, 2023, 454, 140181.	6.6	16
564	Active site exposure of sulfur-etched CeO2 nanorods for nitrogen oxide reduction. Atmospheric Pollution Research, 2022, 13, 101582.	1.8	2
565	Ceria accelerates ammonium bisulfate decomposition for improved SO2 resistance on a V2O5-WO3/TiO2 catalyst in low-temperature NH3-SCR. Journal of the Taiwan Institute of Chemical Engineers, 2022, 140, 104555.	2.7	7
566	Poisoning and regeneration of commercial V2O5-WO3/TiO2 selective catalytic reduction (SCR) catalyst in coal-fired power plants. Chemical Engineering Research and Design, 2022, 168, 971-992.	2.7	32
567	A novel low-temperature Fe-Fe double-atom catalyst for a "fast SCR―reaction. Molecular Catalysis, 2022, 533, 112769.	1.0	5
568	Synthesis of novel Co(3-x)MnxO4@TiO2 core-shell catalyst for low-temperature NH3-SCR of NOx with enhanced SO2 tolerance. Chemical Physics Impact, 2022, 5, 100120.	1.7	4
569	A comprehensive review of the heavy metal issues regarding commercial vanadium‑titanium-based SCR catalyst. Science of the Total Environment, 2023, 857, 159712.	3.9	26
570	Mechanism of iron doping promoting high temperature deNOx and anti-water vapor and SO2 poisoning of ZrW(Fe)Ox. Fuel, 2023, 332, 126248.	3.4	4
571	Superior PbO-resistance of CeO2/ZrO2 catalyst promoted by solid superacid SO42â^'/ZrO2 for selective catalytic reduction of NO with NH3. Fuel, 2023, 332, 126103.	3.4	19
572	100% N2O inhibition in photocatalytic NOx reduction by carbon particles over Bi2WO6/TiO2 Z-scheme heterojunctions. Chemical Engineering Journal, 2023, 453, 139892.	6.6	8
573	Oxygen vacancies enhance the photocatalytic deep oxidation of NO over N-doped KNbO3 catalyst. Catalysis Science and Technology, 0, , .	2.1	2
574	Theoretical investigation of single-atom catalysts anchored on pure carbon substrate for electroreduction of NO to NH ₃ . Physical Chemistry Chemical Physics, 2022, 24, 29112-29119.	1.3	1
575	Trace Co doping improves NH3-SCR performance and poisoning resistance of Ce-Mn-based catalysts. Chemical Engineering Journal, 2023, 454, 140180.	6.6	25
576	The simultaneous removal of NO and SO2 from flue gas by direct injection of sorbents in furnace of waste incinerator. Fuel, 2023, 333, 126464.	3.4	6
577	Interfacial oxygen vacancies at Co3O4-CeO2 heterointerfaces boost the catalytic reduction of NO by CO in the presence of O2. Applied Catalysis B: Environmental, 2023, 323, 122151.	10.8	34

#	Article	IF	CITATIONS
578	A Review on Resource Utilization of Spent V-W-Ti Based Selective Catalytic Reduction Catalysts. Materials, 2022, 15, 7984.	1.3	4
579	A new synthesis method for supported composite oxides: Preparation of <scp>Ceâ€Cu</scp> / <scp> TiO ₂ </scp> catalysts by ice melting method. Journal of Chemical Technology and Biotechnology, 0, , .	1.6	0
580	Adsorptive purification of NOx by HZSM-5 zeolites: Effects of Si/Al ratio, temperature, humidity, and gas composition. Microporous and Mesoporous Materials, 2023, 348, 112331.	2.2	3
581	Toward an Atomic-Level Understanding of the Catalytic Mechanism of Selective Catalytic Reduction of NO _{<i>x</i>} with NH ₃ . ACS Catalysis, 2022, 12, 14347-14375.	5.5	25
582	Isolated Electronâ€Rich Ruthenium Atoms in Intermetallic Compounds for Boosting Electrochemical Nitric Oxide Reduction to Ammonia. Angewandte Chemie - International Edition, 2023, 62, .	7.2	19
583	Protection Effect of Ammonia on CeNbTi NH3-SCR Catalyst from SO2 Poisoning. Catalysts, 2022, 12, 1430.	1.6	Ο
584	A Review of Synergistic Catalytic Removal of Nitrogen Oxides and Chlorobenzene from Waste Incinerators. Catalysts, 2022, 12, 1360.	1.6	6
585	Experiment and mechanism investigation on simultaneously catalytic reduction of NOx and oxidation of toluene over MnOx/Cu-SAPO-34. Applied Surface Science, 2023, 611, 155628.	3.1	5
586	Current challenges and developments of inorganic/organic materials for the abatement of toxic nitrogen oxides (NOx) – A critical review. Progress in Solid State Chemistry, 2022, 68, 100380.	3.9	10
587	Boosting the catalytic performance of Cu-SAPO-34 in NO removal via hydrothermal treatment. Journal of Environmental Sciences, 2024, 135, 640-655.	3.2	2
588	Isolated Electronâ€Rich Ruthenium Atoms in Intermetallic Compounds for Boosting Electrochemical Nitric Oxide Reduction to Ammonia. Angewandte Chemie, 0, , .	1.6	0
589	Hydrotalcite-Modified Clinoptilolite as the Catalyst for Selective Catalytic Reduction of NO with Ammonia (NH3-SCR). Materials, 2022, 15, 7884.	1.3	1
590	Elucidating the sensitivity of vanadyl species to water over V2O5/TiO2 catalysts for NOx abatement via operando Raman spectroscopy. Journal of Catalysis, 2022, 416, 198-208.	3.1	10
591	Highly ordered mesoporous MnOx catalyst for the NH3-SCR of NOx at low temperatures. Applied Catalysis A: General, 2023, 649, 118966.	2.2	13
592	Poisoning Effects of HCl on MO _{<i>x</i>} â€₩O ₃ /TiO ₂ (M=Mn, Ce and) Tj ChemCatChem, 2023, 15, .	ETQq0 0 1.8	0 rgBT /Overlc 4
593	Effects of Ti modified CeCu mixed oxides on the catalytic performance and SO2 resistance towards benzene combustion. Catalysis Communications, 2023, 174, 106596.	1.6	3
594	Novel preparation method, catalytic performance and reaction mechanisms of PrxMn1â^'xOÎ/3DOM ZSM-5 catalysts for the simultaneous removal of soot and NO. Journal of Catalysis, 2023, 417, 226-247.	3.1	13
595	Efficient carrier transfer induced by Au nanoparticles for photoelectrochemical nitrogen reduction. Sustainable Energy and Fuels, 2023, 7, 883-889.	2.5	2

#	Article	IF	CITATIONS
596	Exceptionally high and reversible NO _{<i>x</i>} uptake by hollow Mn–Fe composite nanocubes derived from Prussian blue analogues. Nanoscale, 2023, 15, 1709-1717.	2.8	1
597	Computational screening of single-atom catalysts for direct electrochemical NH3 synthesis from NO on defective boron phosphide monolayer. Applied Surface Science, 2023, 611, 155764.	3.1	10
598	Mass transfer of multi-pollutants over titania-based SCR catalyst: A molecular dynamics study. Applied Energy, 2023, 331, 120450.	5.1	1
599	Recent progress of CeO2-based catalysts with special morphologies applied in air pollutants abatement: A review. Journal of Environmental Chemical Engineering, 2023, 11, 109136.	3.3	14
600	Phosphotungstic acid-promoted Mn-Fe bimetal oxide with high sulfur resistance for low-temperature selective catalytic reduction of nitrogen oxides with NH3. Journal of Alloys and Compounds, 2023, 936, 168272.	2.8	2
601	Low-temperature selective catalytic reduction of NOx with NH3 over in-situ grown MnOx-Fe2O3/TiO2/Ti monolithic catalyst. Journal of Alloys and Compounds, 2023, 938, 168481.	2.8	9
602	Unravelling rate-determining step and consequence of O2- or H2O-assisted, wet CO transformation on catalytic CuO-CeO2 domains via interfacial engineering. Applied Surface Science, 2023, 614, 156099.	3.1	3
603	Mechanochemical localization of vanadia on titania to prepare a highly sulfur-resistant catalyst for low-temperature NH3-SCR. Applied Catalysis B: Environmental, 2023, 324, 122290.	10.8	4
604	Excellent hydrocarbon tolerance of CeO2-WO3-SnO2 oxide catalyst for the NH3-SCR of NO. Applied Catalysis B: Environmental, 2023, 324, 122283.	10.8	9
605	The different effect of SO2 on Zn-poisoned commercial V2O5-WO3/TiO2 catalysts with varied Zn loading. Chemical Physics Impact, 2023, 6, 100150.	1.7	2
606	Predicting the adsorption and reduction of NO2 on Sr-doped CeO2(1 1 1) using first-principles calculations. Applied Surface Science, 2023, 612, 155896.	3.1	0
607	Unveiling the inductive strategy of different precipitants on MnFeO catalyst for low-temperature NH3-SCR reaction. Fuel, 2023, 335, 126986.	3.4	21
608	Comparative study on N2O formation pathways over bulk MoO3 and MoO3-x nanosheets decorated Fe2O3-containing solid waste NH3-SCR catalysts. Fuel, 2023, 337, 127210.	3.4	14
609	åŒæ¸å,¬åŒ−ä¼zä¼zŽæ¸©é«~æ•^è"±é™æ°®æ°§åŒ−物. Chinese Science Bulletin, 2022, , .	0.4	0
610	Performance Analysis and Optimization for Static Mixer of SCR Denitration System under Different Arrangements. Energies, 2022, 15, 8977.	1.6	3
611	Synergistic Effects of Keggin-Type Phosphotungstic Acid-Supported Single-Atom Catalysts in a Fast NH ₃ -SCR Reaction. Inorganic Chemistry, 2022, 61, 19156-19171.	1.9	4
612	The investigation of the NH3-SCR performance of a copper-based AEI-CHA intergrown zeolite catalyst. Frontiers in Chemistry, 0, 10, .	1.8	1
613	Promotional mechanism of activity of CeEuMnO ternary oxide for low temperature SCR of NO. Journal of Rare Earths, 2023, 41, 965-974.	2.5	6

#	Article	IF	CITATIONS
614	Negatively Charged Single-Atom Pt Catalyst Shows Superior SO ₂ Tolerance in NO _{<i>x</i>} Reduction by CO. ACS Catalysis, 2023, 13, 224-236.	5.5	21
615	Selective catalytic reduction of NOx with NH3 and tolerance to H2O & SO2 at high temperature over zeolite supported indium-copper bimetallic catalysts for gas turbine. Journal of Environmental Chemical Engineering, 2023, 11, 109218.	3.3	4
616	Efficient one-pot synthesis of Cu-SAPO-34 catalysts for NH3-SCR of NOx. Fuel, 2023, 339, 126927.	3.4	6
617	CuO decorated vacancy-rich CeO2 nanopencils for highly efficient catalytic NO reduction by CO at low temperature. Environmental Science and Pollution Research, 2023, 30, 31895-31904.	2.7	2
618	Effects of Aâ€site replacement (Sm, Y, and Pr) on catalytic performances of mullite catalysts for NO oxidation. Fuel, 2023, 337, 126838.	3.4	2
619	Unravelling the promotional effect of Nb and Mo on VOx-based catalysts for NOx reduction with NH3. Applied Surface Science, 2023, 614, 156072.	3.1	3
620	Getting insights into gas-phase sulfation effect on catalytic performance of praseodymium oxides in NH3-SCR of NO. Journal of Rare Earths, 2023, 41, 952-958.	2.5	5
621	Potential Risk of NH ₃ Slip Arisen from Catalytic Inactive Site in Selective Catalytic Reduction of NO _{<i>x</i>} with Metal-Free Carbon Catalysts. Environmental Science & Technology, 2023, 57, 606-614.	4.6	7
622	Low-temperature NH3-SCR performance of a novel Chlorella@Mn composite denitrification catalyst. Journal of Environmental Sciences, 2024, 137, 271-286.	3.2	5
623	Efficient enhancement of the anti-KCl-poisoning performance for V2O5-WO3/TiO2 catalysts by Ce(SO4)2 modification. Journal of Solid State Chemistry, 2023, 319, 123807.	1.4	2
624	Tungsten modified natural limonite catalyst for efficient low-temperature selective catalytic reduction of NO removal with NH3: preparation and characterization. Environmental Science and Pollution Research, 2023, 30, 36294-36310.	2.7	3
625	Controlled Growth of Platinum Nanoparticles on Amorphous Silica from Grafted Pt–Disilicate Complexes. ACS Omega, 2022, 7, 47120-47128.	1.6	1
626	Expediting Toluene Combustion by Harmonizing the Ce–O Strength over Co-Doped CeZr Oxide Catalysts. Environmental Science & Technology, 2023, 57, 1797-1806.	4.6	30
627	Original exploration of transition metal single-atom catalysts for NO reduction. Journal of Materials Chemistry A, 0, , .	5.2	1
628	Recent developments of core–shell structured catalysts for the selective catalytic reduction of NO _{<i>x</i>} with ammonia. Inorganic Chemistry Frontiers, 2023, 10, 727-755.	3.0	6
629	Direct observation of Cu in high-silica chabazite zeolite by electron ptychography using Wigner distribution deconvolution. Scientific Reports, 2023, 13, .	1.6	1
630	Selective catalytic reduction of NO with NH3 over core-shell Ce@W catalyst. Journal of Rare Earths, 2023, 41, 959-964.	2.5	3
631	Improvement of SO2 resistance of Cu-SSZ-13 with polyoxometalates in selective catalytic reduction of NOx. Microporous and Mesoporous Materials, 2023, 349, 112421.	2.2	3

#	Article	IF	CITATIONS
632	Unlocking low-temperature and anti-SO2 poisoning performance of bimetallic PdV/TiO2 catalyst for chlorobenzene/NO catalytic removal by antimony modification design. Chemical Engineering Journal, 2023, 457, 141210.	6.6	6
633	Efficient synergistic catalysis of chlorinated aromatic hydrocarbons and NOx over novel low-temperature catalysts: Nano-TiO2 modification and interaction mechanism. Chemosphere, 2023, 315, 137640.	4.2	3
634	Direct synthesis of Cu-SAPO-34 from solid phosphorus source for NH3-SCR reaction. Microporous and Mesoporous Materials, 2023, 350, 112457.	2.2	2
635	V-Cu bimetallic oxide supported catalysts for synergistic removal of toluene and NOx from coal-fired flue gas: The crucial role of support. Chemical Engineering Journal, 2023, 458, 141443.	6.6	12
636	Advanced strategies to reduce harmful nitrogen-oxide emissions from biodiesel fueled engine. Renewable and Sustainable Energy Reviews, 2023, 174, 113123.	8.2	16
637	Ultra-high hydrothermal stability of Ce-based NH3-SCR catalyst for diesel engines: A substitute for Cu zeolites. Fuel, 2023, 338, 127263.	3.4	9
638	Elucidating NO _{<i>x</i>} Surface Chemistry at the Anatase (101) Surface in TiO ₂ Nanoparticles. Journal of Physical Chemistry C, 2023, 127, 437-449.	1.5	4
639	Revealing the crystal facet effect on N ₂ O formation during the NH ₃ -SCR over α-MnO ₂ catalysts. RSC Advances, 2023, 13, 4032-4039.	1.7	6
640	Efficient electrochemical NO reduction to NH3 over metal-free g-C3N4 nanosheets and the role of interface microenvironment. Journal of Hazardous Materials, 2023, 448, 130890.	6.5	5
642	Er-modified MnO for selective catalytic reduction of NO with NH3 at low temperature: Promoting effect of erbium on catalytic performance. Journal of Rare Earths, 2023, 41, 917-925.	2.5	1
643	A novel core-shell Ce@Mn catalyst for the selective catalytic reduction of NOx with NH3. Chemical Physics Impact, 2023, 6, 100164.	1.7	4
644	Catalytic conversion to ammonia through solid-state nitrate as a proposal for the emerging usage of nitrogen oxides. Catalysis Science and Technology, 2023, 13, 2927-2936.	2.1	0
645	Microwave-associated chemistry in environmental catalysis for air pollution remediation: A review. Chemical Engineering Journal, 2023, 466, 142902.	6.6	13
646	Construction of 3DOM Fe2O3/CuO heterojunction nanomaterials for enhanced AP decomposition. Applied Surface Science, 2023, 619, 156739.	3.1	7
647	The inter-connected porous CuOx-NbOx/kit-CeO2 catalyst:Enhanced activity, resistance of SO2 and H2O for the removal of NOx. Chemical Physics Impact, 2023, 6, 100179.	1.7	1
648	Bi12TiO20-TiO2 S-scheme heterojunction for improved photocatalytic NO removal: Experimental and DFT insights. Separation and Purification Technology, 2023, 314, 123575.	3.9	14
649	Promotional role of Co on Cu-SAPO-34 towards enhanced denitration performance and SO2 tolerance. Fuel, 2023, 342, 127789.	3.4	8
650	Low temperature selective catalytic reduction of NOx with NH3 with improved SO2 and water resistance by using N-doped graphene dots-CuO–CeO2 nano-heterostructures modified vanadate catalysts. Applied Surface Science, 2023, 623, 157088.	3.1	6

#	Article	IF	CITATIONS
651	Unraveling the high catalytic activity of single atom Mo-doped TiO2 toward NH3-SCR: Synergetic roles of Mo as acid sites and oxygen vacancies as oxidation sites. Chemical Engineering Journal, 2023, 465, 142759.	6.6	14
652	Characteristics of deactivation and thermal regeneration of Nb-doped V2O5–WO3/TiO2 catalyst for NH3–SCR reaction. Environmental Research, 2023, 227, 115744.	3.7	6
653	Excellent activity and selectivity of Pd/ZSM-5 catalyst in the selective catalytic reduction of NO by H2. Environmental Research, 2023, 227, 115707.	3.7	4
654	Recent advance for NO removal with carbonaceous material for low-temperature NH3-SCR reaction. Catalysis Today, 2023, 418, 114053.	2.2	8
655	Selective catalytic reduction of NO with NH3 over MnOx-CeO2 catalysts: The great synergy between CeO2 and crystalline phase of Mn3O4. Fuel, 2023, 342, 127772.	3.4	8
656	Recent advances in Pb resistance over SCR catalysts: Reaction mechanisms and anti-inactivation measures. Catalysis Today, 2023, 418, 114046.	2.2	4
657	Facile one-pot synthesis of Fe-UZM-35 catalysts for ammonia selective catalytic reduction. Applied Catalysis B: Environmental, 2023, 329, 122552.	10.8	4
658	The enhancement effect of Nb over CeSi2 catalyst for the low-temperature NH3-SCR performance. Chemical Physics Impact, 2023, 6, 100205.	1.7	1
659	Maximizing the hydrothermal stability of Cu-LTA for NH3-SCR by control of Cu content and location. Applied Catalysis B: Environmental, 2023, 331, 122705.	10.8	8
660	Optimized local geometry and electronic structure of MoO3/CeO2 catalyst by adding copper cations for boosted nitrogen oxide reduction performance. Applied Catalysis B: Environmental, 2023, 332, 122742.	10.8	5
661	Direct synthesis of high silica SSZ-16 zeolite with extraordinarily superior performance in NH3-SCR reaction. Applied Catalysis B: Environmental, 2023, 332, 122746.	10.8	5
662	Insight into the enhanced tolerance of Mo-doped CeO2-Nb2O5/TiO2 catalyst towards the combined effect of K2O, H2O and SO2 in NH3-SCR. Fuel, 2023, 346, 128339.	3.4	7
663	Review on NH3-SCR for simultaneous abating NOx and VOCs in industrial furnaces: Catalysts' composition, mechanism, deactivation and regeneration. Fuel Processing Technology, 2023, 247, 107773.	3.7	12
664	Review on advances in structure–activity relationship, reaction & deactivation mechanism and rational improving design of selective catalytic reduction deNO catalysts: Challenges and opportunities. Fuel, 2023, 343, 127924.	3.4	14
665	Sodium ion intercalation in vanadium oxide promotes low-temperature NH3-SCR activity: Sodium vanadium bronzes (Na0.33V2O5) for NOx removal. Applied Catalysis B: Environmental, 2023, 328, 122536.	10.8	3
666	Design of confined catalysts and applications in environmental catalysis: Original perspectives and further prospects. Journal of Cleaner Production, 2023, 390, 136125.	4.6	6
667	Catalytic performances of Cu-ZK-5 zeolites with different template agents in NH3-SCR. Journal of Environmental Chemical Engineering, 2023, 11, 109404.	3.3	1
668	Application of CeTiOx-MOFs catalysts for synergistic removal of toluene and NOx. Catalysis Communications, 2023, 175, 106621.	1.6	3

#	Article	IF	CITATIONS
669	Optimization and comprehensive mechanism of environment-friendly bimetal oxides catalysts for efficient removal of NO in ultra-low temperature flue gas. Separation and Purification Technology, 2023, 311, 123324.	3.9	6
670	Diesel Engine Emission Aftertreatment Device Aging Mechanism and Durability Assessment Methods: A Review. Atmosphere, 2023, 14, 314.	1.0	2
671	Efficient NO <i>_x</i> Reduction against Alkali Poisoning over a Self-Protection Armor by Fabricating Surface Ce ₂ (SO ₄) ₃ Species: Comparison to Commercial Vanadia Catalysts. Environmental Science & Technology, 2023, 57, 2949-2957.	4.6	10
672	Effective Nitric Oxide Reduction Over Coreâ€Shell Cuâ^'SSZâ€13@mesoâ€MO _x Catalysts with Significant Catalytic Activity and Hydrothermal Stability. ChemPlusChem, 2023, 88, .	1.3	1
673	Investigation of intrinsic catalytic mechanism for NO oxidation to NO2 in CeO2 used for NO removal. Chemical Engineering Journal, 2023, 460, 141801.	6.6	4
674	Morphology effects in MnCeOx solid solution-catalyzed NO reduction with CO: Active sites, water tolerance, and reaction pathway. Nano Research, 2023, 16, 6951-6959.	5.8	18
675	Emission Control of Toluene in Iron Ore Sintering Using Catalytic Oxidation Technology: A Critical Review. Catalysts, 2023, 13, 429.	1.6	1
676	Catalytic removal of nitrogen oxides (NO, NO2, N2O) from ammonia-fueled combustion exhaust: A review of applicable technologies. Chemical Engineering Journal, 2023, 461, 141958.	6.6	16
677	Exhaust Gas After-Treatment Systems for Gasoline and Diesel Vehicles. , 0, , 9.		1
678	Exploring the Multifunctionality of Mechanochemically Synthesized Î ³ -Alumina with Incorporated Selected Metal Oxide Species. Molecules, 2023, 28, 2002.	1.7	3
679	Cold-Start NO _{<i>x</i>} Mitigation by Passive Adsorption Using Pd-Exchanged Zeolites: From Material Design to Mechanism Understanding and System Integration. Environmental Science & Technology, 2023, 57, 3467-3485.	4.6	7
680	Hydrothermal Aging Alleviates the Phosphorus Poisoning of Cu-SSZ-39 Catalysts for NH ₃ -SCR Reaction. Environmental Science & Technology, 2023, 57, 4113-4121.	4.6	7
681	NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42┠pair sites. Chinese Chemical Letters, 2024, 35, 108240.	4.8	2
682	Effect of Cu-Doped Co–Mn Spinel for Boosting Low-Temperature NO Reduction by CO: Exploring the Structural Properties, Performance, and Mechanisms. ACS Applied Materials & Interfaces, 2023, 15, 11885-11894.	4.0	7
683	Mechanistic Insight into the Promotion of the Low-Temperature NH ₃ -Selective Catalytic Reduction Activity over Mn _{<i>x</i>} Ce _{1–<i>x</i>} O _{<i>y</i>} Catalysts: A Combined Experimental and Density Functional Theory Study. Environmental Science & Technology, 2023, 57, 3875-3882.	4.6	22
684	Prominent difference in the deactivation rate and mechanism of V2O5/TiO2 under H2S or SO2 during selective catalytic reduction of NOx with NH3. Applied Catalysis B: Environmental, 2023, 328, 122529.	10.8	11
685	La ions-enhanced NH3-SCR performance over Cu-SSZ-13 catalysts. Nano Research, 2023, 16, 12126-12133.	5.8	6
686	Investigation on low energy-consumed embedded selective catalytic reduction technology for pelletizing flue gas and the CO2 emission reduction assessment. Environmental Science and Pollution Research, 2023, 30, 53492-53504.	2.7	1

#	Article	IF	CITATIONS
687	Design and identify the confinement effect of active site position on catalytic performance for selective catalytic reduction of NO with NH3 at low temperature. Journal of Catalysis, 2023, 420, 134-150.	3.1	18
688	The effect of amorphous silica support on the catalytic activity of liquid-exfoliated monolayered MCM-56 zeolite. Journal of Porous Materials, 2023, 30, 1459-1468.	1.3	1
689	NiB2O4 (B = Mn or Co) catalysts for NH3-SCR of NOx at low-temperature in microwave field. Frontiers of Environmental Science and Engineering, 2023, 17, .	3.3	1
690	Efficient Pt/KFI zeolite catalysts for the selective catalytic reduction of NO by hydrogen. Journal of Environmental Sciences, 2024, 138, 102-111.	3.2	3
691	Monolithic CuMnO ₂ -Nanosheet-Based Catalysts In Situ Grown on Stainless Steel Mesh for Selective Catalytic Reduction of NO with CO. ACS Applied Nano Materials, 2023, 6, 4803-4811.	2.4	2
692	Tailoring valence state of V in V-Mo atomically dispersed ensemble enables exceptional NH4HSO4 poisoning resistance for NH3-SCR reaction. Chemical Engineering Journal, 2023, 464, 142540.	6.6	11
693	Beyond Purification: Highly Efficient and Selective Conversion of NO into Ammonia by Coupling Continuous Absorption and Photoreduction under Ambient Conditions. Environmental Science & Technology, 2023, 57, 5445-5452.	4.6	6
694	Enhanced low-temperature activity and huimid-SO2 resistance of MnFe-based multi-oxide catalysts for the marine NH3-SCR reaction. Journal of Industrial and Engineering Chemistry, 2023, 123, 209-219.	2.9	0
695	Catalytic degradation of chlorinated volatile organic compounds (CVOCs) over Ce-Mn-Ti composite oxide catalysts. Journal of Environmental Sciences, 2023, , .	3.2	3
696	Insight into the Origin of Excellent SO ₂ Tolerance and de-NO _{<i>x</i>} Performance of quasi-Mn-BTC in the Low-Temperature Catalytic Reduction of Nitrogen Oxide. ACS Catalysis, 2023, 13, 5020-5032.	5.5	32
697	Effect of Metal Complexing on Mn–Fe/TS-1 Catalysts for Selective Catalytic Reduction of NO with NH3. Molecules, 2023, 28, 3068.	1.7	0
698	Revealing the Excellent Low-Temperature Activity of the Fe _{1–<i>x</i>} Ce _{<i>x</i>} O _Î -S Catalyst for NH ₃ -SCR: Improvement of the Lattice Oxygen Mobility. ACS Applied Materials & amp; Interfaces, 2023, 15, 17834-17847.	4.0	13
699	Development and optimization of a novel industrial process solution for stripping of carbon dioxide and ammonia from bio-process wastewater. Chemical Engineering Research and Design, 2023, 193, 810-825.	2.7	0
700	Quantitative discrimination of surface adsorbed NO species on CeO2 via spectrophotometry for SCR denitration investigation. Journal of Rare Earths, 2023, , .	2.5	2
701	Mn mixed oxide catalysts supported on Sn-doped CoAl-LDO for low-temperature NH ₃ -SCR. Catalysis Science and Technology, 2023, 13, 3147-3157.	2.1	3
702	Design of material regulatory mechanism for electrocatalytic converting NO/NO ₃ ^{â^'} to NH ₃ progress. Natural Sciences, 2023, 3, .	1.0	9
703	Coated monolithic catalysts for better selective catalytic reduction: Concerns about structural integrity, catalytic activity and anti-poisoning performance. Catalysis Communications, 2023, 178, 106667.	1.6	2
704	The Contradictory Impact of Sulfation on a CeO _{<i>x</i>/i>} /TiO ₂ NH ₃ -SCR Catalyst: A Combined Experimental and DFT Study. Energy & Fuels, 2023, 37, 6674-6682.	2.5	5

#	Article	IF	CITATIONS
705	Boosting resistance to H2O and SO2 in low-temperature NH3-SCR denitrification reaction by W addition in Cu0.1-mWmTiOx (mÂ=Â0.05–0.09) due to modulating the synergistic effect of oxidation property and acidity. Fuel, 2023, 347, 128443.	3.4	5
706	Research landscape and hotspots of selective catalytic reduction (SCR) for NOx removal: insights from a comprehensive bibliometric analysis. Environmental Science and Pollution Research, 0, , .	2.7	0
707	Co-designing Electrocatalytic Systems with Separations To Improve the Sustainability of Reactive Nitrogen Management. ACS Catalysis, 2023, 13, 6268-6279.	5.5	4
744	Environmental applications of single-atom catalysts based on graphdiyne. Catalysis Science and Technology, 2023, 13, 5154-5174.	2.1	2
747	Hydrothermal Treatment of Biomass Feedstocks for Sustainable Production of Chemicals, Fuels, and Materials: Progress and Perspectives. Chemical Reviews, 2023, 123, 7193-7294.	23.0	39
757	Recent advances in electrocatalytic NO _{<i>x</i>} reduction into ammonia. , 2023, 1, 645-664.		2
805	Construction of cerium-based oxide catalysts with abundant defects/vacancies and their application to catalytic elimination of air pollutants. Journal of Materials Chemistry A, 2023, 11, 19210-19243.	5.2	1
866	Hyperordered Structures in Microporous Frameworks in Zeolites. The Materials Research Society Series, 2024, , 333-352.	0.2	0
871	Recent Progress and Current Status of Photocatalytic NO Removal. , 0, , .		0
872	Selective catalytic reduction of NO _{<i>x</i>} with NH ₃ over copper-based catalysts: recent advances and future prospects. , 2024, 2, 231-252.		1
879	Advances in low-temperature hydrothermal stability of Cu/SAPO-34 zeolite. Chemical Papers, 0, , .	1.0	0
950	Automotive Emission Control Technologies. , 2024, , .		0