Towards understanding two-level-systems in amorpho circuits

Reports on Progress in Physics 82, 124501 DOI: 10.1088/1361-6633/ab3a7e

Citation Report

#	Article	IF	CITATIONS
1	Correlating Decoherence in Transmon Qubits: Low Frequency Noise by Single Fluctuators. Physical Review Letters, 2019, 123, 190502.	2.9	104
2	Anomalous charge noise in superconducting qubits. Physical Review B, 2019, 100, .	1.1	36
3	Near-Field Scanning Microwave Microscopy in the Single Photon Regime. Scientific Reports, 2019, 9, 12539.	1.6	26
4	Dynamical decoupling of quantum two-level systems by coherent multiple Landau–Zener transitions. Npj Quantum Information, 2019, 5, .	2.8	15
5	Electric field spectroscopy of material defects in transmon qubits. Npj Quantum Information, 2019, 5, .	2.8	74
6	A density-functional theory study of the Al/AlOx/Al tunnel junction. Journal of Applied Physics, 2020, 128, 155102.	1.1	14
7	Fast Tunable High- <mml:math <br="" display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"><mml:mi>Q</mml:mi></mml:math> -Factor Superconducting Microwave Resonators. Physical Review Applied, 2020, 14, .	1.5	29
8	Sub-kelvin thermometer for on-chip measurements of microwave devices utilizing two-level systems in superconducting microresonators. Applied Physics Letters, 2020, 117, 192601.	1.5	4
9	Probing interacting two-level systems with rare-earth ions. Physical Review B, 2020, 101, .	1.1	4
10	Materials loss measurements using superconducting microwave resonators. Review of Scientific Instruments, 2020, 91, 091101.	0.6	91
11	Comparison of dielectric loss in titanium nitride and aluminum superconducting resonators. Applied Physics Letters, 2020, 117, .	1.5	38
12	Implementation of a Transmon Qubit Using Superconducting Granular Aluminum. Physical Review X, 2020, 10, .	2.8	22
13	Asymptotically Exact Theory for Nonlinear Spectroscopy of Random Quantum Magnets. Physical Review Letters, 2020, 125, 237601.	2.9	11
14	Merged-Element Transmon. Physical Review Applied, 2020, 14, .	1.5	21
15	Demonstration of non-Markovian process characterisation and control on a quantum processor. Nature Communications, 2020, 11, 6301.	5.8	53
16	A quantum memory at telecom wavelengths. Nature Physics, 2020, 16, 772-777.	6.5	77
17	Dielectric loss extraction for superconducting microwave resonators. Applied Physics Letters, 2020, 116, 194003.	1.5	15
18	Materials science for quantum information science and technology. MRS Bulletin, 2020, 45, 485-497.	1.7	6

#	Article	IF	CITATIONS
19	Probing the dynamics of an open quantum system via a single qubit. Journal of Physics A: Mathematical and Theoretical, 2020, 53, 355301.	0.7	4
20	Resolving the positions of defects in superconducting quantum bits. Scientific Reports, 2020, 10, 3090.	1.6	29
21	Geometric scaling of two-level-system loss in superconducting resonators. Superconductor Science and Technology, 2020, 33, 025013.	1.8	25
22	Real-time simulation of flux qubits used for quantum annealing. Physical Review A, 2020, 101, .	1.0	5
23	Rabi oscillations in a superconducting nanowire circuit. Npj Quantum Materials, 2020, 5, .	1.8	13
24	Comparing amorphous silicon prepared by electron-beam evaporation and sputtering toward eliminating atomic tunneling states. Journal of Alloys and Compounds, 2021, 855, 157431.	2.8	6
25	Microwave Superconductivity. IEEE Journal of Microwaves, 2021, 1, 389-402.	4.9	14
26	Positive- and negative-frequency noise from an ensemble of two-level fluctuators. Physical Review Research, 2021, 3, .	1.3	17
27	Gate-based superconducting quantum computing. Journal of Applied Physics, 2021, 129, .	1.1	46
28	Cryogenic microwave loss in epitaxial Al/GaAs/Al trilayers for superconducting circuits. Journal of Applied Physics, 2021, 129, .	1.1	7
29	Simulating the fabrication of aluminium oxide tunnel junctions. Npj Quantum Information, 2021, 7, .	2.8	16
30	Leakage reduction in fast superconducting qubit gates via optimal control. Npj Quantum Information, 2021, 7, .	2.8	81
31	Ultrahigh vacuum packaging and surface cleaning for quantum devices. Review of Scientific Instruments, 2021, 92, 025121.	0.6	10
32	Anomalous low-energy properties in amorphous solids and the interplay of electric and elastic interactions of tunneling two-level systems. Physical Review B, 2021, 103, .	1.1	4
33	Quantum sensors for microscopic tunneling systems. Npj Quantum Information, 2021, 7, .	2.8	17
34	Simplified Josephson-junction fabrication process for reproducibly high-performance superconducting qubits. Applied Physics Letters, 2021, 118, .	1.5	44
35	Fabrication and room temperature characterization of trilayer junctions for the development of superconducting qubits on 300 mm wafers. Japanese Journal of Applied Physics, 2021, 60, SBBI04.	0.8	7
36	Origin of mechanical and dielectric losses from two-level systems in amorphous silicon. Physical Review Materials, 2021, 5, .	0.9	13

#	Article	IF	CITATIONS
37	Quantum information processing with bosonic qubits in circuit QED. Quantum Science and Technology, 2021, 6, 033001.	2.6	64
38	Quantifying dynamics and interactions of individual spurious low-energy fluctuators in superconducting circuits. Physical Review B, 2021, 103, .	1.1	6
39	Effective quantum dynamics induced by a driven two-level-system bath. Physical Review A, 2021, 103, .	1.0	3
40	Circuit quantum electrodynamics. Reviews of Modern Physics, 2021, 93, .	16.4	634
41	Thermal Relaxation in Metal Films Limited by Diffuson Lattice Excitations of Amorphous Substrates. Physical Review Applied, 2021, 15, .	1.5	7
42	Logarithmic Entanglement Growth from Disorder-Free Localization in the Two-Leg Compass Ladder. Physical Review Letters, 2021, 126, 227202.	2.9	18
43	Realization of High-Fidelity CZ and <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>Z</mml:mi>Z</mml:math> -Free iSWAP Gates with a Tunable Coupler. Physical Review X, 2021, 11, .	2.8	103
44	Circuit Quantum Electrodynamics with Carbon-Nanotube-Based Superconducting Quantum Circuits. Physical Review Applied, 2021, 15, .	1.5	16
45	Propagating Wigner-Negative States Generated from the Steady-State Emission of a Superconducting Qubit. Physical Review Letters, 2021, 126, 253602.	2.9	12
46	Advances and opportunities in materials science for scalable quantum computing. MRS Bulletin, 2021, 46, 589-595.	1.7	9
47	Investigation of Microwave Loss Induced by Oxide Regrowth in High- <i>Q</i> Niobium Resonators. Physical Review Applied, 2021, 16, .	1.5	45
48	Microscopic relaxation channels in materials for superconducting qubits. Communications Materials, 2021, 2, .	2.9	31
49	Near-field terahertz nanoscopy of coplanar microwave resonators. Applied Physics Letters, 2021, 119, .	1.5	10
50	Challenges and transformative opportunities in superconductor vortex physics. Journal of Applied Physics, 2021, 130, .	1.1	18
51	Anomalous Frequency Noise From the Megahertz Channelizing Resonators in Frequency-Division Multiplexed Transition Edge Sensor Readout. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-5.	1.1	0
52	Optical direct write of Dolan–Niemeyer-bridge junctions for transmon qubits. Applied Physics Letters, 2021, 119, .	1.5	3
53	Fabrication of transparent lateral CoSi ₂ /TiSi ₂ contact junctions. Japanese Journal of Applied Physics, 2021, 60, 088002.	0.8	1
54	Engineering high-coherence superconducting qubits. Nature Reviews Materials, 2021, 6, 875-891.	23.3	88

#	Article	IF	CITATIONS
55	Millikelvin temperature cryo-CMOS multiplexer for scalable quantum device characterisation. Quantum Science and Technology, 2022, 7, 015004.	2.6	9
56	Enhanced coherence of all-nitride superconducting qubits epitaxially grown on silicon substrate. Communications Materials, 2021, 2, .	2.9	30
57	Interacting defects generate stochastic fluctuations in superconducting qubits. Physical Review B, 2021, 104, .	1.1	14
59	Charge sensitivity of a cavity-embedded Cooper pair transistor limited by single-photon shot noise. Journal of Applied Physics, 2021, 130, 114401.	1.1	3
60	Reproducible coherence characterization of superconducting quantum devices. Applied Physics Letters, 2021, 119, .	1.5	5
61	Non-Markovian Effects of Two-Level Systems in a Niobium Coaxial Resonator with a Single-Photon Lifetime of 10 milliseconds. Physical Review Applied, 2021, 16, .	1.5	13
62	In-situ bandaged Josephson junctions for superconducting quantum processors. Superconductor Science and Technology, 2021, 34, 125011.	1.8	12
63	1/f noise in amorphous Sb ₂ Te ₃ for energy-efficient stochastic synapses in neuromorphic computing. Semiconductor Science and Technology, 2021, 36, 124001.	1.0	4
64	Stability of superconducting resonators: Motional narrowing and the role of Landau-Zener driving of two-level defects. Science Advances, 2021, 7, eabh0462.	4.7	10
65	Acoustic spectral hole-burning in a two-level system ensemble. Npj Quantum Information, 2021, 7, .	2.8	12
66	Microwave Superconductivity. , 2001, , .		14
67	Magnons at low excitations: Observation of incoherent coupling to a bath of two-level systems. Physical Review Research, 2019, 1, .	1.3	19
68	Effect of atomic structure on the electrical response of aluminum oxide tunnel junctions. Physical Review Research, 2020, 2, .	1.3	17
69	Boson peak in ultrathin alumina layers investigated with neutron spectroscopy. Physical Review Research, 2020, 2, .	1.3	6
70	Aharonov-Bohm interference as a probe of Majorana fermions. Physical Review Research, 2020, 2, .	1.3	7
71	Characterization of low-loss hydrogenated amorphous silicon ï الملاحة for superconducting resonators. , 2020, , .		3
72	Two-level systems in superconducting quantum devices due to trapped quasiparticles. Science Advances, 2020, 6, .	4.7	44
73	Cryogenic microwave-to-optical conversion using a triply resonant lithium-niobate-on-sapphire transducer. Optica, 2020, 7, 1737.	4.8	68

#	Article	IF	CITATIONS
74	Linear and Nonlinear Properties of a Compact High-Kinetic-Inductance <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:mi>WSi</mml:mi> Multimode Resonator. Physical Review Applied, 2021, 16, .</mml:math 	1.5	2
75	Stabilization of Qubit Relaxation Rates by Frequency Modulation. Physical Review Applied, 2021, 16, .	1.5	2
76	A macroscopic object passively cooled into its quantum ground state of motion beyond single-mode cooling. Nature Communications, 2021, 12, 6182.	5.8	20
77	Effects of surface treatments on flux tunable transmon qubits. Npj Quantum Information, 2021, 7, .	2.8	9
78	Distribution of two-level system couplings to strain and electric fields in glasses at low temperatures. Physical Review B, 2021, 104, .	1.1	4
79	Material matters in superconducting qubits. Materials Science and Engineering Reports, 2021, 146, 100646.	14.8	32
80	A Selectively Colorful yet Chilly Perspective on the ^{Highs} and _{Lows} of Dielectric Materials for CMOS Nanoelectronics. , 2020, , .		3
81	Resonant Coupling Parameter Estimation with Superconducting Qubits. PRX Quantum, 2021, 2, .	3.5	Ο
82	Practical Guide for Building Superconducting Quantum Devices. PRX Quantum, 2021, 2, .	3.5	29
83	Spatial Correlation between Fluctuating and Static Fields over Metal and Dielectric Substrates. Physical Review Letters, 2021, 127, 216101.	2.9	12
84	Frequency fluctuations of ferromagnetic resonances at millikelvin temperatures. Applied Physics Letters, 2021, 119, 212403.	1.5	1
85	Miniaturizing Transmon Qubits Using van der Waals Materials. Nano Letters, 2021, 21, 10122-10126.	4.5	12
86	Effects of Nonmagnetic Impurities and Subgap States on the Kinetic Inductance, Complex Conductivity, Quality Factor, and Depairing Current Density. Physical Review Applied, 2022, 17, .	1.5	5
87	Towards practical quantum computers: transmon qubit with a lifetime approaching 0.5 milliseconds. Npj Quantum Information, 2022, 8, .	2.8	125
88	Cooper-pair transistor as a minimal topological quantum circuit. Physical Review Research, 2022, 4, .	1.3	8
89	TOF-SIMS analysis of decoherence sources in superconducting qubits. Applied Physics Letters, 2022, 120, .	1.5	15
90	Strain-spectroscopy of strongly interacting defects in superconducting qubits. Superconductor Science and Technology, 2022, 35, 035005.	1.8	3
91	Testing the Cabrera–Mott Oxidation Model for Aluminum under Realistic Conditions with Near-Ambient Pressure Photoemission. Journal of Physical Chemistry C, 2022, 126, 2517-2530.	1.5	11

#	Article	IF	CITATIONS
92	Hexagonal boron nitride as a low-loss dielectric for superconducting quantum circuits and qubits. Nature Materials, 2022, 21, 398-403.	13.3	34
93	Neural-network-based qubit-environment characterization. Physical Review A, 2022, 105, .	1.0	7
94	Fabrication of superconducting qubits and auxiliary devices with niobium base layer. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 050303.	0.2	0
95	Emergence of two-level systems in glass formers: a kinetic Monte Carlo study. Soft Matter, 2022, 18, 2211-2221.	1.2	3
96	Epitaxial titanium nitride microwave resonators: Structural, chemical, electrical, and microwave properties. Physical Review Materials, 2022, 6, .	0.9	13
97	Nonadiabatic transition at a band-touching point. Physical Review Research, 2022, 4, .	1.3	1
98	Probing defect densities at the edges and inside Josephson junctions of superconducting qubits. Npj Quantum Information, 2022, 8, .	2.8	9
99	Nitrogen plasma passivated niobium resonators for superconducting quantum circuits. Applied Physics Letters, 2022, 120, .	1.5	7
100	Integration of Topological Insulator Josephson Junctions in Superconducting Qubit Circuits. Nano Letters, 2022, 22, 2595-2602.	4.5	21
101	Ultrastable glasses: new perspectives for an old problem. Rivista Del Nuovo Cimento, 2022, 45, 325-406.	2.0	26
102	Compositional trends in surface enhanced diffusion in lead silicate glasses. Computational Materials Science, 2022, 206, 111304.	1.4	0
103	On the nature of decoherence in quantum circuits: Revealing the structural motif of the surface radicals in α-Al ₂ O ₃ . Science Advances, 2022, 8, eabm6169.	4.7	5
104	Steady-State Heat Transport and Work With a Single Artificial Atom Coupled to a Waveguide: Emission Without External Driving. PRX Quantum, 2022, 3, .	3.5	7
105	Computational study of oxide stoichiometry and variability in the Al/AlOx/Al tunnel junction. Nanotechnology, 2022, 33, 265201.	1.3	2
106	Elucidating the local atomic and electronic structure of amorphous oxidized superconducting niobium films. Applied Physics Letters, 2021, 119, .	1.5	10
107	Quasiparticle tunneling and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mi>f charge noise in ultrastrongly coupled superconducting qubit and resonator. Physical Review B, 2021, 104</mml:mi></mml:math 		< /mml: mat
108	Localization and Mitigation of Loss in Niobium Superconducting Circuits. PRX Quantum, 2022, 3, .	3.5	20
109	Loss mechanisms in TiN high impedance superconducting microwave circuits. Applied Physics Letters, 2022, 120, .	1.5	9

#	Article	IF	CITATIONS
110	A fermion phenomenology of low-temperature strongly-noncrystalline solids. Journal of Non-Crystalline Solids, 2022, 588, 121632.	1.5	0
111	High coherence and low cross-talk in a tileable 3D integrated superconducting circuit architecture. Science Advances, 2022, 8, eabl6698.	4.7	12
113	Benchmarking Noise and Dephasing in Emerging Electrical Materials for Quantum Technologies. Advanced Materials, 2023, 35, e2109671.	11.1	9
114	Open quantum systems coupled to finite baths: A hierarchy of master equations. Physical Review E, 2022, 105, .	0.8	8
115	Ternary metal oxide substrates for superconducting circuits. Materials for Quantum Technology, 2022, 2, 025004.	1.2	3
116	Combating fluctuations in relaxation times of fixed-frequency transmon qubits with microwave-dressed states. Physical Review A, 2022, 105, .	1.0	10
117	Low-Frequency Correlated Charge-Noise Measurements Across Multiple Energy Transitions in a Tantalum Transmon. PRX Quantum, 2022, 3, .	3.5	11
118	O-terminated interface for thickness-insensitive transport properties of aluminum oxide Josephson junctions. Scientific Reports, 2022, 12, .	1.6	2
119	Chemical and structural identification of material defects in superconducting quantum circuits. Materials for Quantum Technology, 2022, 2, 032001.	1.2	7
120	Magnetic imaging of superconducting qubit devices with scanning SQUID-on-tip. Applied Physics Letters, 2022, 121, 052601.	1.5	5
121	Path toward manufacturable superconducting qubits with relaxation times exceeding 0.1 ms. Npj Quantum Information, 2022, 8, .	2.8	15
122	Two-Level Systems and the Tunneling Model: A Critical View. , 2022, , 113-139.		2
123	Theoretically probing the relationship between barrier length and resistance in Al/AlO <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si5.svg" display="inline" id="d1e96"><mml:msub><mml:mrow /><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:mrow </mml:msub>/Al tunnel junctions. Solid-State Electronics, 2022, 197, 108442.</mml:math 	0.8	2
124	Measurement Techniques for Superconducting Microwave Resonators Towards Quantum Device Applications. , 2022, , .		1
125	Aluminum air bridges for superconducting quantum devices realized using a single-step electron-beam lithography process. Applied Physics Letters, 2022, 121, .	1.5	2
126	Fluctuation Spectroscopy of Two-Level Systems in Superconducting Resonators. Physical Review Applied, 2022, 18, .	1.5	3
127	Developing a Chemical and Structural Understanding of the Surface Oxide in a Niobium Superconducting Qubit. ACS Nano, 2022, 16, 17257-17262.	7.3	10
128	Vacancy dynamics in niobium and its native oxides and their potential implications for quantum computing and superconducting accelerators. Physical Review B, 2022, 106, .	1.1	7

#	Article	IF	Citations
129	Nanomechanical Resonators: Toward Atomic Scale. ACS Nano, 2022, 16, 15545-15585.	7.3	55
130	Stabilizing and Improving Qubit Coherence by Engineering the Noise Spectrum of Two-Level Systems. Physical Review Applied, 2022, 18, .	1.5	4
131	Experimentally revealing anomalously large dipoles in the dielectric of a quantum circuit. Scientific Reports, 2022, 12, .	1.6	2
132	High-Performance Cryogen-Free Platform for Microkelvin-Range Refrigeration. Physical Review Applied, 2022, 18, .	1.5	2
133	Dynamics of superconducting qubit relaxation times. Npj Quantum Information, 2022, 8, .	2.8	29
134	High-Order Qubit Dephasing at Sweet Spots by Non-Gaussian Fluctuators: Symmetry Breaking and Floquet Protection. Physical Review Applied, 2022, 18, .	1.5	5
135	Feedback Stabilization of the Resonant Frequency in a Tunable Microwave Cavity with Single-Photon Occupancy. Physical Review Applied, 2022, 18, .	1.5	3
136	Recent progress in probing atomic and molecular quantum coherence with scanning tunneling microscopy. Progress in Surface Science, 2023, 98, 100696.	3.8	6
137	Precision measurements of the zero-temperature dielectric constant and density of liquid <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mmultiscripts><mml:mi>He</mml:mi><mml:mprese /><mml:none></mml:none><mml:mn>4</mml:mn></mml:mprese </mml:mmultiscripts>. Physical Review B, 2022, 106, .</mml:math 	criptis	1
138	Hydrogenated Amorphous Silicon Carbide: A Low-Loss Deposited Dielectric for Microwave to Submillimeter-Wave Superconducting Circuits. Physical Review Applied, 2022, 18, .	1.5	3
139	Multi-mode architectures for noise-resilient superconducting qubits. Superconductor Science and Technology, 2023, 36, 023001.	1.8	9
140	Microscopic observation of two-level systems in a metallic glass model. Journal of Chemical Physics, 2023, 158, .	1.2	5
141	Identification of Different Types of High-Frequency Defects in Superconducting Qubits. PRX Quantum, 2022, 3, .	3.5	2
142	Molecular dynamics study of the effect of substrate temperature on the barrier behavior in aluminum oxide Josephson junctions. Applied Surface Science, 2023, 615, 156369.	3.1	0
143	Surface Passivation of Niobium Superconducting Quantum Circuits Using Self-Assembled Monolayers. ACS Applied Materials & Interfaces, 2023, 15, 2319-2328.	4.0	1
144	Disentangling the sources of ionizing radiation in superconducting qubits. European Physical Journal C, 2023, 83, .	1.4	5
145	Enhancing the coherence of superconducting quantum bits with electric fields. Npj Quantum Information, 2023, 9, .	2.8	2
146	Topical Review of Quantum Materials and Heterostructures Studied by Polarized Neutron Reflectometry. Physica Status Solidi - Rapid Research Letters, 2023, 17, .	1.2	2

#	Article	IF	CITATIONS
147	Quancorde: Boosting fidelity with Quantum Canary Ordered Diverse Ensembles. , 2022, , .		0
148	Long-Distance Transmon Coupler with cz-Gate Fidelity above <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:mn>99.8</mml:mn><mml:mi mathvariant="normal">%</mml:mi>. PRX Ouantum. 2023. 4</mml:math 	3.5	9
149	Navigating the Dynamic Noise Landscape of Variational Quantum Algorithms with QISMET. , 2023, , .		1
150	Modeling Dielectric Loss in Superconducting Resonators: Evidence for Interacting Atomic Two-Level Systems at the Nb/Oxide Interface. Physical Review Applied, 2023, 19, .	1.5	2
151	Aluminum nitride photonic integrated circuits: from piezo-optomechanics to nonlinear optics. Advances in Optics and Photonics, 2023, 15, 236.	12.1	12
152	Probing flux and charge noise with macroscopic resonant tunneling. Physical Review B, 2023, 107, .	1.1	1
153	Nanomechanical damping via electron-assisted relaxation of two-level systems. Physical Review B, 2023, 107, .	1.1	3
155	Tuning microwave losses in superconducting resonators. Superconductor Science and Technology, 2023, 36, 063002.	1.8	7
156	Noisy intermediate-scale quantum computers. Frontiers of Physics, 2023, 18, .	2.4	19
157	Effect of the Al/AlO _{<i>x</i>} interfacial stacking sequence on the transport properties of alumina tunnel junctions. Physical Chemistry Chemical Physics, 2023, 25, 8871-8881.	1.3	0
158	Precision Measurement of the Microwave Dielectric Loss of Sapphire in the Quantum Regime with Parts-per-Billion Sensitivity. Physical Review Applied, 2023, 19, .	1.5	7
159	Realization of superconducting transmon qubits based on topological insulator nanowires. Applied Physics Letters, 2023, 122, .	1.5	1
160	Robust Millisecond Coherence Times of Erbium Electron Spins. Physical Review Applied, 2023, 19, .	1.5	6
163	Fast Fingerprinting of Cloud-based NISQ Quantum Computers. , 2023, , .		1
164	Quantum information processing with superconducting circuits: A perspective. , 2024, , 246-267.		0
190	1/f noise in quantum nanoscience. , 2024, , 1003-1017.		1
222	DISQ: Dynamic Iteration Skipping for Variational Quantum Algorithms. , 2023, , .		0