Survey of Clinical Translation of Cancer Nanomedicines and Failures

Accounts of Chemical Research 52, 2445-2461 DOI: 10.1021/acs.accounts.9b00228

Citation Report

#	Article	IF	CITATIONS
1	Thirty Years of Cancer Nanomedicine: Success, Frustration, and Hope. Cancers, 2019, 11, 1855.	1.7	135
2	Advances on Non-Genetic Cell Membrane Engineering for Biomedical Applications. Polymers, 2019, 11, 2017.	2.0	10
3	Improving cancer therapy through the nanomaterials-assisted alleviation of hypoxia. Biomaterials, 2020, 228, 119578.	5.7	157
4	Ferroptosis-driven nanotherapeutics for cancer treatment. Journal of Controlled Release, 2020, 319, 322-332.	4.8	130
5	Addressing cancer signal transduction pathways with antisense and siRNA oligonucleotides. NAR Cancer, 2020, 2, zcaa025.	1.6	16
6	Green Synthesis of Nanoparticles: Applications and Prospects. , 2020, , .		4
7	Enhancement of tumour penetration by nanomedicines through strategies based on transport processes and barriers. Journal of Controlled Release, 2020, 328, 28-44.	4.8	43
8	Brave new world revisited: Focus on nanomedicine. Biochemical and Biophysical Research Communications, 2020, 533, 36-49.	1.0	18
9	Cell Membrane Coated Particles. Advanced Biology, 2020, 4, e2000174.	3.0	18
10	Inorganic nanoparticles in clinical trials and translations. Nano Today, 2020, 35, 100972.	6.2	138
11	Cancer Nanomedicines in an Evolving Oncology Landscape. Trends in Pharmacological Sciences, 2020, 41, 730-742.	4.0	32
12	What Went Wrong with Anticancer Nanomedicine Design and How to Make It Right. ACS Nano, 2020, 14, 12281-12290.	7.3	140
13	Delivering the power of nanomedicine to patients today. Journal of Controlled Release, 2020, 326, 164-171.	4.8	219
14	The regulation of nanomaterials and nanomedicines for clinical application: current and future perspectives. Biomaterials Science, 2020, 8, 4653-4664.	2.6	184
15	Design principles, synthesis and biomedical applications of polymer vesicles with inhomogeneous membranes. Journal of Controlled Release, 2020, 326, 365-386.	4.8	37
16	Smart Magnetic and Fluorogenic Photosensitizer Nanoassemblies Enable Redoxâ€Driven Disassembly for Photodynamic Therapy. Angewandte Chemie, 2020, 132, 20817-20825.	1.6	25
17	Smart Magnetic and Fluorogenic Photosensitizer Nanoassemblies Enable Redoxâ€Driven Disassembly for Photodynamic Therapy. Angewandte Chemie - International Edition, 2020, 59, 20636-20644.	7.2	80
18	Photoactivation Strategies for Therapeutic Release in Nanodelivery Systems. Advanced Therapeutics, 2020, 3, 2000117.	1.6	12

ATION RED

#	Article	IF	CITATIONS
19	The MUDENG Augmentation: A Genesis in Anti-Cancer Therapy?. International Journal of Molecular Sciences, 2020, 21, 5583.	1.8	6
20	Localized nanotheranostics: recent developments in cancer nanomedicine. Materials Today Advances, 2020, 8, 100087.	2.5	21
21	Optical Properties of Alloyed Noble Metal Nanoparticles: A Nanotechnology Experiment for Chemistry and Engineering Students. Journal of Chemical Education, 2020, 97, 3778-3783.	1.1	3
22	An Elucidative Review to Analytically Sieve the Viability of Nanomedicine Market. Journal of Pharmaceutical Innovation, 2020, , 1-17.	1.1	10
23	Exploiting nanoscale cooperativity for precision medicine. Advanced Drug Delivery Reviews, 2020, 158, 63-72.	6.6	17
24	Antibody Conjugation of Nanoparticles as Therapeutics for Breast Cancer Treatment. International Journal of Molecular Sciences, 2020, 21, 6018.	1.8	52
25	Emerging Nanopharmaceuticals and Nanonutraceuticals in Cancer Management. Biomedicines, 2020, 8, 347.	1.4	39
26	Synthetic high-density lipoproteins loaded with an antiplatelet drug for efficient inhibition of thrombosis in mice. Science Advances, 2020, 6, .	4.7	11
27	Activation Strategies in Image-Guided Nanotherapeutic Delivery. Journal of Nanotheranostics, 2020, 1, 78-104.	1.7	4
28	Timeline of Translational Formulation Technologies for Cancer Therapy: Successes, Failures, and Lessons Learned Therefrom. Pharmaceutics, 2020, 12, 1028.	2.0	6
29	Best Practices for Preclinical In Vivo Testing of Cancer Nanomedicines. Advanced Healthcare Materials, 2020, 9, 2000110.	3.9	14
30	Immunotherapy for gliomas: shedding light on progress in preclinical and clinical development. Expert Opinion on Investigational Drugs, 2020, 29, 659-684.	1.9	15
31	Green Plasmonic Nanoparticles and Bio-Inspired Stimuli-Responsive Vesicles in Cancer Therapy Application. Nanomaterials, 2020, 10, 1083.	1.9	22
32	Cancer nanomedicine meets immunotherapy: opportunities and challenges. Acta Pharmacologica Sinica, 2020, 41, 954-958.	2.8	33
33	Nuclear delivery of dual anticancer drug-based nanomedicine constructed by cisplatinum-induced peptide self-assembly. Nanoscale, 2020, 12, 15275-15282.	2.8	28
34	Selfâ€Assembling Proteins for Design of Anticancer Nanodrugs. Chemistry - an Asian Journal, 2020, 15, 1405-1419.	1.7	14
35	Designing Stimuliâ€Responsive Upconversion Nanoparticles that Exploit the Tumor Microenvironment. Advanced Materials, 2020, 32, e2000055.	11.1	143
36	Realizing Cancer Precision Medicine by Integrating Systems Biology and Nanomaterial Engineering. Advanced Materials, 2020, 32, e1906783.	11.1	21

#	Article	IF	CITATIONS
37	Guidelines for the experimental design of pharmacokinetic studies with nanomaterials in preclinical animal models. Journal of Controlled Release, 2020, 323, 83-101.	4.8	20
38	Development and disassembly of single and multiple acid-cleavable block copolymer nanoassemblies for drug delivery. Polymer Chemistry, 2020, 11, 2934-2954.	1.9	39
39	Challenging paradigms in tumour drug delivery. Nature Materials, 2020, 19, 477-477.	13.3	33
40	The Role of Branch Cell Symmetry and Other Critical Nanoscale Design Parameters in the Determination of Dendrimer Encapsulation Properties. Biomolecules, 2020, 10, 642.	1.8	42
41	Therapeutic Potential of Targeted Nanoparticles and Perspective on Nanotherapies. ACS Medicinal Chemistry Letters, 2020, 11, 1069-1073.	1.3	49
42	Nanomedicine for Acute Brain Injuries: Insight from Decades of Cancer Nanomedicine. Molecular Pharmaceutics, 2021, 18, 522-538.	2.3	11
43	Designing sub-20Ânm self-assembled nanocarriers for small molecule delivery: Interplay among structural geometry, assembly energetics, and cargo release kinetics. Journal of Controlled Release, 2021, 329, 538-551.	4.8	9
44	Requirements for Animal Experiments: Problems and Challenges. Small, 2021, 17, e2004182.	5.2	33
45	Actively targeted nanomedicines for precision cancer therapy: Concept, construction, challenges and clinical translation. Journal of Controlled Release, 2021, 329, 676-695.	4.8	111
46	Biosynthetic magnetic nanocages: towards effective and safe magneto-catalytic cancer therapy. Science Bulletin, 2021, 66, 640-642.	4.3	0
47	Mechanochemical Cellular Membrane Internalization of Nanohydrogels: A Large-Scale Mesoscopic Simulation. ACS Applied Materials & amp; Interfaces, 2021, 13, 123-134.	4.0	13
48	Nanomedicine for the Treatment of Advanced Prostate Cancer. Advanced Therapeutics, 2021, 4, 2000136.	1.6	3
49	Nanoparticles for Cancer Therapy. , 2021, , 1-45.		0
50	Biohybrid Nanosystems for Cancer Treatment: Merging the Best of Two Worlds. Advances in Experimental Medicine and Biology, 2021, 1295, 135-162.	0.8	0
51	Nano-pharmacokinetics: industrial transformation future outlook and conclusion. , 2021, , 289-300.		0
52	Catalogue of self-targeting nano-medical inventions to accelerate clinical trials. Biomaterials Science, 2021, 9, 3898-3910.	2.6	4
53	Illuminating endosomal escape of polymorphic lipid nanoparticles that boost mRNA delivery. Biomaterials Science, 2021, 9, 4289-4300.	2.6	52
54	Anti-PEG scFv corona ameliorates accelerated blood clearance phenomenon of PEGylated nanomedicines. Journal of Controlled Release, 2021, 330, 493-501.	4.8	24

#	Article	IF	CITATIONS
55	Investigating the crucial roles of aliphatic tails in disulfide bond-linked docetaxel prodrug nanoassemblies. Asian Journal of Pharmaceutical Sciences, 2021, 16, 643-652.	4.3	14
56	Whither Magnetic Hyperthermia? A Tentative Roadmap. Materials, 2021, 14, 706.	1.3	76
57	HPMA Copolymer-Based Nanomedicines in Controlled Drug Delivery. Journal of Personalized Medicine, 2021, 11, 115.	1.1	40
58	Nanotechnology advances in pathogen- and host-targeted antiviral delivery: multipronged therapeutic intervention for pandemic control. Drug Delivery and Translational Research, 2021, 11, 1420-1437.	3.0	18
59	Nanosystem functionalization strategies for prostate cancer treatment: a review. Journal of Drug Targeting, 2021, 29, 808-821.	2.1	6
60	Nanomaterials Enhance the Immunomodulatory Effect of Molecular Targeted Therapy. International Journal of Nanomedicine, 2021, Volume 16, 1631-1661.	3.3	19
61	Tuning the efficacy of esterase-activatable prodrug nanoparticles for the treatment of colorectal malignancies. Biomaterials, 2021, 270, 120705.	5.7	45
62	Rational nanocarrier design towards clinical translation of cancer nanotherapy. Biomedical Materials (Bristol), 2021, 16, 032005.	1.7	14
63	Synthesis and Characterization of Folate-Modified Cell Membrane Mimetic Copolymer Micelles for Effective Tumor Cell Internalization. ACS Applied Bio Materials, 2021, 4, 3246-3255.	2.3	6
64	Nanotechnology for modern medicine: next step towards clinical translation. Journal of Internal Medicine, 2021, 290, 486-498.	2.7	88
65	Quantitative imaging of intracellular nanoparticle exposure enables prediction of nanotherapeutic efficacy. Nature Communications, 2021, 12, 2385.	5.8	25
66	Polymeric Nanoreactors as Emerging Nanoplatforms for Cancer Precise Nanomedicine. Macromolecular Bioscience, 2021, 21, 2000424.	2.1	7
67	Smart transformable nanomedicines for cancer therapy. Biomaterials, 2021, 271, 120737.	5.7	64
68	Immunogenic cell death-inducing chemotherapeutic nanoformulations potentiate combination chemoimmunotherapy. Materials and Design, 2021, 202, 109465.	3.3	19
69	Near-infrared photoactivated nanomedicines for photothermal synergistic cancer therapy. Nano Today, 2021, 37, 101073.	6.2	182
70	Pure photosensitizer-driven nanoassembly with core-matched PEGylation for imaging-guided photodynamic therapy. Acta Pharmaceutica Sinica B, 2021, 11, 3636-3647.	5.7	27
71	The File Drawer Problem in Nanomedicine. Trends in Biotechnology, 2021, 39, 425-427.	4.9	12
72	Thermostability, Tunability, and Tenacity of RNA as Rubbery Anionic Polymeric Materials in Nanotechnology and Nanomedicine—Specific Cancer Targeting with Undetectable Toxicity. Chemical Reviews, 2021, 121, 7398-7467.	23.0	45

#	Article	IF	CITATIONS
73	Interdependency of influential parameters in therapeutic nanomedicine. Expert Opinion on Drug Delivery, 2021, 18, 1379-1394.	2.4	8
74	Sex as an important factor in nanomedicine. Nature Communications, 2021, 12, 2984.	5.8	47
75	Can the Shape of Nanoparticles Enable the Targeting to Cancer Cells over Healthy Cells?. Advanced Functional Materials, 2021, 31, 2007880.	7.8	20
76	Tumor spheroid-based microtumor models for preclinical evaluation of anticancer nanomedicines. Journal of Pharmaceutical Investigation, 2021, 51, 541-553.	2.7	13
77	Marine Alkaloids: Compounds with In Vivo Activity and Chemical Synthesis. Marine Drugs, 2021, 19, 374.	2.2	14
78	Bioinert, Stealth or Interactive: How Surface Chemistry of Nanocarriers Determines Their Fate In Vivo. Advanced Functional Materials, 2021, 31, 2103347.	7.8	41
79	Toolbox of Biodegradable Dendritic (Poly glycerol sulfate)–SS-poly(ester) Micelles for Cancer Treatment: Stability, Drug Release, and Tumor Targeting. Biomacromolecules, 2021, 22, 2625-2640.	2.6	17
80	Interrogating preclinical study of liposomes: The effect of mouse strain reexamined. Journal of Controlled Release, 2021, 334, 178-187.	4.8	10
81	Antibody-activated trans-endothelial delivery of mesoporous organosilica nanomedicine augments tumor extravasation and anti-cancer immunotherapy. Bioactive Materials, 2021, 6, 2158-2172.	8.6	12
82	<i>In Planta</i> Nanosensors: Understanding Biocorona Formation for Functional Design. ACS Sensors, 2021, 6, 2802-2814.	4.0	22
83	Engineering Micro–Nanomaterials for Biomedical Translation. Advanced NanoBiomed Research, 2021, 1, 2100002.	1.7	20
84	Double‣ock Nanomedicines Enable Tumorâ€Microenvironmentâ€Responsive Selective Antitumor Therapy. Advanced Functional Materials, 2021, 31, 2009157.	7.8	14
85	Obstacles and opportunities in a forward vision for cancer nanomedicine. Nature Materials, 2021, 20, 1469-1479.	13.3	206
86	Polyester Polymeric Nanoparticles as Platforms in the Development of Novel Nanomedicines for Cancer Treatment. Cancers, 2021, 13, 3387.	1.7	24
87	Nanoparticles in nanomedicine: a comprehensive updated review on current status, challenges and emerging opportunities. Journal of Microencapsulation, 2021, 38, 414-436.	1.2	58
88	Current hurdles to the translation of nanomedicines from bench to the clinic. Drug Delivery and Translational Research, 2022, 12, 500-525.	3.0	92
89	Enzyme-responsive smart nanocarriers for targeted chemotherapy: an overview. Drug Delivery and Translational Research, 2022, 12, 1293-1305.	3.0	11
90	<scp>pH</scp> â€sensitive and chargeâ€reversal Daunorubicinâ€conjugated polymeric micelles for enhanced cancer therapy. Journal of Applied Polymer Science, 2022, 139, 51535.	1.3	5

#	ARTICLE Should Nano-Particles be Weighed or Counted? Technical Considerations to In Vitro Testing	IF	CITATIONS
91	Originated from Corpuscular Nature of Nano-Particles. Archivum Immunologiae Et Therapiae Experimentalis, 2021, 69, 23.	1.0	2
92	Key Points in Remote-Controlled Drug Delivery: From the Carrier Design to Clinical Trials. International Journal of Molecular Sciences, 2021, 22, 9149.	1.8	5
93	Exquisite Vesicular Nanomedicine by Paclitaxel Mediated Coâ€assembly with Camptothecin Prodrug. Angewandte Chemie - International Edition, 2021, 60, 21033-21039.	7.2	22
94	Exquisite Vesicular Nanomedicine by Paclitaxel Mediated Coâ€assembly with Camptothecin Prodrug. Angewandte Chemie, 2021, 133, 21201-21207.	1.6	2
95	Theranostic Applications of Nanoparticle-Mediated Photoactivated Therapies. Journal of Nanotheranostics, 2021, 2, 131-156.	1.7	9
96	Nanomedicine and Periodontal Regenerative Treatment. Dental Clinics of North America, 2021, 66, 131-155.	0.8	2
97	Daratumumab Immunopolymersomeâ€Enabled Safe and CD38â€Targeted Chemotherapy and Depletion of Multiple Myeloma. Advanced Materials, 2021, 33, e2007787.	11,1	25
98	Recent advances in development of imine-based acid-degradable polymeric nanoassemblies for intracellular drug delivery. Polymer, 2021, 230, 124024.	1.8	21
99	Recent progress in stimuli-responsive nanosystems for inducing immunogenic cell death. Journal of Controlled Release, 2021, 337, 505-520.	4.8	41
100	Functionalized Organic–Inorganic Liposome Nanocomposites for the Effective Photo-Thermal Therapy of Breast Cancer. Frontiers in Materials, 2021, 8, .	1.2	1
101	A Framework of Paracellular Transport via Nanoparticlesâ€Induced Endothelial Leakiness. Advanced Science, 2021, 8, e2102519.	5.6	22
102	Clinical translation status of nanoformulations. , 2021, , 303-338.		5
103	Strategies for the design of nanoparticles: starting with long-circulating nanoparticles, from lab to clinic. Biomaterials Science, 2021, 9, 3621-3637.	2.6	12
104	Recent progress on nanomedicine-induced ferroptosis for cancer therapy. Biomaterials Science, 2021, 9, 5092-5115.	2.6	38
105	Understanding the burst release phenomenon: toward designing effective nanoparticulate drug-delivery systems. Therapeutic Delivery, 2021, 12, 21-36.	1.2	35
106	The magic bullet as cancer therapeutic—has nanotechnology failed to find its mark?. Progress in Biomedical Engineering, 2020, 2, 042004.	2.8	5
107	Tumor in 3D: In Vitro Complex Cellular Models to Improve Nanodrugs Cancer Therapy. Current Medicinal Chemistry, 2020, 27, 7234-7255.	1.2	7
108	Progress of Cancer Nanotechnology as Diagnostics, Therapeutics, and Theranostics Nanomedicine: Preclinical Promise and Translational Challenges. Pharm <u>aceutics, 2021, 13, 24.</u>	2.0	48

#	Article	IF	Citations
109	Cancer-Targeted Nanotheranostics: Recent Advances and Future Perspectives. Nanotechnology in the Life Sciences, 2021, , 97-115.	0.4	4
110	Emerging Polymer-Based Nanomaterials for Cancer Therapeutics. Nanotechnology in the Life Sciences, 2021, , 189-229.	0.4	0
111	Nanomedicines: Nano based Drug Delivery Systems Challenges and Opportunities. , 0, , .		6
112	Fenton/Fenton-like metal-based nanomaterials combine with oxidase for synergistic tumor therapy. Journal of Nanobiotechnology, 2021, 19, 325.	4.2	42
113	Do Lipid-based Nanoparticles Hold Promise for Advancing the Clinical Translation of Anticancer Alkaloids?. Cancers, 2021, 13, 5346.	1.7	11
114	Delivering more for less: nanosized, minimal-carrier and pharmacoactive drug delivery systems. Advanced Drug Delivery Reviews, 2021, 179, 113994.	6.6	39
117	2D Nanosheets—A New Class of Therapeutic Formulations against Cancer. Pharmaceutics, 2021, 13, 1803.	2.0	12
118	Analytical method development and comparability study for AmBisome® and generic Amphotericin B liposomal products. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 157, 241-249.	2.0	10
120	Green Synthesis of Nanoparticles and Their Application in Cancer Therapy. , 2020, , 163-197.		5
121	Smart biomaterials to enhance the efficiency of immunotherapy in glioblastoma: State of the art and future perspectives. Advanced Drug Delivery Reviews, 2021, 179, 114035.	6.6	23
122	Improved In Vivo Delivery of Small RNA Based on the Calcium Phosphate Method. Journal of Personalized Medicine, 2021, 11, 1160.	1.1	6
123	Chemically engineered mesoporous silica nanoparticles-based intelligent delivery systems for theranostic applications in multiple cancerous/non-cancerous diseases. Coordination Chemistry Reviews, 2022, 452, 214309.	9.5	81
124	Smart Nanotherapeutics and Lung Cancer. Pharmaceutics, 2021, 13, 1972.	2.0	28
125	Localized Surface Plasmon Resonance as a Tool to Study Protein Corona Formation on Nanoparticles. Journal of Physical Chemistry C, 2021, 125, 24765-24776.	1.5	18
126	Editorial: Bypassing the Biological Barriers by Means of Biocompatible Drug Delivery Systems. Frontiers in Pharmacology, 2021, 12, 801383.	1.6	0
127	A branched small molecule-drug conjugate nanomedicine strategy for the targeted HCC chemotherapy. European Journal of Medicinal Chemistry, 2022, 228, 114037.	2.6	6
128	Synergistic NIR-Responsive Nanotherapeutics for Chemo-Photothermal Therapy and Photothermal Immunotherapy of Cancer. SSRN Electronic Journal, 0, , .	0.4	0
129	Transcytosis-inducing biomaterials for actively translocating nanomedicines. , 2021, , .		0

#	Article	IF	CITATIONS
130	A comprehensive review on immuno-nanomedicine for breast cancer therapy: Technical challenges and troubleshooting measures. International Immunopharmacology, 2022, 103, 108433.	1.7	3
131	Rheumatoid arthritis microenvironment insights into treatment effect of nanomaterials. Nano Today, 2022, 42, 101358.	6.2	71
132	Tailored Nucleic Acid Architectures at Gold Surfaces for Controlled Therapeutic Release. Langmuir, 2022, 38, 1698-1704.	1.6	2
133	Nanoparticle delivery of a triple-action Pt(<scp>iv</scp>) prodrug to overcome cisplatin resistance <i>via</i> synergistic effect. Biomaterials Science, 2021, 10, 153-157.	2.6	6
134	Supervised learning model predicts protein adsorption to carbon nanotubes. Science Advances, 2022, 8, eabm0898.	4.7	19
135	Vesicular nanocarrier based stimuli-responsive drug delivery systems. , 2022, , 61-86.		1
136	Engineering optimal vaccination strategies: effects of physical properties of the delivery system on functions. Biomaterials Science, 2022, 10, 1408-1422.	2.6	6
137	Development of Pharmaceutical Nanomedicines: From the Bench to the Market. Pharmaceutics, 2022, 14, 106.	2.0	109
138	The Hitchhiker's Guide to Human Therapeutic Nanoparticle Development. Pharmaceutics, 2022, 14, 247.	2.0	14
139	Opportunities and Challenges for Nanotherapeutics for the Aging Population. Frontiers in Nanotechnology, 2022, 4, .	2.4	8
140	Recent advances in multifunctional nanomaterials for photothermal-enhanced Fenton-based chemodynamic tumor therapy. Materials Today Bio, 2022, 13, 100197.	2.6	45
141	Nanoparticles in Clinical Translation for Cancer Therapy. International Journal of Molecular Sciences, 2022, 23, 1685.	1.8	91
142	Towards principled design of cancer nanomedicine to accelerate clinical translation. Materials Today Bio, 2022, 13, 100208.	2.6	47
143	Emerging nanomedicines of paclitaxel for cancer treatment. Journal of Controlled Release, 2022, 342, 280-294.	4.8	32
144	Nanomedicine for brain cancer. Advanced Drug Delivery Reviews, 2022, 182, 114115.	6.6	57
145	RNAi-based therapeutics and tumor targeted delivery in cancer. Advanced Drug Delivery Reviews, 2022, 182, 114113.	6.6	123
146	Harnessing reactive oxygen/nitrogen species and inflammation: Nanodrugs for liver injury. Materials Today Bio, 2022, 13, 100215.	2.6	29
147	Destruction of tumor vasculature by vascular disrupting agents in overcoming the limitation of EPR effect. Advanced Drug Delivery Reviews, 2022, 183, 114138.	6.6	33

#	Article	IF	CITATIONS
148	Research Progress and Prospects for Polymeric Nanovesicles in Anticancer Drug Delivery. Frontiers in Bioengineering and Biotechnology, 2022, 10, 850366.	2.0	8
149	Current nano-therapeutic approaches ameliorating inflammation in cancer progression. Seminars in Cancer Biology, 2022, 86, 886-908.	4.3	11
150	Biotin-Targeted Multifunctional Nanoparticles Encapsulating 10-Hydroxycamptothecin and Apoptin Plasmid for Synergistic Hepatocellular Carcinoma Treatment. ACS Applied Polymer Materials, 2022, 4, 497-508.	2.0	6
151	Can two-step ablation combined with chemotherapeutic liposomes achieve better outcome than traditional RF ablation? A solid tumor animal study. Nanoscale, 2022, 14, 6312-6322.	2.8	2
152	A procedurally activatable nanoplatform for chemo/chemodynamic synergistic therapy. Biomaterials Science, 2022, 10, 2673-2680.	2.6	3
153	Nanodiscs: a versatile nanocarrier platform for cancer diagnosis and treatment. Chemical Society Reviews, 2022, 51, 1702-1728.	18.7	53
154	Nano-traditional Chinese medicine: a promising strategy and its recent advances. Journal of Materials Chemistry B, 2022, 10, 2973-2994.	2.9	24
155	The era of translational nanomedicine. , 2022, 1, 9130006.		4
156	Metallodrugs in cancer nanomedicine. Chemical Society Reviews, 2022, 51, 2544-2582.	18.7	70
157	Recent Advancements of Stimuli-Responsive Targeted Liposomal Formulations for Cancer Drug Delivery. Pharmaceutical Nanotechnology, 2022, 10, 3-23.	0.6	4
158	Magnetic Nanoparticles in Medicine: Progress, Problems, and Advances. Journal of Communications Technology and Electronics, 2022, 67, 101-116.	0.2	26
159	Mucus Penetrating and Cellâ€Binding Polyzwitterionic Micelles as Potent Oral Nanomedicine for Cancer Drug Delivery. Advanced Materials, 2022, 34, e2109189.	11.1	63
160	Bacteria as Nanoparticle Carriers for Immunotherapy in Oncology. Pharmaceutics, 2022, 14, 784.	2.0	3
161	CD38-Directed Vincristine Nanotherapy for Acute Lymphoblastic Leukemia. Biomacromolecules, 2022, 23, 377-387.	2.6	2
162	From drug repositioning to target repositioning: prediction of therapeutic targets using genetically perturbed transcriptomic signatures. Bioinformatics, 2022, 38, i68-i76.	1.8	3
163	Self-Reinforced Cancer Targeting (SRCT) Depending on Reciprocally Enhancing Feedback between Targeting and Therapy. ACS Nano, 2022, 16, 5851-5866.	7.3	4
164	Mesenchymal stem cells: A living carrier for active tumor-targeted delivery. Advanced Drug Delivery Reviews, 2022, 185, 114300.	6.6	19
165	Surface Modification of Lipid-Based Nanoparticles. ACS Nano, 2022, 16, 7168-7196.	7.3	49

#	Article	IF	CITATIONS
166	Ultrasound-Responsive Peptide Nanogels to Balance Conflicting Requirements for Deep Tumor Penetration and Prolonged Blood Circulation. ACS Nano, 2022, 16, 9183-9194.	7.3	27
167	A hitchhiker's guide to cancer models. Trends in Biotechnology, 2022, 40, 1361-1373.	4.9	1
168	Prospecting Cellular Gold Nanoparticle Biomineralization as a Viable Alternative to Prefabricated Gold Nanoparticles. Advanced Science, 2022, 9, e2105957.	5.6	13
169	Carboxymethylcellulose biofunctionalized ternary quantum dots for subcellular-targeted brain cancer nanotheranostics. International Journal of Biological Macromolecules, 2022, 210, 530-544.	3.6	6
170	Synergistic anti-cancer effects of NIR-light responsive nanotherapeutics for chemo-photothermal therapy and photothermal immunotherapy: A combined therapeutic approach. Advances in Cancer Biology Metastasis, 2022, 4, 100044.	1.1	10
171	Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment. Chinese Chemical Letters, 2023, 34, 107518.	4.8	124
172	The enhanced antitumor activity of the polymeric conjugate covalently coupled with docetaxel and docosahexaenoic acid. Biomaterials Science, 2022, 10, 3454-3465.	2.6	4
173	Chemical Approaches to Synthetic Drug Delivery Systems for Systemic Applications. Angewandte Chemie - International Edition, 2022, 61, .	7.2	30
174	Chemische AnsÃæe für synthetische Wirkstofftransportsysteme für systemische Anwendungen. Angewandte Chemie, 2022, 134, .	1.6	3
175	pH-responsive hybrid platelet membrane-coated nanobomb with deep tumor penetration ability and enhanced cancer thermal/chemodynamic therapy. Theranostics, 2022, 12, 4250-4268.	4.6	21
176	Function and therapeutic development of exosomes for cancer therapy. Archives of Pharmacal Research, 2022, 45, 295-308.	2.7	15
177	Biomaterial-Targeted Precision Nanoparticle Delivery to the Injured Spinal Cord. SSRN Electronic Journal, O, , .	0.4	0
178	Materdicine and Medmaterial. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2022, 37, 1151.	0.6	6
179	Current Status and Challenges of Analytical Methods for Evaluation of Size and Surface Modification of Nanoparticle-Based Drug Formulations. AAPS PharmSciTech, 2022, 23, .	1.5	25
180	Taxanes prodrug-based nanomedicines for cancer therapy. Journal of Controlled Release, 2022, 348, 672-691.	4.8	14
181	Phosphorylcholine zwitterionic shell-detachable mixed micelles for enhanced cancerous cellular uptakes and increased DOX release. Journal of Materials Chemistry B, 2022, 10, 5624-5632.	2.9	3
182	Tuning the immune system by nanoparticle–biomolecular corona. Nanoscale Advances, 2022, 4, 3300-3308.	2.2	8
183	Promoting Tumor Accumulation of Anticancer Drugs by Hierarchical Carrying of Exogenous and Endogenous Vehicles. Small Structures, 2022, 3, .	6.9	24

#	Article	IF	CITATIONS
184	Extracellular vesicles for improved tumor accumulation and penetration. Advanced Drug Delivery Reviews, 2022, 188, 114450.	6.6	26
185	Multimodal Therapies against Pancreatic Ductal Adenocarcinoma: A Review on Synergistic Approaches toward Ultimate Nanomedicine Treatments. Advanced Therapeutics, 2022, 5, .	1.6	8
186	Cancer nanomedicine: A step towards improving the drug delivery and enhanced efficacy of chemotherapeutic drugs. OpenNano, 2022, 7, 100051.	1.8	7
187	Nanomedicine Strategies for Heating "Cold―Ovarian Cancer (OC): Next Evolution in Immunotherapy of OC. Advanced Science, 2022, 9, .	5.6	23
188	An FGFR1-Binding Peptide Modified Liposome for siRNA Delivery in Lung Cancer. International Journal of Molecular Sciences, 2022, 23, 8380.	1.8	4
189	Recent Advances in Nanoparticle-Based Co-Delivery Systems for Cancer Therapy. Nanomaterials, 2022, 12, 2672.	1.9	23
190	Importance of Standardizing Analytical Characterization Methodology for Improved Reliability of the Nanomedicine Literature. Nano-Micro Letters, 2022, 14, .	14.4	12
191	PEG Spacer Length Substantially Affects Antibody-Based Nanocarrier Targeting of Dendritic Cell Subsets. Pharmaceutics, 2022, 14, 1614.	2.0	1
192	Synovial joint-on-a-chip for modeling arthritis: progress, pitfalls, and potential. Trends in Biotechnology, 2023, 41, 511-527.	4.9	14
193	Recent nanotechnology advancements to treat multidrug-resistance pancreatic cancer: Pre-clinical and clinical overview. Frontiers in Pharmacology, 0, 13, .	1.6	4
194	Self-assembled boron dipyrromethene-based nanocarriers with encapsulated doxorubicin for chemo-photodynamic therapy. Dyes and Pigments, 2022, 206, 110679.	2.0	6
195	Transcytosis-enabled active extravasation of tumor nanomedicine. Advanced Drug Delivery Reviews, 2022, 189, 114480.	6.6	30
196	Advanced nanovaccines based on engineering nanomaterials for accurately enhanced cancer immunotherapy. Coordination Chemistry Reviews, 2022, 472, 214788.	9.5	7
197	Natural Products-Based Nanoformulations: A New Approach Targeting CSCs to Cancer Therapy. International Journal of Nanomedicine, 0, Volume 17, 4163-4193.	3.3	5
198	Development of ligand modified erythrocyte coated polydopamine nanomedicine to codeliver chemotherapeutic agent and oxygen for chemo-photothermal synergistic cancer therapy. International Journal of Pharmaceutics, 2022, 626, 122156.	2.6	3
199	Manganese ferrite (MnFe2O4) nanostructures for cancer theranostics. Coordination Chemistry Reviews, 2022, 473, 214809.	9.5	77
200	A targeted hydrodynamic gold nanorod delivery system based on gigahertz acoustic streaming. Nanoscale, 2022, 14, 15281-15290.	2.8	2
201	Combating atherosclerosis with nanodrug delivery approaches: from bench side to commercialization. , 2022, , 97-136.		1

#	Article	IF	Citations
202	The Role of Optical Imaging in Translational Nanomedicine. Journal of Functional Biomaterials, 2022, 13, 137.	1.8	0
203	Biomaterial-targeted precision nanoparticle delivery to the injured spinal cord. Acta Biomaterialia, 2022, 152, 532-545.	4.1	2
204	Star Polymer Nanomedicines─Challenges and Future Perspectives. ACS Applied Polymer Materials, 2022, 4, 6784-6796.	2.0	11
205	Targeting Gastric Cancer Stem Cells to Enhance Treatment Response. Cells, 2022, 11, 2828.	1.8	18
206	Nanoparticle Diagnostics and Theranostics in the Clinic. Journal of Nuclear Medicine, 2022, 63, 1802-1808.	2.8	11
207	Nanomaterials Respond to Lysosomal Function for Tumor Treatment. Cells, 2022, 11, 3348.	1.8	3
208	Nanotherapeutics Plus Immunotherapy in Oncology: Who Brings What to the Table?. Pharmaceutics, 2022, 14, 2326.	2.0	2
209	Nanomaterials in diagnostics, imaging and delivery: Applications from COVID-19 to cancer. MRS Communications, 2022, 12, 1119-1139.	0.8	8
210	A Novel Dextran-Based Dual Drug Conjugate Targeted Tumors with High Biodistribution Ratio of Tumors to Normal Tissues. International Journal of Nanomedicine, 0, Volume 17, 4895-4910.	3.3	3
211	A Nanomedicine Structure–Activity Framework for Research, Development, and Regulation of Future Cancer Therapies. ACS Nano, 2022, 16, 17497-17551.	7.3	10
212	Advanced nanomaterial for prostate cancer theranostics. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	3
213	Passive and Active Targeting for Solid Tumors. Environmental Chemistry for A Sustainable World, 2022, , 127-166.	0.3	1
214	Self-assembly of polysarcosine amphiphilic polymers-tethered gold nanoparticles for precise photo-controlled synergistic therapy. Nano Research, 2023, 16, 5685-5694.	5.8	3
215	Strategies to improve drug penetration into tumor microenvironment by nanoparticles: Focus on nanozymes. OpenNano, 2022, 8, 100100.	1.8	1
216	Biological evaluation of integrin α3β1-targeted 68Ga-labeled HEVNPs in HCT 116 colorectal tumor-bearing mice. European Journal of Pharmaceutical Sciences, 2022, , 106336.	1.9	1
217	A versatile metal–organic nanoplatform in combination with CXCR4 antagonist and PD-L1 inhibitor for multimodal synergistic cancer therapy and MRI-guided tumor imaging. Nano Today, 2022, 47, 101689.	6.2	10
218	Evaluation of linear versus star-like polymer anti-cancer nanomedicines in mouse models. Journal of Controlled Release, 2023, 353, 549-562.	4.8	4
219	Mitochondrial dysfunction-targeted nanosystems for precise tumor therapeutics. Biomaterials, 2023, 293, 121947.	5.7	24

#	Article	IF	CITATIONS
220	Molecular target interactions of quinoline derivatives as anticancer agents: A review. Chemical Biology and Drug Design, 2023, 101, 977-997.	1.5	3
221	Ultrasoundâ€Amplified Enzyodynamic Tumor Therapy by Perovskite Nanoenzymeâ€Enabled Cell Pyroptosis and Cascade Catalysis. Advanced Materials, 2023, 35, .	11.1	34
222	Bibliometric analysis on exploitation of biogenic gold and silver nanoparticles in breast, ovarian and cervical cancer therapy. Frontiers in Pharmacology, 0, 13, .	1.6	5
223	Nanomedicine-based commercial formulations: current developments and future prospects. Journal of Pharmaceutical Investigation, 2023, 53, 19-33.	2.7	40
224	Cancer nanomedicine toward clinical translation: Obstacles, opportunities, and future prospects. Med, 2023, 4, 147-167.	2.2	47
225	Polysaccharide dextran-based conjugate for selective co-delivery of two synergistic drugs docetaxel and docosahexaenoic acid to tumor cells. Drug Delivery, 2023, 30, 40-50.	2.5	3
226	Artificial and Naturally Derived Phospholipidic Bilayers as Smart Coatings of Solid-State Nanoparticles: Current Works and Perspectives in Cancer Therapy. International Journal of Molecular Sciences, 2022, 23, 15815.	1.8	3
227	Lipid Nanoparticles Functionalized with Antibodies for Anticancer Drug Therapy. Pharmaceutics, 2023, 15, 216.	2.0	18
228	Poly(ethylene glycol) alternatives in biomedical applications. Nano Today, 2023, 48, 101738.	6.2	28
229	Polysaccharide-based nanocarriers for efficient transvascular drug delivery. Journal of Controlled Release, 2023, 354, 167-187.	4.8	20
230	Nanostructures as Photothermal Agents in Tumor Treatment. Molecules, 2023, 28, 277.	1.7	6
231	Nanomedicine Applications in Cancer Treatment. , 2023, , 1-37.		0
232	Esterase-Responsive Polymeric Micelles Containing Tetraphenylethene and Poly(ethylene glycol) Moieties for Efficient Doxorubicin Delivery and Tumor Therapy. Bioconjugate Chemistry, 2023, 34, 248-256.	1.8	6
233	Dendritic polyglycerolsulfate-SS-poly(ester amide) micelles for the systemic delivery of docetaxel: pushing the limits of stability through the insertion of π–π interactions. Journal of Materials Chemistry B, 0, , .	2.9	2
234	Principles of Nanoparticle Delivery to Solid Tumors. BME Frontiers, 2023, 4, .	2.2	22
235	Platinum Drugâ€Incorporating Polymeric Nanosystems for Precise Cancer Therapy. Small, 2023, 19, .	5.2	3
236	Nanomedicine is more than a supporting role in rheumatoid arthritis therapy. Journal of Controlled Release, 2023, 356, 142-161.	4.8	7
237	Aptamers and nanobodies as alternatives to antibodies for ligand-targeted drug delivery in cancer. Drug Discovery Today, 2023, 28, 103550.	3.2	8

#	Article	IF	CITATIONS
238	Influence of lung cancer model characteristics on tumor targeting behavior of nanodrugs. Journal of Controlled Release, 2023, 354, 538-553.	4.8	5
239	Self-Assembled Aza-BODIPY and Iron(III) Nanoparticles for Photothermal-Enhanced Chemodynamic Therapy in the NIR-II Window. ACS Biomaterials Science and Engineering, 2023, 9, 821-830.	2.6	10
240	Recent advancements in design of nucleic acid nanocarriers for controlled drug delivery. Journal of Materials Chemistry B, 2023, 11, 2078-2094.	2.9	4
242	Antitumor therapy for breast cancer: Focus on tumorâ€associated macrophages and nanosized drug delivery systems. Cancer Medicine, 2023, 12, 11049-11072.	1.3	3
243	Mechanistic Insights into the Biological Effects of Engineered Nanomaterials: A Focus on Gold Nanoparticles. International Journal of Molecular Sciences, 2023, 24, 4109.	1.8	8
244	Understanding ligand-protected noble metal nanoclusters at work. Nature Reviews Materials, 2023, 8, 372-389.	23.3	40
245	Antibody-Functionalized Nanoparticles for Targeted Drug Delivery in Cancer Therapy. , 2023, , 1-43.		0
246	A detailed insight of the tumor targeting using nanocarrier drug delivery system. Drug Delivery, 2023, 30, .	2.5	22
247	Nucleotides Entrapped in Liposome Nanovesicles as Tools for Therapeutic and Diagnostic Use in Biomedical Applications. Pharmaceutics, 2023, 15, 873.	2.0	2
248	Current Perspectives on Nanoparticle-based Targeted Drug Delivery Approaches in Breast Cancer Treatment. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2023, 23, .	0.6	0
249	Selfâ€Assembled Carrierâ€Free Nanodrugs for Starvation Therapyâ€Amplified Photodynamic Therapy of Cancer. Advanced Healthcare Materials, 2023, 12, .	3.9	6
250	Smart Nanosystems for Overcoming Multiple Biological Barriers in Cancer Nanomedicines Transport: Design Principles, Progress, and Challenges. Small, 2023, 19, .	5.2	4
251	Bridging the gap between lab and clinic for nanodiagnostics. Nanomedicine, 2023, 18, 413-416.	1.7	6
252	MicroRNA-nanoparticles against cancer: Opportunities and challenges for personalized medicine. Molecular Therapy - Nucleic Acids, 2023, 32, 371-384.	2.3	7
253	A homologous and molecular dual-targeted biomimetic nanocarrier for EGFR-related non-small cell lung cancer therapy. Bioactive Materials, 2023, 27, 337-347.	8.6	5
278	Nano Titania Applications in Cancer Theranostics. , 0, , .		0
280	Antifouling polymers for nanomedicine and surfaces: recent advances. Nanoscale, 2023, 15, 15472-15512.	2.8	0
289	Nanomedicine – Immune System Interactions: Limitations and Opportunities for the Treatment of Cancer. Handbook of Experimental Pharmacology, 2023, , .	0.9	0

		CITATION REPORT		
#	Article		IF	Citations
302	é«̃å^†å囊泡领域é¢ä,´çš"æŒ'æ~和未æ¥ç"ç©¶æ−¹å•. Science China Materials	s, 0, , .	3.5	0
303	An updated landscape on nanotechnology-based drug delivery, immunotherapy, vacci and biomarker detections for cancers: recent trends and future directions with clinical 2023, 18, .	nations, imaging, success. ,		0
312	Clinical translation of gold nanoparticles: obstacles and perspectives. , 2024, , 495-50	Э.		0
316	Nanocarriers-Based Products in the Market, FDA Approval, Commercialization of Nano Global Market. , 2023, , 137-148.	carriers, and		0
317	Polymeric nanoparticles in cancer therapy. , 2024, , 207-230.			0
319	The mechanisms of nanoparticle delivery to solid tumours. , 2024, 2, 201-213.			0
330	Regulations and Policy Considerations for Nanoparticle Safety. , 2024, , 295-316.			0