Ideas and perspectives: is shale gas a major driver of red methane?

Biogeosciences 16, 3033-3046 DOI: 10.5194/bg-16-3033-2019

Citation Report

#	Article	IF	CITATIONS
1	The health and climate impacts of carbon capture and direct air capture. Energy and Environmental Science, 2019, 12, 3567-3574.	30.8	83
2	In Vitro Evaluation of Different Dietary Methane Mitigation Strategies. Animals, 2019, 9, 1120.	2.3	29
3	Hydrophobic functionalization of HY zeolites for efficient conversion of glycerol to solketal. Applied Catalysis A: General, 2020, 592, 117369.	4.3	42
4	The False Promise of Natural Gas. New England Journal of Medicine, 2020, 382, 104-107.	27.0	25
5	The Biogeochemical Methane Cycle. , 2020, , 669-746.		15
6	Public opposition to shale gas extraction in Algeria: Potential application of France's â€`Duty of Care Act'. The Extractive Industries and Society, 2020, 7, 1360-1368.	1.2	6
7	New Mexico Permian Basin Measured Well Pad Methane Emissions Are a Factor of 5–9 Times Higher Than U.S. EPA Estimates. Environmental Science & Technology, 2020, 54, 13926-13934.	10.0	48
8	Impact of U.S. Oil and Natural Gas Emission Increases on Surface Ozone Is Most Pronounced in the Central United States. Environmental Science & Technology, 2020, 54, 12423-12433.	10.0	21
9	Methane Production in Dairy Cows, Inhibition, Measurement, and Predicting Models. , 2020, , 295-306.		0
10	Greenhouse gas observation network design for Africa. Tellus, Series B: Chemical and Physical Meteorology, 2022, 72, 1824486.	1.6	8
11	Methane emissions from fossil fuels: exploring recent changes in greenhouse-gas reporting requirements for the State of New York. Journal of Integrative Environmental Sciences, 2020, 17, 69-81.	2.5	16
12	Methane flux from flowback operations at a shale gas site. Journal of the Air and Waste Management Association, 2020, 70, 1324-1339.	1.9	6
13	Intermediate-Scale Laboratory Investigation of Stray Gas Migration Impacts: Transient Gas Flow and Surface Expression. Environmental Science & Technology, 2020, 54, 12493-12501.	10.0	16
14	Improving Health Risk Assessment as a Basis for Public Health Decisions in the 21st Century. Risk Analysis, 2020, 40, 2272-2299.	2.7	6
15	Petro-riskscapes and environmental distress in West Texas: Community perceptions of environmental degradation, threats, and loss. Energy Research and Social Science, 2020, 70, 101798.	6.4	17
16	Using global isotopic data to constrain the role of shale gas production in recent increases in atmospheric methane. Scientific Reports, 2020, 10, 4199.	3.3	29
17	Understanding nighttime methane signals at the Amazon Tall Tower Observatory (ATTO). Atmospheric Chemistry and Physics, 2020, 20, 6583-6606.	4.9	11
18	Geochemistry of shale gases from around the world: Composition, origins, isotope reversals and rollovers, and implications for the exploration of shale plays. Organic Geochemistry, 2020, 143, 103997.	1.8	75

#	Article	IF	CITATIONS
19	Ensemble-based satellite-derived carbon dioxide and methane column-averaged dry-air mole fraction data sets (2003–2018) for carbon and climate applications. Atmospheric Measurement Techniques, 2020, 13, 789-819.	3.1	22
20	A Structured Approach for the Mitigation of Natural Methane Emissions—Lessons Learned from Anthropogenic Emissions. Journal of Carbon Research, 2020, 6, 24.	2.7	7
21	Novel laboratory investigation of huff-n-puff gas injection for shale oils under realistic reservoir conditions. Fuel, 2021, 284, 118950.	6.4	43
22	Repair Failures Call for New Policies to Tackle Leaky Natural Gas Distribution Systems. Environmental Science & Technology, 2021, 55, 6561-6570.	10.0	10
23	Methanotrophs: Discoveries, Environmental Relevance, and a Perspective on Current and Future Applications. Frontiers in Microbiology, 2021, 12, 678057.	3.5	80
24	Sustainability aspects of milk production in Sweden. Grass and Forage Science, 2021, 76, 205-214.	2.9	9
25	New Technologies Can Cost Effectively Reduce Oil and Gas Methane Emissions, but Policies Will Require Careful Design to Establish Mitigation Equivalence. Environmental Science & Technology, 2021, 55, 9140-9149.	10.0	22
26	Improved Constraints on Global Methane Emissions and Sinks Using <i>δ</i> ¹³ C H ₄ . Global Biogeochemical Cycles, 2021, 35, e2021GB007000.	4.9	50
27	Large and increasing methane emissions from eastern Amazonia derived from satellite data, 2010–2018. Atmospheric Chemistry and Physics, 2021, 21, 10643-10669.	4.9	13
28	How green is blue hydrogen?. Energy Science and Engineering, 2021, 9, 1676-1687.	4.0	357
29	Potential of Clumped Isotopes in Constraining the Global Atmospheric Methane Budget. Global Biogeochemical Cycles, 2021, 35, e2020GB006883.	4.9	8
30	Effect of a Low-Methane Diet on Performance and Microbiome in Lactating Dairy Cows Accounting for Individual Pre-Trial Methane Emissions. Animals, 2021, 11, 2597.	2.3	3
31	The release of petroleum from Central Africa rift basins over geological time as deduced from petroleum systems modelling. Journal of African Earth Sciences, 2021, 183, 104319.	2.0	5
32	Is Shale Gas Development Sustainable? Competing Discourses on Fracking in the United States. , 2021, , 361-377.		0
33	Hydrogen and hydrogen-derived fuels through methane decomposition of natural gas – GHG emissions and costs. Energy Conversion and Management: X, 2020, 7, 100043.	1.6	31
35	Capitalism and Earth System Governance: An Ecological Marxist Approach. Global Environmental Politics, 2020, 20, 37-56.	3.0	11
36	TheÂrole of gases in theÂEuropean energy transition. Russian Journal of Economics, 2020, 6, 390-405.	0.9	11
37	Quantifying the impact of aerosol scattering on the retrieval of methane from airborne remote	3.1	8

		CITATION REPORT		
#	Article		IF	CITATIONS
38	The Global Methane Budget 2000–2017. Earth System Science Data, 2020, 12, 1561	-1623.	9.9	1,199
39	Hindcasting and forecasting of regional methane from coal mine emissions in the Uppe Basin using the online nested global regional chemistry–climate model MECO(n) (ME Geoscientific Model Development, 2020, 13, 1925-1943.	r Silesian Coal SSy v2.53).	3.6	14
40	Climate Justice and California's Methane Superemitters: Environmental Equity Asse Community Proximity and Exposure Intensity. Environmental Science & Technolog 14746-14757.	ssment of y, 2021, 55,	10.0	10
44	Commentary: Epidemiology, economics and the path to clean energy. International Jour Epidemiology, 2021, 49, 1896-1898.	mal of	1.9	0
45	SHALE GAS: AN INDIAN MARKET PERSPECTIVE. International Journal of Energy Economic 2020, 11, 126-136.	cs and Policy,	1.2	2
46	The Economics of Natural Gas Flaring: An Agenda for Research and Policy. SSRN Electro , .	nic Journal, 0,	0.4	5
47	The Biogeochemical Methane Cycle. , 2020, , 1-78.			1
60	Sustainability challenges for the upstream sectors of the natural gas industry. , 2022, , 2	349-378.		0
61	ContaminaciÃ ³ n fÃsico quÃmica en zonas de fracking. Revista Politécnica, 2021, 17,	70-81.	0.0	0
62	"Climate Impacts" of Fossil Fuels in Today's Energy Systems. SSRN Electronic	Journal, 0, , .	0.4	1
63	Reply to comment on "How Green is Blue Hydrogen?― Energy Science and Engine 1955-1960.	ering, 2022, 10,	4.0	10
64	Large Methane Emission Fluxes Observed From Tropical Wetlands in Zambia. Global Bic Cycles, 2022, 36, .	geochemical	4.9	14
65	Detailed analysis of gaseous components in soil gases around petroleum wells - An effe evaluation of their integrity. Applied Geochemistry, 2022, 142, 105346.	ctive tool for	3.0	2
66	Gas Flaring and Methane Emissions Facts and Trends. , 2022, , 1-26.			0
67	Why turquoise hydrogen will Be a game changer for the energy transition. Internationa Hydrogen Energy, 2022, 47, 25831-25848.	Journal of	7.1	50
68	Impact of interannual and multidecadal trends on methane-climate feedbacks and sens Communications, 2022, 13, .	itivity. Nature	12.8	11
70	Methane and Climate Change. , 2022, , 132-149.			1
71	Isotopes as Tracers of Atmospheric and Groundwater Methane Sources. , 2022, , 272-2	91.		0

#	Article	IF	CITATIONS
72	Announcing the Minderoo – Monaco Commission on Plastics and Human Health. Annals of Global Health, 2022, 88, .	2.0	6
73	New contributions of measurements in Europe to the global inventory of the stable isotopic composition of methane. Earth System Science Data, 2022, 14, 4365-4386.	9.9	8
74	Produced Gas and Condensate Geochemistry of the Marcellus Formation in the Appalachian Basin: Insights into Petroleum Maturity, Migration, and Alteration in an Unconventional Shale Reservoir. Minerals (Basel, Switzerland), 2022, 12, 1222.	2.0	4
75	PAS-based isotopologic analysis of highly concentrated methane. Frontiers in Environmental Chemistry, 0, 3, .	1.6	0
76	Characterization and in vitro assessment of seaweed bioactives with potential to reduce methane production. Frontiers in Animal Science, 0, 3, .	1.9	2
77	Transition metal oxide complexes as molecular catalysts for selective methane to methanol transformation: any prospects or time to retire?. Physical Chemistry Chemical Physics, 2023, 25, 5313-5326.	2.8	9
79	Variations in Surface Concentrations and Total Column of CO2 and CH4 in the Central Part of the European Territory of Russia. Izvestiya - Atmospheric and Oceanic Physics, 2023, 59, 174-188.	0.9	0
80	Direct measurement of methane emissions from the upstream oil and gas sector: Review of measurement results and technology advances (2018à€"2022). Journal of Cleaner Production, 2023, 414, 137693.	9.3	2
81	Methane emissions and 13C composition from beef steers consuming binary C3–C4 diets. Journal of Animal Science, 2023, 101, .	0.5	0
82	Wastewater granules. , 2023, , 83-121.		0
83	Interâ€Annual Variability in Atmospheric Transport Complicates Estimation of US Methane Emissions Trends. Geophysical Research Letters, 2023, 50, .	4.0	0
84	Atmospheric Methane: Comparison Between Methane's Record in 2006–2022 and During Glacial Terminations. Global Biogeochemical Cycles, 2023, 37, .	4.9	7
85	Manmade earthquakes and healthcare visits for anxiety disorders in Oklahoma, 2010–2019. Environmental Epidemiology, 2023, 7, e232.	3.0	0
86	The application of green finance to the production of blue and green hydrogen: A comparative study. Renewable Energy, 2023, 219, 119236.	8.9	3
87	High-frequency, continuous hydrogen observations at Mace Head, Ireland from 1994 to 2022: Baselines, pollution events and †missing' sources. Atmospheric Environment, 2023, 312, 120029.	4.1	0
88	Photonic-Hydraulic Fracturing Hybrid Approach Minimizing Breaking Pressure. , 2023, , .		0
89	Role of magmatism in efficient gas accumulation in Upper Ordovician-Lower Silurian shales in the Yangtze plate, South China: Evidence from the calcite U-Pb ages and gas C-N isotopes. Journal of Asian Earth Sciences, 2024, 259, 105889.	2.3	0
90	Migration behavior of fugitive methane in porous media: Multi-phase numerical modelling of bench-scale gas injection experiments. Advances in Water Resources, 2024, 184, 104629.	3.8	0

#	Article	IF	CITATIONS
91	Groundwater, co-produced water, and biogenic coalbed gas. , 2024, , 495-595.		0