Brillouin integrated photonics

Nature Photonics 13, 664-677 DOI: 10.1038/s41566-019-0498-z

Citation Report

#	Article	IF	CITATIONS
1	Hybrid Integrated Semiconductor Lasers with Silicon Nitride Feedback Circuits. Photonics, 2020, 7, 4.	0.9	63
2	Observation of Stimulated Brillouin Scattering in Silicon Nitride Integrated Waveguides. Physical Review Letters, 2020, 124, 013902.	2.9	67
3	Intense Brillouin amplification in gas using hollow-core waveguides. Nature Photonics, 2020, 14, 700-708.	15.6	54
4	Multidimensional synthetic chiral-tube lattices via nonlinear frequency conversion. Light: Science and Applications, 2020, 9, 132.	7.7	30
5	Reconfigurable radiofrequency filters based on versatile soliton microcombs. Nature Communications, 2020, 11, 4377.	5.8	38
6	Tunable microwave-photonic filtering with high out-of-band rejection in silicon. APL Photonics, 2020, 5, .	3.0	31
7	Acousto-optic modulation in lithium niobate on sapphire. APL Photonics, 2020, 5, 086104.	3.0	43
8	Microstructure and domain engineering of lithium niobate crystal films for integrated photonic applications. Light: Science and Applications, 2020, 9, 197.	7.7	89
9	Silicon-based multimode waveguide crossings. JPhys Photonics, 2020, 2, 022002.	2.2	10
10	Analogue of electromagnetically induced absorption in the microwave domain using stimulated Brillouin scattering. Communications Physics, 2020, 3, .	2.0	9
11	Broadband Brillouin Phase Shifter Utilizing RF Interference: Experimental Demonstration and Theoretical Analysis. Journal of Lightwave Technology, 2020, 38, 3624-3636.	2.7	12
12	Chipâ€Based Optical Isolator and Nonreciprocal Parityâ€Time Symmetry Induced by Stimulated Brillouin Scattering. Laser and Photonics Reviews, 2020, 14, 1900278.	4.4	31
13	Crosstalk reduction of integrated optical waveguides with nonuniform subwavelength silicon strips. Scientific Reports, 2020, 10, 4491.	1.6	21
14	ARRAW: anti-resonant reflecting acoustic waveguides. New Journal of Physics, 2020, 22, 053011.	1.2	6
15	Shaping nonlinear optical response using nonlocal forward Brillouin interactions. New Journal of Physics, 2020, 22, 043017.	1.2	11
16	Photonic integration for UV to IR applications. APL Photonics, 2020, 5, .	3.0	67
17	Multitasking and Cascadable Microwave Photonic Signal Processing Topologies with Silicon Photonic Technologies. Fiber and Integrated Optics, 2020, 39, 70-96.	1.7	3
18	Dynamic Filtering of Microwave Signals Through Brillouin-Based Polarization-Sensitive Balanced Detection. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27, 1-6.	1.9	8

ATION REDO

#	Article	IF	CITATIONS
19	On the Use of Brillouin Scattering to Evaluate Quantum Conversion Efficiency in Yb-doped Optical Fibers. Journal of Lightwave Technology, 2021, 39, 4158-4165.	2.7	4
20	Narrowband microwave-photonic notch filtering using Brillouin interactions in silicon. , 2021, , .		2
21	Efficient Microwave Photonic Bandpass Filter With Large Out-of-Band Rejection, High-Resolution and Low Loss up to 40 GHz. Journal of Lightwave Technology, 2021, 39, 6724-6732.	2.7	9
22	Brillouin mirror with an inverted acoustic profile in the presence of strong acoustic dispersion. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 456.	0.9	0
23	Gigahertz Phononic Integrated Circuits on Thin-Film Lithium Niobate on Sapphire. Physical Review Applied, 2021, 15, .	1.5	34
24	Processing light with an optically tunable mechanical memory. Nature Communications, 2021, 12, 663.	5.8	17
25	Fiber-based angular filtering for high-resolution Brillouin spectroscopy in the 20-300â€GHz frequency range. Optics Express, 2021, 29, 2637.	1.7	4
26	Influence of water parameters on threshold value and gain coefficient of stimulated Brillouin scattering. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 154205.	0.2	0
27	Microwave photonic notch filter with integrated phase-to-intensity modulation transformation and optical carrier suppression. Optics Letters, 2021, 46, 488.	1.7	18
28	Designing of strongly confined short-wave Brillouin phonons in silicon waveguide periodic lattices. Optics Express, 2021, 29, 1736.	1.7	5
29	Design of Microwave Photonic Subsystems Using Brillouin Scattering. Journal of Lightwave Technology, 2021, 39, 977-991.	2.7	25
30	Amplification of Stimulated Raman Scattering in Media with a Near-Zero Refractive Index. JETP Letters, 2021, 113, 140-144.	0.4	2
31	Brillouin-Kerr Soliton Frequency Combs in an Optical Microresonator. Physical Review Letters, 2021, 126, 063901.	2.9	74
32	Circulatorâ€Free Brillouin Photonic Planar Circuit. Laser and Photonics Reviews, 2021, 15, 2000481.	4.4	10
33	Vertical Engineering for Large Brillouin Gain in Unreleased Silicon-Based Waveguides. Physical Review Applied, 2021, 15, .	1.5	5
34	Brillouin scattering—theory and experiment: tutorial. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 1243.	0.9	33
35	Acousto-optic modulation of a wavelength-scale waveguide. Optica, 2021, 8, 477.	4.8	28
36	Brillouin-Induced Dynamic Arbitrary Birefringence. Journal of Lightwave Technology, 2021, 39, 1961-1967.	2.7	2

# 37	ARTICLE On-chip broadband nonreciprocal light storage. , 2021, , 75-82.	IF	CITATIONS 0
38	Surface acoustic microwave photonic filters in standard silicon-on-insulator. Optica, 2021, 8, 697.	4.8	11
39	Gigahertz Nano-Optomechanical Resonances in a Dielectric SiC-Membrane Metasurface Array. Nano Letters, 2021, 21, 4563-4569.	4.5	13
40	Towards single-chip radiofrequency signal processing via acoustoelectric electron–phonon interactions. Nature Communications, 2021, 12, 2769.	5.8	27
41	Thin-suspended 2D materials: facile, versatile, and deterministic transfer assembly. 2D Materials, 2021, 8, 035028.	2.0	4
42	Picosecond acoustic dynamics in stimulated Brillouin scattering. Optics Letters, 2021, 46, 2972.	1.7	4
43	Frequency-resolved photon correlations in cavity optomechanics. Quantum Science and Technology, 2021, 6, 034005.	2.6	8
44	Optical characterization of Ge115As24S645 glass for an on-chip supercontinuum. Applied Optics, 2021, 60, 5451.	0.9	2
45	Stimulated Brillouin Scattering on AlGaAs on Sapphire platform. , 2021, , .		1
46	Demonstration of enhanced four-wave mixing by harnessing stimulated Brillouin scattering within a suspended cascaded microring resonator. Applied Physics Letters, 2021, 118, 231104.	1.5	2
48	On-Chip Detector Based on Supercontinuum Generation in Chalcogenide Waveguide. Journal of Lightwave Technology, 2021, 39, 3890-3895.	2.7	13
49	Ultra-Deep Multi-Notch Microwave Photonic Filter utilising On-Chip Brillouin processing and Microring Resonators. , 2021, , .		1
50	Numerical simulation of noise in pulsed Brillouin scattering. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 2343.	0.9	6
51	High spatiotemporal resolution optoacoustic sensing with photothermally induced acoustic vibrations in optical fibres. Nature Communications, 2021, 12, 4139.	5.8	11
52	Advances in Brillouin–Mandelstam light-scattering spectroscopy. Nature Photonics, 2021, 15, 720-731.	15.6	42
53	Bandwidthâ€reconfigurable microwave photonic filter based on stimulated Brillouin scattering effect spreading by vector modulation technology. Microwave and Optical Technology Letters, 2021, 63, 2985-2990.	0.9	3
54	Hybrid Chalcogenideâ€Germanosilicate Waveguides for High Performance Stimulated Brillouin Scattering Applications. Advanced Functional Materials, 2022, 32, 2105230.	7.8	10
55	Visible light photonic integrated Brillouin laser. Nature Communications, 2021, 12, 4685.	5.8	52

#	Article	IF	CITATIONS
56	Active Information Manipulation via Optically Driven Acoustic-Wave Interference. Nano Letters, 2021, 21, 7270-7276.	4.5	4
57	Stimulated Brillouin Scattering in Low-Loss Ge ₂₅ Sb ₁₀ S ₆₅ Chalcogenide Waveguides. Journal of Lightwave Technology, 2021, 39, 5048-5053.	2.7	14
58	Optical investigation of chalcogenide glass for on-chip integrated devices. Results in Physics, 2021, 28, 104552.	2.0	3
59	Tailorable Brillouin Light Scattering in a Lithium Niobate Waveguide. Applied Sciences (Switzerland), 2021, 11, 8390.	1.3	4
60	Particle scattering in a sonic analogue of special relativity. Physical Review D, 2021, 104, .	1.6	3
61	Demonstration of Forward Brillouin Gain in a Hybrid Photonic–Phononic Silicon Waveguide. ACS Photonics, 2021, 8, 2755-2763.	3.2	8
62	Analysis of giant forward Brillouin gain enhancement in double-disk microcavities by tailoring optical forces. Optics and Laser Technology, 2021, 141, 107173.	2.2	0
63	Strong optomechanical coupling in chain-like waveguides of silicon nanoparticles with quasi-bound states in the continuum. Optics Letters, 2021, 46, 4466.	1.7	1
64	Noise and pulse dynamics in backward stimulated Brillouin scattering. Optics Express, 2021, 29, 3132.	1.7	5
65	Observation of Stimulated Brillouin Scattering in Ge25Sb10S65 Chalcogenide Waveguides. , 2021, , .		0
66	Externally Pumped Photonic Chipâ€Based Ultrafast Raman Soliton Source. Laser and Photonics Reviews, 2021, 15, 2000301.	4.4	11
67	Frequency-domain study of nonthermal gigahertz phonons reveals Fano coupling to charge carriers. Science Advances, 2020, 6, .	4.7	11
68	Integrated microwave photonic filters. Advances in Optics and Photonics, 2020, 12, 485.	12.1	111
69	Giant Brillouin amplification in gas using hollow-core waveguides. , 2020, , .		3
70	Detuning effects in Brillouin ring microresonator laser. Optics Express, 2020, 28, 4962.	1.7	17
71	Experimental demonstration of nanophotonic devices and circuits with colloidal quantum dot waveguides. Optics Express, 2020, 28, 23091.	1.7	5
72	Integrated microwave acousto-optic frequency shifter on thin-film lithium niobate. Optics Express, 2020, 28, 23728.	1.7	43
73	Dual-frequency laser comprising a single fiber ring cavity for self-injection locking of DFB laser diode and Brillouin lasing. Optics Express, 2020, 28, 37322.	1.7	21

#	Article	IF	Citations
74	Integrated microwave photonic true-time delay with interferometric delay enhancement based on Brillouin scattering and microring resonators. Optics Express, 2020, 28, 36020.	1.7	10
75	Thermal tuning of arsenic selenide glass thin films and devices. Optics Express, 2020, 28, 34744.	1.7	2
76	Etchless chalcogenide microresonators monolithically coupled to silicon photonic waveguides. Optics Letters, 2020, 45, 2830.	1.7	23
77	Low-RF-loss and large-rejection reconfigurable Brillouin-based RF photonic bandpass filter. Optics Letters, 2020, 45, 3705.	1.7	14
78	Subwavelength engineering for Brillouin gain optimization in silicon optomechanical waveguides. Optics Letters, 2020, 45, 3717.	1.7	7
79	Ar/Cl2 etching of GaAs optomechanical microdisks fabricated with positive electroresist. Optical Materials Express, 2020, 10, 57.	1.6	4
80	On-chip nanophotonics and future challenges. Nanophotonics, 2020, 9, 3733-3753.	2.9	85
81	Nonlinear nanophotonic devices in the ultraviolet to visible wavelength range. Nanophotonics, 2020, 9, 3781-3804.	2.9	23
82	On-chip broadband nonreciprocal light storage. Nanophotonics, 2020, 10, 75-82.	2.9	17
83	Demonstration of Stimulated Brillouin Scattering in a Silicon Suspended Microring With Photonic-Phononic Waveguide. Journal of Lightwave Technology, 2022, 40, 121-127.	2.7	1
84	Giant Brillouin Amplification in Gas Using Hollow-core Fiber. , 2021, , .		0
85	Slow-light based tunable delay and narrowband comb filtering at 2  μm. Optics Letters, 2019, 44, 527a	8. 1.7	1
86	ARRAW: Anti-Resonant Reflecting Acoustic Waveguide for efficient Brillouin scattering. , 2020, , .		0
87	Inducing absorption within a Brillouin gain profile for radio frequency switching. , 2021, , .		0
88	Evidence of visible wavelength spontaneous Brillouin scattering in Si3N4 waveguides. , 2020, , .		1
89	RF-photonic filters using coupled Brillouin-active waveguides in silicon. , 2020, , .		0
90	Fully reconfigurable chip-based Brillouin microwave photonic multi-passband filter with high RF link gain. , 2020, , .		0
91	On-Chip All-Optical Polarisation Pulling via Stimulated Brillouin Scattering. , 2020, , .		1

#	Article	IF	CITATIONS
92	Stimulated Brillouin Scattering in AlGaAs on insulator waveguides. , 2020, , .		4
93	Noise in Brillouin Based Information Storage. Optics Express, 2021, 29, 39486-39497.	1.7	0
94	Proposal for a quantum traveling Brillouin resonator. Optics Express, 2020, 28, 22450.	1.7	6
95	Spontaneous phase locking of mechanical multimodes in anti-parity-time optomechanics. Optics Express, 2020, 28, 28762.	1.7	3
96	High-conversion-gain and deep-image-rejection Brillouin chip-based photonic RF mixer. Optics Letters, 2020, 45, 5571.	1.7	13
97	On-chip supercontinuum generation in Ge28Sb12Se60 chalcogenide waveguides and numerical investigation. , 2020, , .		0
98	Multi-Band and Frequency-Agile Chip-Based RF Photonic Filter for Ultra-Deep Interference Rejection. Journal of Lightwave Technology, 2022, 40, 1672-1680.	2.7	6
99	Self-pulsations in a microcavity Brillouin laser. Optics Letters, 2022, 47, 421.	1.7	4
100	Ultrasonic and Spectroscopic Techniques for the Measurement of the Elastic Properties of Nanoscale Materials. , 0, , .		0
101	On-chip electro-optic frequency shifters and beam splitters. Nature, 2021, 599, 587-593.	13.7	78
102	Microresonator Brillouin Laser Gyroscope with Earth-Rotation-Rate Sensitivity. , 2021, , .		0
103	Stimulated Brillouin scattering in chiral photonic crystal fiber. Photonics Research, 2022, 10, 711. On-chip stimulated Brillouin scattering in Asxmml:math	3.4	19
104	xmins:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e346" altimg="si1.svg"> <mml:msub><mml:mrow /><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mrow </mml:msub> S <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e354"</mml:math 	1.0	3
105	altimg="si2.svg"> <mml:msub><mml:mrow /><mml:mrow><mml:mn>3</mml:mn></mml:mrow>Demonstration of stimulated Brillouin scattering in low-loss chalcogenide waveguides. , 2021, , .</mml:mrow </mml:msub>		0
106	Forward Stimulated Brillouin Scattering in Free-Standing Waveguides on a Silicon Photonics Platform. , 2021, , .		0
107	Optical Vortex Brillouin Laser in Chiral Photonic Crystal Fiber. , 2021, , .		1
108	Chip-based RF Photonic Notch Filter for Deep Rejection of Multi-Band Interfering Signals. , 2021, , .		0
109	Engineered Raman Lasing in Photonic Integrated Chalcogenide Microresonators. Laser and Photonics Reviews, 2022, 16, .	4.4	25

#	ARTICLE	IF	CITATIONS
110	Analysis of thin layers using surface acoustic wave-photonic devices in silicon-on-insulator. Optics Express, 2022, 30, 6949.	1.7	3
111	Brillouin spectroscopy. , 2022, , 45-72.		1
112	Ridge-type suspended waveguide Brillouin laser. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 024203.	0.2	0
113	Acoustoâ€Optic Modulation in Silicon Waveguides Based on Piezoelectric Aluminum Scandium Nitride Film. Advanced Optical Materials, 2022, 10, .	3.6	8
114	Generation of a multi-wavelength Brillouin erbium fiber laser with low threshold in multiple frequency spacing configurations. Optical Fiber Technology, 2022, 69, 102832.	1.4	12
115	Temperature and strain sensitivities of surface and hybrid acoustic wave Brillouin scattering in optical microfibers. Chinese Physics B, 2022, 31, 094208.	0.7	1
116	Stimulated Brillouin scattering in a sub-wavelength anisotropic waveguide with slightly-misaligned material and structural axes: misalignment-sensitive behaviors and underlying physics. Journal of Optics (United Kingdom), 2022, 24, 045002.	1.0	1
117	Large evanescently-induced Brillouin scattering at the surrounding of a nanofibre. Nature Communications, 2022, 13, 1432.	5.8	6
118	High-power, low-noise Brillouin laser on a silicon chip. Optics Letters, 2022, 47, 1638.	1.7	7
119	Compact, spatial-mode-interaction-free, ultralow-loss, nonlinear photonic integrated circuits. Communications Physics, 2022, 5, .	2.0	36
120	Cascade Brillouin Lasing in a Tellurite-Glass Microsphere Resonator with Whispering Gallery Modes. Sensors, 2022, 22, 2866.	2.1	9
121	Temperature Sensing Characteristics of Surface Acoustic Wave Brillouin Scattering in Optical Microfibers. , 2021, , .		0
122	Stimulated Brillouin Scattering in Multilayer Silicon Nitride Waveguides. , 2021, , .		0
123	Generating X-band phonons in a nanostructured silicon optomechanical cavity. , 2021, , .		0
124	Manipulating photons in a way like an optical tweezer. New Journal of Physics, 2022, 24, 053005.	1.2	1
125	Thermal and driven noise in Brillouin lasers. Physical Review A, 2022, 105, .	1.0	4
126	Tunable spectral squeezers based on monolithically integrated diamond Raman resonators. Applied Physics Letters, 2022, 120, .	1.5	8
127	Narrowband microwave-photonic notch filters using Brillouin-based signal transduction in silicon. Nature Communications, 2022, 13, 1947.	5.8	19

ARTICLE

IF CITATIONS

Microwave photonics applications of stimulated Brillouin scattering. Journal of Optics (United) Tj ETQq0 0 0 rgBT / Overlock 10 Tf 50 742

129	Enhanced stimulated Brillouin scattering utilizing Raman conversion in diamond. Applied Physics Letters, 2022, 120, .	1.5	36
130	Soliton microwave oscillators using oversized billion Q optical microresonators. Optica, 2022, 9, 561.	4.8	24
131	Photonic (computational) memories: tunable nanophotonics for data storage and computing. Nanophotonics, 2022, 11, 3823-3854.	2.9	37
132	On-chip stimulated Brillouin scattering. Semiconductors and Semimetals, 2022, , .	0.4	1
133	Modification of crystallization behavior, mechanical strength and optical property of Ge–S binary chalcogenide glass ceramics by trace CsCl incorporation. Ceramics International, 2022, 48, 25781-25787.	2.3	2
134	A Theoretical Study of Tunable Brillouin Lasers Based on a Diamond Suspended Waveguide. Frontiers in Physics, 2022, 10, .	1.0	0
135	Acoustic, Phononic, Brillouin Light Scattering and Faraday Wave-Based Frequency Combs: Physical Foundations and Applications. Sensors, 2022, 22, 3921.	2.1	7
136	Optical Control of Nanomechanical Brownian Motion Eigenfrequencies in Metamaterials. Nano Letters, 2022, 22, 4301-4306.	4.5	6
137	Applications of thin-film lithium niobate in nonlinear integrated photonics. Advanced Photonics, 2022, 4, .	6.2	47
138	Surface acoustic wave photonic filters with a single narrow radio-frequency passband in standard silicon on insulator. Photonics Research, 2022, 10, 1723.	3.4	5
139	The convergence of cavity optomechanics and Brillouin scattering. Semiconductors and Semimetals, 2022, , 93-131.	0.4	0
140	Electrical control of surface acoustic waves. Nature Electronics, 2022, 5, 348-355.	13.1	22
141	Sub-megahertz spectral dip in a resonator-free twisted gain medium. Nature Photonics, 2022, 16, 498-504.	15.6	6
142	Brillouin dynamic grating erasure technique for fast all-optical signal processing. Optics Letters, 2022, 47, 3211.	1.7	2
143	On-chip mid-IR octave-tunable Raman soliton laser. Optics Express, 2022, 30, 25356.	1.7	1
144	Intramode Brillouin Scattering Properties of Single-Crystal Lithium Niobate Optical Fiber. Applied Sciences (Switzerland), 2022, 12, 6476.	1.3	0
145	High stability hundreds of picoseconds pulse compression using self-pumped SBS. Results in Physics, 2022, 40, 105785.	2.0	3

#	Article	IF	Citations
146	Stimulated Brillouin scattering for microwave photonics. Semiconductors and Semimetals, 2022, , 81-105.	0.4	0
147	Intrinsic mode coupling in mirror-symmetric whispering gallery resonators. Optics Express, 2022, 30, 32847.	1.7	0
148	High-repetition-rate, quarter acoustic wave oscillation period pulse compression using transient stimulated Brillouin scattering. Optics Express, 0, , .	1.7	3
149	Ultra-high-linearity integrated lithium niobate electro-optic modulators. Photonics Research, 2022, 10, 2366.	3.4	16
150	Silicon nitride stress-optic microresonator modulator for optical control applications. Optics Express, 2022, 30, 31816.	1.7	19
151	Chip-Based Brillouin Processing for Microwave Photonic Phased Array Antennas. IEEE Journal of Selected Topics in Quantum Electronics, 2023, 29, 1-20.	1.9	2
152	Nonreciprocal light-driven vortex isolator. , 2022, , .		0
153	RF signal processing by photonic-assisted coherent control of acoustic wave interference. , 2022, , .		Ο
154	Optimization of Stimulated Brillouin Scattering Gain in a Double-Stripe Si3N4 Waveguide. , 2022, , .		0
155	Electromechanical Brillouin scattering. Semiconductors and Semimetals, 2022, , 287-311.	0.4	1
156	Stimulated Forward Brillouin Scattering from a Fundamental Acoustic Mode in a Fiber Taper. , 2022, , .		0
157	Stimulated Brillouin Scattering Microwave Photonic Notch Filter in Silicon Nitride. , 2022, , .		0
158	Integrated Brillouin lasers and their applications. Semiconductors and Semimetals, 2022, , 107-180.	0.4	0
159	Brillouin-based radio frequency sources. Semiconductors and Semimetals, 2022, , 53-80.	0.4	Ο
160	22.5-W narrow-linewidth diamond Brillouin laser at 1064â€nm. Optics Letters, 2022, 47, 5360.	1.7	23
161	Numerical Study of Stimulated Brillouin Scattering in Optical Microcavities Made of Telecommunication Fibres. , 2022, , .		0
162	Guided-acoustic stimulated Brillouin scattering in silicon nitride photonic circuits. Science Advances, 2022, 8, .	4.7	13
163	Introduction: Interactions Between Guided Optical and Acoustic Waves. Springer Series in Optical Sciences, 2022, , 1-44.	0.5	0

#	Article	IF	Citations
164	Roadmap on chalcogenide photonics. JPhys Photonics, 2023, 5, 012501.	2.2	9
165	Highly tunable broadband coherent wavelength conversion with a fiber-based optomechanical system. Advanced Photonics, 2022, 4, .	6.2	3
166	Nonreciprocal vortex isolator via topology-selective stimulated Brillouin scattering. Science Advances, 2022, 8, .	4.7	16
167	Integrated Chalcogenide Photonics for Microresonator Soliton Combs. Laser and Photonics Reviews, 2023, 17, .	4.4	14
168	Spectral optimization of Stokes channels for multi-wavelength Brillouin fiber lasers. Laser Physics, 2022, 32, 125102.	0.6	2
169	Raman scattering-based distributed temperature sensors: A comprehensive literature review over the past 37 years and towards new avenues. Optical Fiber Technology, 2022, 74, 103091.	1.4	16
170	Analog wavelet-like transform based on stimulated Brillouin scattering. Optics Letters, 2023, 48, 29.	1.7	2
171	100 years of Brillouin scattering: Historical and future perspectives. Applied Physics Reviews, 2022, 9, .	5.5	11
172	Fully Automatic In-Situ Reconfiguration of Optical Filters in a CMOS-Compatible Silicon Photonic Process. Journal of Lightwave Technology, 2023, 41, 1286-1297.	2.7	2
173	Photonics-Based Short-Time Fourier Transform Without High-Frequency Electronic Devices and Equipment. IEEE Photonics Technology Letters, 2023, 35, 109-112.	1.3	2
174	Thermal Modulation of Gigahertz Surface Acoustic Waves on Lithium Niobate. Physical Review Applied, 2022, 18, .	1.5	3
175	Heterogeneous integration of Brillouin devices with active silicon photonic circuits. , 2022, , .		0
176	Thermo-elastic gigahertz-frequency oscillator through surface acoustic wave-silicon photonics. Optics Express, 2023, 31, 684.	1.7	1
177	Modeling and characterization of high-power single frequency free-space Brillouin lasers. Optics Express, 2023, 31, 2942.	1.7	14
178	Subwavelength Control of Photons and Phonons in Release-Free Silicon Optomechanical Resonators. ACS Photonics, 2022, 9, 3855-3862.	3.2	6
179	Strong optomechanical interactions with long-lived fundamental acoustic waves. Optica, 2023, 10, 206.	4.8	3
180	Photo-induced cascaded harmonic and comb generation in silicon nitride microresonators. Science Advances, 2022, 8, .	4.7	10
181	kHz pulse generation with Brillouin erbium fiber laser. Laser Physics, 2023, 33, 015102.	0.6	2

#	Article	IF	CITATIONS
182	Optimizing performance for an on-chip stimulated Brillouin scattering-based isolator. Journal of the Optical Society of America B: Optical Physics, 2023, 40, 523.	0.9	3
183	Non-reciprocal acoustoelectric microwave amplifiers with net gain and low noise in continuous operation. Nature Electronics, 0, , .	13.1	6
184	Quantum coherent control in pulsed waveguide optomechanics. Physical Review Research, 2023, 5, .	1.3	4
185	Chip-based SBS for image rejection in a broadband microwave photonic mixer. Optics Express, 2023, 31, 4268.	1.7	5
186	Genetic optimization of Brillouin scattering gain in subwavelength-structured silicon membrane waveguides. Optics and Laser Technology, 2023, 161, 109130.	2.2	3
187	Compact ring resonators of silicon nanorods for strong optomechanical interaction. Nanoscale, 2023, 15, 4982-4990.	2.8	0
188	Modulation of Brillouin Optomechanical Interactions via Acoustoelectric Phonon-Electron Coupling. Physical Review Applied, 2023, 19, .	1.5	0
189	Optical Vortex Brillouin Laser. Laser and Photonics Reviews, 2023, 17, .	4.4	7
190	Aluminum nitride photonic integrated circuits: from piezo-optomechanics to nonlinear optics. Advances in Optics and Photonics, 2023, 15, 236.	12.1	12
191	Highly reconfigurable silicon integrated microwave photonic filter towards next-generation wireless communication. Photonics Research, 2023, 11, 682.	3.4	13
192	Deuterated SiNx: a low-loss, back-end CMOS-compatible platform for nonlinear integrated optics. Nanophotonics, 2023, 12, 1613-1631.	2.9	2
193	Improving the Accuracy and Resolution of Filter- and Frequency-to-Time Mapping-Based Time and Frequency Acquisition Methods by Broadening the Filter Bandwidth. IEEE Transactions on Microwave Theory and Techniques, 2023, 71, 3668-3677.	2.9	4
194	Order controllable enhanced stimulated Brillouin scattering utilizing cascaded diamond Raman conversion. Applied Physics Letters, 2023, 122, .	1.5	12
195	Stimulated Brillouin scattering by surface acoustic waves in lithium niobate waveguides. Journal of the Optical Society of America B: Optical Physics, 2023, 40, D56.	0.9	3
196	An Introduction to Nonlinear Integrated Photonics Devices: Nonlinear Effects and Materials. Micromachines, 2023, 14, 604.	1.4	10
197	Dynamic Brillouin cooling for continuous optomechanical systems. Materials for Quantum Technology, 2023, 3, 015003.	1.2	1
198	Optomechanical cavities in silicon-on-insulator. , 2023, , .		0
199	Nonlinear Optical Radiation of a Lithium Niobate Microcavity. Physical Review Applied, 2023, 19, .	1.5	2

#	Article	IF	CITATIONS
200	Noise Cancellation Effects in Integrated Photonics with Wilkinson Power Dividers. ACS Photonics, 0, ,	3.2	0
201	Harnessing Brillouin interaction in rare-earth aluminosilicate glass microwires for optoelectromechanic quantum transduction. Physics Letters, Section A: General, Atomic and Solid State Physics, 2023, 475, 128829.	0.9	0
209	Actuating stimulated Brillouin scattering in silicon nitride photonic circuits. , 2022, , .		0
210	A cascaded Brillouin laser using diamond Raman conversion. , 2022, , .		Ο
211	Inter-vortex forward Brillouin scattering by chiral flexural phonons in twisted photonic crystal fibre. , 2023, , .		0
212	Compact RF photonic notch filter based on heterogeneous integration of As2S3 with active silicon photonic circuits. , 2023, , .		0
213	Self-assembled gratings in chalcogenide microresonators for ultralow-threshold integrated Brillouin lasers. , 2023, , .		0
214	Ultranarrow-Linewidth Stimulated Intermodal Forward Brillouin Scattering. , 2023, , .		0
215	High-quality Integrated Chalcogenide Microring Resonators for Efficient Brillouin lasers. , 2023, , .		0
225	Observation of Brillouin Backscattering in a 50cm-Long High-Index Doped Silica Chip Waveguide. , 2023, , .		0
226	Enhanced Diamond Brillouin Scattering Based on Cascaded Raman Conversion. , 2023, , .		0
238	Stimulated Brillouin interaction between guided phonons and photons in a lithium niobate waveguide. Science China: Physics, Mechanics and Astronomy, 2024, 67, .	2.0	2
241	A Cascaded Brillouin Laser using Diamond Raman Conversion. , 2022, , .		0
242	Actuating Stimulated Brillouin Scattering in Silicon Nitride Photonic Circuits. , 2022, , .		0