BBKNN: fast batch alignment of single cell transcriptom

Bioinformatics 36, 964-965

DOI: 10.1093/bioinformatics/btz625

Citation Report

#	Article	IF	Citations
1	Fast, sensitive and accurate integration of single-cell data with Harmony. Nature Methods, 2019, 16, 1289-1296.	9.0	3,494
2	Cellular resolution in clinical MALDI mass spectrometry imaging: the latest advancements and current challenges. Clinical Chemistry and Laboratory Medicine, 2020, 58, 914-929.	1.4	84
3	The emergence and promise of single-cell temporal-omics approaches. Current Opinion in Biotechnology, 2020, 63, 70-78.	3.3	34
4	In vitro characterization of the human segmentation clock. Nature, 2020, 580, 113-118.	13.7	152
5	scRNA-seq assessment of the human lung, spleen, and esophagus tissue stability after cold preservation. Genome Biology, 2020, 21, 1.	3.8	572
6	Using single-cell technologies to map the human immune system — implications for nephrology. Nature Reviews Nephrology, 2020, 16, 112-128.	4.1	39
7	Reverse engineering human brain evolution using organoid models. Brain Research, 2020, 1729, 146582.	1.1	25
8	Sequencing dropout-and-batch effect normalization for single-cell mRNA profiles: a survey and comparative analysis. Briefings in Bioinformatics, 2020, 22, .	3.2	4
9	A single-cell transcriptomic atlas characterizes ageing tissues in the mouse. Nature, 2020, 583, 590-595.	13.7	683
10	Alveolar regeneration through a Krt8+ transitional stem cell state that persists in human lung fibrosis. Nature Communications, 2020, 11, 3559.	5.8	378
11	Cells of the adult human heart. Nature, 2020, 588, 466-472.	13.7	852
12	Lung transplantation for patients with severe COVID-19. Science Translational Medicine, 2020, 12, .	5.8	246
13	GM-CSF Calibrates Macrophage Defense and Wound Healing Programs during Intestinal Infection and Inflammation. Cell Reports, 2020, 32, 107857.	2.9	79
14	Mapping systemic lupus erythematosus heterogeneity at the single-cell level. Nature Immunology, 2020, 21, 1094-1106.	7.0	212
15	Cumulus provides cloud-based data analysis for large-scale single-cell and single-nucleus RNA-seq. Nature Methods, 2020, 17, 793-798.	9.0	134
16	Multi-Omics Resolves a Sharp Disease-State Shift between Mild and Moderate COVID-19. Cell, 2020, 183, 1479-1495.e20.	13.5	449
17	Interactions between lineageâ€essociated transcription factors govern haematopoietic progenitor states. EMBO Journal, 2020, 39, e104983.	3.5	20
18	Unsupervised Inference of Developmental Directions for Single Cells Using VECTOR. Cell Reports, 2020, 32, 108069.	2.9	11

#	ARTICLE	IF	CITATIONS
19	Review of Artificial Intelligence Applications and Algorithms for Brain Organoid Research. Interdisciplinary Sciences, Computational Life Sciences, 2020, 12, 383-394.	2.2	9
20	A multicenter study benchmarking single-cell RNA sequencing technologies using reference samples. Nature Biotechnology, 2021, 39, 1103-1114.	9.4	69
21	FR-Match: robust matching of cell type clusters from single cell RNA sequencing data using the Friedman–Rafsky non-parametric test. Briefings in Bioinformatics, 2020, 22, .	3.2	12
22	Single-Cell Sequencing of Developing Human Gut Reveals Transcriptional Links to Childhood Crohn's Disease. Developmental Cell, 2020, 55, 771-783.e5.	3.1	164
23	Molecular design of hypothalamus development. Nature, 2020, 582, 246-252.	13.7	105
24	Computational Methods for Single-Cell RNA Sequencing. Annual Review of Biomedical Data Science, 2020, 3, 339-364.	2.8	81
25	Single-Cell Analysis of Human Retina Identifies Evolutionarily Conserved and Species-Specific Mechanisms Controlling Development. Developmental Cell, 2020, 53, 473-491.e9.	3.1	170
26	Integration and reanalysis of transcriptomics and methylomics data derived from blood and testis tissue of men with 47, <scp>XXY</scp> Klinefelter syndrome indicates the primary involvement of Sertoli cells in the testicular pathogenesis. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2020, 184, 239-255.	0.7	11
27	Quantitative single-cell interactomes in normal and virus-infected mouse lungs. DMM Disease Models and Mechanisms, 2020, 13, .	1.2	13
28	An entropy-based metric for assessing the purity of single cell populations. Nature Communications, 2020, 11, 3155.	5.8	83
29	WNT and inflammatory signaling distinguish human Fallopian tube epithelial cell populations. Scientific Reports, 2020, 10, 9837.	1.6	13
30	Sestrins induce natural killer function in senescent-like CD8+ T cells. Nature Immunology, 2020, 21, 684-694.	7. O	139
31	Singleâ€Cell RNA Sequencing for Precision Oncology: Current State-of-Art. Journal of the Indian Institute of Science, 2020, 100, 579-588.	0.9	9
32	Distinct microbial and immune niches of the human colon. Nature Immunology, 2020, 21, 343-353.	7.0	175
33	Targeted pharmacological therapy restores \hat{l}^2 -cell function for diabetes remission. Nature Metabolism, 2020, 2, 192-209.	5.1	93
34	Using Transcriptomic Analysis to Assess Double-Strand Break Repair Activity: Towards Precise in Vivo Genome Editing. International Journal of Molecular Sciences, 2020, 21, 1380.	1.8	11
35	A cell atlas of human thymic development defines T cell repertoire formation. Science, 2020, 367, .	6.0	368
36	Epithelial Planar Bipolarity Emerges from Notch-Mediated Asymmetric Inhibition of Emx2. Current Biology, 2020, 30, 1142-1151.e6.	1.8	25

#	Article	IF	CITATIONS
37	A benchmark of batch-effect correction methods for single-cell RNA sequencing data. Genome Biology, 2020, 21, 12.	3.8	586
38	Single Cell RNA Sequencing in Atherosclerosis Research. Circulation Research, 2020, 126, 1112-1126.	2.0	84
39	Computational methods for the integrative analysis of single-cell data. Briefings in Bioinformatics, 2021, 22, 20-29.	3.2	43
40	Evaluating genetic causes of azoospermia: What can we learn from a complex cellular structure and single-cell transcriptomics of the human testis?. Human Genetics, 2021, 140, 183-201.	1.8	29
41	Defining the Skin Cellular Community Using Single-Cell Genomics to Advance Precision Medicine. Journal of Investigative Dermatology, 2021, 141, 255-264.	0.3	16
42	Mapping Development of the Human Intestinal Niche at Single-Cell Resolution. Cell Stem Cell, 2021, 28, 568-580.e4.	5.2	94
43	lleal Transcriptomic Analysis in Paediatric Crohn's Disease Reveals <i>lL17-</i> and <i>NOD-</i> signalling Expression Signatures in Treatment-naÃ-ve Patients and Identifies Epithelial Cells Driving Differentially Expressed Genes. Journal of Crohn's and Colitis, 2021, 15, 774-786.	0.6	11
44	Systemic transcriptome comparison between early―And lateâ€onset preâ€eclampsia shows distinct pathology and novel biomarkers. Cell Proliferation, 2021, 54, e12968.	2.4	25
45	Integrative Single-Cell RNA-Seq and ATAC-Seq Analysis of Human Developmental Hematopoiesis. Cell Stem Cell, 2021, 28, 472-487.e7.	5.2	184
46	mbkmeans: Fast clustering for single cell data using mini-batch k-means. PLoS Computational Biology, 2021, 17, e1008625.	1.5	36
47	Single-cell transcriptome analysis of CAR T-cell products reveals subpopulations, stimulation, and exhaustion signatures. Oncolmmunology, 2021, 10, 1866287.	2.1	21
48	Single cell RNA sequencing uncovers cellular developmental sequences and novel potential intercellular communications in embryonic kidney. Scientific Reports, 2021, 11, 73.	1.6	8
49	Developmental cell programs are co-opted in inflammatory skin disease. Science, 2021, 371, .	6.0	264
50	Temporal evolution of single-cell transcriptomes of Drosophila olfactory projection neurons. ELife, 2021, 10, .	2.8	30
51	Single-Cell RNA Sequencing Technologies. , 2021, , 555-584.		0
52	Independent component analysis based gene co-expression network inference (ICAnet) to decipher functional modules for better single-cell clustering and batch integration. Nucleic Acids Research, 2021, 49, e54-e54.	6.5	20
53	Flexible comparison of batch correction methods for single-cell RNA-seq using BatchBench. Nucleic Acids Research, 2021, 49, e42-e42.	6.5	41
54	iMAP: integration of multiple single-cell datasets by adversarial paired transfer networks. Genome Biology, 2021, 22, 63.	3.8	26

#	Article	IF	CITATIONS
55	Single-cell transcriptional profiling of human thymic stroma uncovers novel cellular heterogeneity in the thymic medulla. Nature Communications, 2021, 12, 1096.	5.8	96
56	A multi-center cross-platform single-cell RNA sequencing reference dataset. Scientific Data, 2021, 8, 39.	2.4	14
57	Single-cell longitudinal analysis of SARS-CoV-2 infection in human airway epithelium identifies target cells, alterations in gene expression, and cell state changes. PLoS Biology, 2021, 19, e3001143.	2.6	180
59	CENP-A overexpression promotes distinct fates in human cells, depending on p53 status. Communications Biology, 2021, 4, 417.	2.0	23
60	Application of single-cell transcriptomics to kinetoplastid research. Parasitology, 2021, 148, 1223-1236.	0.7	11
61	Single-Cell RNA Sequencing to Disentangle the Blood System. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 1012-1018.	1.1	8
62	Atoh7-independent specification of retinal ganglion cell identity. Science Advances, 2021, 7, .	4.7	41
63	SARS-CoV-2 infection of the oral cavity and saliva. Nature Medicine, 2021, 27, 892-903.	15.2	527
64	Algorithmic advances in machine learning for single-cell expression analysis. Current Opinion in Systems Biology, 2021, 25, 27-33.	1.3	20
65	Integrative analysis of cell state changes in lung fibrosis with peripheral protein biomarkers. EMBO Molecular Medicine, 2021, 13, e12871.	3.3	53
66	IFN-Î ³ and TNF-α drive a CXCL10+ CCL2+ macrophage phenotype expanded in severe COVID-19 lungs and inflammatory diseases with tissue inflammation. Genome Medicine, 2021, 13, 64.	3.6	128
71	iSMNN: batch effect correction for single-cell RNA-seq data via iterative supervised mutual nearest neighbor refinement. Briefings in Bioinformatics, 2021, 22, .	3.2	8
73	Cellâ€type specific analysis of physiological action of estrogen in mouse oviducts. FASEB Journal, 2021, 35, e21563.	0.2	14
74	CBA: Cluster-Guided Batch Alignment for Single Cell RNA-seq. Frontiers in Genetics, 2021, 12, 644211.	1.1	3
77	Somatostatin-expressing parafacial neurons are CO2/H+ sensitive and regulate baseline breathing. ELife, 2021, 10, .	2.8	9
79	A joint deep learning model enables simultaneous batch effect correction, denoising, and clustering in single-cell transcriptomics. Genome Research, 2021, 31, 1753-1766.	2.4	36
80	MAT2: manifold alignment of single-cell transcriptomes with cell triplets. Bioinformatics, 2021, 37, 3263-3269.	1.8	7
81	SSBER: removing batch effect for single-cell RNA sequencing data. BMC Bioinformatics, 2021, 22, 249.	1.2	3

#	Article	IF	CITATIONS
85	Mapping single-cell atlases throughout Metazoa unravels cell type evolution. ELife, 2021, 10, .	2.8	124
86	Computational principles and challenges in single-cell data integration. Nature Biotechnology, 2021, 39, 1202-1215.	9.4	223
89	Distinct populations of antigen specific tissue resident CD8 T cells in human cervix mucosa. JCI Insight, $2021, 6, .$	2.3	10
90	Entanglement clustering for ground-stateable quantum many-body states. Physical Review Research, 2021, 3, .	1.3	1
91	T cells armed with C-X-C chemokine receptor type 6 enhance adoptive cell therapy for pancreatic tumours. Nature Biomedical Engineering, 2021, 5, 1246-1260.	11.6	80
92	Analysis of single-cell RNA sequencing data based on autoencoders. BMC Bioinformatics, 2021, 22, 309.	1.2	15
93	A Systems Approach to Brain Tumor Treatment. Cancers, 2021, 13, 3152.	1.7	21
96	Specific Transcriptomic Signatures and Dual Regulation of Steroidogenesis Between Fetal and Adult Mouse Leydig Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 695546.	1.8	19
98	Prioritization of cell types responsive to biological perturbations in single-cell data with Augur. Nature Protocols, 2021, 16, 3836-3873.	5. 5	22
99	A unified atlas of CD8 TÂcell dysfunctional states in cancer and infection. Molecular Cell, 2021, 81, 2477-2493.e10.	4.5	57
100	Integration of millions of transcriptomes using batch-aware triplet neural networks. Nature Machine Intelligence, 2021, 3, 705-715.	8.3	19
101	CytoPy: An autonomous cytometry analysis framework. PLoS Computational Biology, 2021, 17, e1009071.	1.5	10
102	Single-cell RNA sequencing reveals ex vivo signatures of SARS-CoV-2-reactive T cells through †reverse phenotyping'. Nature Communications, 2021, 12, 4515.	5.8	23
103	Extrathymic <i>Aire</i> -expressing cells support maternal-fetal tolerance. Science Immunology, 2021, 6, .	5.6	17
107	Human Dermal Fibroblast Subpopulations Are Conserved across Single-Cell RNA Sequencing Studies. Journal of Investigative Dermatology, 2021, 141, 1735-1744.e35.	0.3	67
108	GABA-receptive microglia selectively sculpt developing inhibitory circuits. Cell, 2021, 184, 4048-4063.e32.	13.5	142
109	Spatial Transcriptomics: Molecular Maps of the Mammalian Brain. Annual Review of Neuroscience, 2021, 44, 547-562.	5.0	28
110	Single-cell dissection of cellular components and interactions shaping the tumor immune phenotypes in ovarian cancer. Cancer Cell, 2021, 39, 928-944.e6.	7.7	158

#	Article	IF	CITATIONS
111	Human brain organoids assemble functionally integrated bilateral optic vesicles. Cell Stem Cell, 2021, 28, 1740-1757.e8.	5.2	77
112	Embedding to reference t-SNE space addresses batch effects in single-cell classification. Machine Learning, 2023, 112, 721-740.	3.4	10
113	B-Cell Compartmental Features and Molecular Basis for Therapy in Autoimmune Disease. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	3.1	20
115	The need to reassess single-cell RNA sequencing datasets: more is not always better. F1000Research, 2021, 10, 767.	0.8	6
116	deepMNN: Deep Learning-Based Single-Cell RNA Sequencing Data Batch Correction Using Mutual Nearest Neighbors. Frontiers in Genetics, 2021, 12, 708981.	1.1	14
117	CoCoA-diff: counterfactual inference for single-cell gene expression analysis. Genome Biology, 2021, 22, 228.	3.8	9
118	Pre-activated antiviral innate immunity in the upper airways controls early SARS-CoV-2 infection in children. Nature Biotechnology, 2022, 40, 319-324.	9.4	229
120	A versatile and scalable single-cell data integration algorithm based on domain-adversarial and variational approximation. Briefings in Bioinformatics, 2022, 23, .	3.2	17
122	Single-cell multimodal glioma analyses identify epigenetic regulators of cellular plasticity and environmental stress response. Nature Genetics, 2021, 53, 1456-1468.	9.4	111
123	EpiScanpy: integrated single-cell epigenomic analysis. Nature Communications, 2021, 12, 5228.	5.8	59
125	Inflation-collapse dynamics drive patterning and morphogenesis in intestinal organoids. Cell Stem Cell, 2021, 28, 1516-1532.e14.	5.2	45
127	Applications of single-cell genomics and computational strategies to study common disease and population-level variation. Genome Research, 2021, 31, 1728-1741.	2.4	11
128	An NT-3-releasing bioscaffold supports the formation of TrkC-modified neural stem cell-derived neural network tissue with efficacy in repairing spinal cord injury. Bioactive Materials, 2021, 6, 3766-3781.	8.6	31
129	Vertical sleeve gastrectomy triggers fast \hat{l}^2 -cell recovery upon overt diabetes. Molecular Metabolism, 2021, 54, 101330.	3.0	10
131	Chromatin accessibility profiling methods. Nature Reviews Methods Primers, 2021, 1 , .	11.8	95
132	scMC learns biological variation through the alignment of multiple single-cell genomics datasets. Genome Biology, 2021, 22, 10.	3.8	534
133	Circuits between infected macrophages and T cells in SARS-CoV-2 pneumonia. Nature, 2021, 590, 635-641.	13.7	524
161	Predicting gene regulatory networks from cell atlases. Life Science Alliance, 2020, 3, e202000658.	1.3	7

#	Article	IF	CITATIONS
162	Lef1 expression in fibroblasts maintains developmental potential in adult skin to regenerate wounds. ELife, 2020, 9, .	2.8	94
163	Single-cell analyses reveal key immune cell subsets associated with response to PD-L1 blockade in triple-negative breast cancer. Cancer Cell, 2021, 39, 1578-1593.e8.	7.7	275
164	Computational tools for analyzing single-cell data in pluripotent cell differentiation studies. Cell Reports Methods, 2021, 1, 100087.	1.4	3
165	Building the mega single-cell transcriptome ocular meta-atlas. GigaScience, 2021, 10, .	3.3	24
167	Chromatin Velocity reveals epigenetic dynamics by single-cell profiling of heterochromatin and euchromatin. Nature Biotechnology, 2022, 40, 235-244.	9.4	72
168	Integrating single-cell genomics pipelines to discover mechanisms of stem cell differentiation. Trends in Molecular Medicine, 2021, 27, 1135-1158.	3.5	8
170	Efficient and precise single-cell reference atlas mapping with Symphony. Nature Communications, 2021, 12, 5890.	5.8	100
171	Miscell: An efficient self-supervised learning approach for dissecting single-cell transcriptome. IScience, 2021, 24, 103200.	1.9	6
179	Besca, a single-cell transcriptomics analysis toolkit to accelerate translational research. NAR Genomics and Bioinformatics, 2021, 3, lqab102.	1.5	13
187	HER3 Is an Actionable Target in Advanced Prostate Cancer. Cancer Research, 2021, 81, 6207-6218.	0.4	25
190	Large-scale integration of single-cell transcriptomic data captures transitional progenitor states in mouse skeletal muscle regeneration. Communications Biology, 2021, 4, 1280.	2.0	83
193	A robust and scalable graph neural network for accurate single-cell classification. Briefings in Bioinformatics, 2022, 23, .	3.2	15
194	Comprehensive evaluation of noise reduction methods for single-cell RNA sequencing data. Briefings in Bioinformatics, 2022, 23, .	3.2	13
195	Construction of a niche-specific spinal white matter-like tissue to promote directional axon regeneration and myelination for rat spinal cord injury repair. Bioactive Materials, 2022, 11, 15-31.	8.6	14
196	A universal approach for integrating super large-scale single-cell transcriptomes by exploring gene rankings. Briefings in Bioinformatics, 2022, 23, .	3.2	2
197	Immunotherapy of cancer in single-cell RNA sequencing era: A precision medicine perspective. Biomedicine and Pharmacotherapy, 2022, 146, 112558.	2.5	10
198	Single-cell transcriptome analysis defines mesenchymal stromal cells in the mouse incisor dental pulp. Gene Expression Patterns, 2022, 43, 119228.	0.3	5
199	CellRank for directed single-cell fate mapping. Nature Methods, 2022, 19, 159-170.	9.0	286

#	Article	IF	CITATIONS
200	scPretrain: multi-task self-supervised learning for cell-type classification. Bioinformatics, 2022, 38, 1607-1614.	1.8	5
201	Multiple early factors anticipate post-acute COVID-19 sequelae. Cell, 2022, 185, 881-895.e20.	13.5	605
202	Cell2location maps fine-grained cell types in spatial transcriptomics. Nature Biotechnology, 2022, 40, 661-671.	9.4	335
204	Single-Cell RNA-Seq Technologies and Computational Analysis Tools: Application in Cancer Research. Methods in Molecular Biology, 2022, 2413, 245-255.	0.4	2
206	Prdm6 controls heart development by regulating neural crest cell differentiation and migration. JCI Insight, 2022, 7, .	2.3	13
208	Comparative Study on Physiological Responses and Gene Expression of Bud Endodormancy Release Between Two Herbaceous Peony Cultivars (Paeonia lactiflora Pall.) With Contrasting Chilling Requirements. Frontiers in Plant Science, 2021, 12, 772285.	1.7	3
209	Data harmonisation for information fusion in digital healthcare: A state-of-the-art systematic review, meta-analysis and future research directions. Information Fusion, 2022, 82, 99-122.	11.7	62
210	A blood atlas of COVID-19 defines hallmarks of disease severity and specificity. Cell, 2022, 185, 916-938.e58.	13.5	164
211	Deciphering the spatial-temporal transcriptional landscape of human hypothalamus development. Cell Stem Cell, 2022, 29, 328-343.e5.	5.2	15
212	Benchmarking atlas-level data integration in single-cell genomics. Nature Methods, 2022, 19, 41-50.	9.0	403
213	Temporal single-cell tracing reveals clonal revival and expansion of precursor exhausted T cells during anti-PD-1 therapy in lung cancer. Nature Cancer, 2022, 3, 108-121.	5.7	150
214	The Gene Signatures of Human Alpha Cells in Types 1 and 2 Diabetes Indicate Disease-Specific Pathways of Alpha Cell Dysfunction. SSRN Electronic Journal, 0, , .	0.4	1
215	Unbiased integration of single cell transcriptome replicates. NAR Genomics and Bioinformatics, 2022, 4, Iqac022.	1.5	8
216	IMGG: Integrating Multiple Single-Cell Datasets through Connected Graphs and Generative Adversarial Networks. International Journal of Molecular Sciences, 2022, 23, 2082.	1.8	8
219	Suspension culture promotes serosal mesothelial development in human intestinal organoids. Cell Reports, 2022, 38, 110379.	2.9	19
221	Benchmark of Data Processing Methods and Machine Learning Models for Gut Microbiome-Based Diagnosis of Inflammatory Bowel Disease. Frontiers in Genetics, 2022, 13, 784397.	1.1	14
222	Single-cell atlases: shared and tissue-specific cell types across human organs. Nature Reviews Genetics, 2022, 23, 395-410.	7.7	71
223	The need to reassess single-cell RNA sequencing datasets: the importance of biological sample processing. F1000Research, 0, 10, 767.	0.8	3

#	Article	IF	Citations
224	scINSIGHT for interpreting single-cell gene expression from biologically heterogeneous data. Genome Biology, 2022, 23, 82.	3.8	8
226	Single-cell RNA sequencing reveals intrahepatic and peripheral immune characteristics related to disease phases in HBV-infected patients. Gut, 2023, 72, 153-167.	6.1	42
227	The development and evolution of inhibitory neurons in primate cerebrum. Nature, 2022, 603, 871-877.	13.7	58
229	Molecular hallmarks of heterochronic parabiosis at single-cell resolution. Nature, 2022, 603, 309-314.	13.7	51
230	Emerging Roles of Airway Epithelial Cells in Idiopathic Pulmonary Fibrosis. Cells, 2022, 11, 1050.	1.8	23
231	Local and systemic responses to SARS-CoV-2 infection in children and adults. Nature, 2022, 602, 321-327.	13.7	179
232	CIDER: an interpretable meta-clustering framework for single-cell RNA-seq data integration and evaluation. Genome Biology, 2021, 22, 337.	3.8	14
233	Deep learning tackles single-cell analysisâ€"a survey of deep learning for scRNA-seq analysis. Briefings in Bioinformatics, 2022, 23, .	3.2	19
235	Resolving the immune landscape of human prostate at a single-cell level in health and cancer. Cell Reports, 2021, 37, 110132.	2.9	40
240	FIRM: Flexible integration of single-cell RNA-sequencing data for large-scale multi-tissue cell atlas datasets. Briefings in Bioinformatics, 2022, 23, .	3.2	10
241	One Cell At a Time (OCAT): a unified framework to integrate and analyze single-cell RNA-seq data. Genome Biology, 2022, 23, 102.	3.8	6
243	A common framework of monocyte-derived macrophage activation. Science Immunology, 2022, 7, eabl7482.	5.6	58
245	Serine Protease Inhibitors Restrict Host Susceptibility to SARS-CoV-2 Infections. MBio, 2022, 13, e0089222.	1.8	14
246	Single-nucleus cross-tissue molecular reference maps toward understanding disease gene function. Science, 2022, 376, eabl4290.	6.0	180
247	The Tabula Sapiens: A multiple-organ, single-cell transcriptomic atlas of humans. Science, 2022, 376, eabl4896.	6.0	289
248	Mapping the developing human immune system across organs. Science, 2022, 376, eabo0510.	6.0	126
249	Beta-hydroxybutyrate dampens adipose progenitors' profibrotic activation through canonical Tgfl² signaling and non-canonical ZFP36-dependent mechanisms. Molecular Metabolism, 2022, 61, 101512.	3.0	6
250	Cross-tissue immune cell analysis reveals tissue-specific features in humans. Science, 2022, 376, eabl5197.	6.0	265

#	Article	IF	CITATIONS
251	Loss of TÂcell tolerance in the skin following immunopathology is linked to failed restoration of the dermal niche by recruited macrophages. Cell Reports, 2022, 39, 110819.	2.9	3
252	Adversarial domain translation networks for integrating large-scale atlas-level single-cell datasets. Nature Computational Science, 2022, 2, 317-330.	3.8	13
253	Glioma progression is shaped by genetic evolution and microenvironment interactions. Cell, 2022, 185, 2184-2199.e16.	13.5	163
254	Cross-tissue, single-cell stromal atlas identifies shared pathological fibroblast phenotypes in four chronic inflammatory diseases. Med, 2022, 3, 481-518.e14.	2.2	51
255	Origin, specification and differentiation of a rare supporting-like lineage in the developing mouse gonad. Science Advances, 2022, 8, .	4.7	32
259	Enhanced cortical neural stem cell identity through short SMAD and WNT inhibition in human cerebral organoids facilitates emergence of outer radial glial cells. Nature Cell Biology, 2022, 24, 981-995.	4.6	26
260	Computational Methods for Single-cell DNA Methylome Analysis. Genomics, Proteomics and Bioinformatics, 2023, 21, 48-66.	3.0	4
261	Comparative efficacy and mechanism of action of cardiac progenitor cells after cardiac injury. IScience, 2022, 25, 104656.	1.9	6
262	BACE-1 inhibition facilitates the transition from homeostatic microglia to DAM-1. Science Advances, 2022, 8, .	4.7	27
263	ResPAN: a powerful batch correction model for scRNA-seq data through residual adversarial networks. Bioinformatics, 2022, 38, 3942-3949.	1.8	4
264	Integration of tumor extrinsic and intrinsic features associates with immunotherapy response in non-small cell lung cancer. Nature Communications, 2022, 13, .	5.8	14
265	R-SPONDIN2 mesenchymal cells form the bud tip progenitor niche during human lung development. Developmental Cell, 2022, 57, 1598-1614.e8.	3.1	19
267	T Cells With Activated STAT4 Drive the High-Risk Rejection State to Renal Allograft Failure After Kidney Transplantation. Frontiers in Immunology, 0, 13, .	2.2	2
269	GLOBE: a contrastive learning-based framework for integrating single-cell transcriptome datasets. Briefings in Bioinformatics, 2022, 23, .	3.2	8
270	Full-Length Spatial Transcriptomics Reveals the Unexplored Isoform Diversity of the Myocardium Post-MI. Frontiers in Genetics, 0, 13, .	1.1	15
271	Myasthenia gravis-specific aberrant neuromuscular gene expression by medullary thymic epithelial cells in thymoma. Nature Communications, 2022, 13, .	5.8	27
272	TRIM28-dependent SUMOylation protects the adult ovary from activation of the testicular pathway. Nature Communications, 2022, 13, .	5.8	15
274	Single-cell RNA and protein profiling of immune cells from the mouse brain and its border tissues. Nature Protocols, 2022, 17, 2354-2388.	5 . 5	13

#	Article	IF	CITATIONS
275	Single-Cell Transcriptome Analysis Defines Expression of Kabuki Syndrome-Associated KMT2D Targets and Interacting Partners. Stem Cells International, 2022, 2022, 1-9.	1.2	2
279	Scalable batch-correction approach for integrating large-scale single-cell transcriptomes. Briefings in Bioinformatics, 2022, 23, .	3.2	0
280	A Deep Learning Pipeline for the Automatic cell type Assignment of scRNA-seq Data. , 2022, , .		1
281	Accurate inference of genome-wide spatial expression with iSpatial. Science Advances, 2022, 8, .	4.7	5
282	Human alpha cell transcriptomic signatures of types 1 and 2 diabetes highlight disease-specific dysfunction pathways. IScience, 2022, 25, 105056.	1.9	11
283	A transcriptional cross species map of pancreatic islet cells. Molecular Metabolism, 2022, 66, 101595.	3.0	13
284	Gaining Insight into SARS-CoV-2 Infection and COVID-19 Severity Using Self-supervised Edge Features and Graph Neural Networks. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35, 4864-4873.	3.6	6
285	Interactive Analysis of Single-Cell Data Using Flexible Workflows With SCTK2.0. SSRN Electronic Journal, 0, , .	0.4	O
286	Developmental Diversity and Unique Sensitivity to Injury of Lung Endothelial Subtypes During a Period of Rapid Postnatal Growth. SSRN Electronic Journal, 0, , .	0.4	0
287	Polyphony: an Interactive Transfer Learning Framework for Single-Cell Data Analysis. IEEE Transactions on Visualization and Computer Graphics, 2023, 29, 591-601.	2.9	2
288	sciCAN: single-cell chromatin accessibility and gene expression data integration via cycle-consistent adversarial network. Npj Systems Biology and Applications, 2022, 8, .	1.4	10
290	Myeloid cell interferon secretion restricts Zika flavivirus infection of developing and malignant human neural progenitor cells. Neuron, 2022, 110, 3936-3951.e10.	3.8	7
292	Unified rhombic lip origins of group 3 and group 4 medulloblastoma. Nature, 2022, 609, 1012-1020.	13.7	44
295	Single-cell meta-analyses reveal responses of tumor-reactive CXCL13+ T cells to immune-checkpoint blockade. Nature Cancer, 2022, 3, 1123-1136.	5.7	71
296	EBF1 primes B-lymphoid enhancers and limits the myeloid bias in murine multipotent progenitors. Journal of Experimental Medicine, 2022, 219, .	4.2	8
298	From multitude to singularity: An up-to-date overview of scRNA-seq data generation and analysis. Frontiers in Genetics, $0,13,13$	1.1	9
301	Mapping the adult human esophagus <i>in vivo</i> and <i>in vitro</i> . Development (Cambridge), 2022, 149, .	1.2	2
302	Single-cell transcriptomics reveals the role of Macrophage-NaÃ⁻ve CD4 + T cell interaction in the immunosuppressive microenvironment of primary liver carcinoma. Journal of Translational Medicine, 2022, 20, .	1.8	9

#	Article	IF	CITATIONS
304	Single-cell sequencing deconvolutes cellular responses to exercise in human skeletal muscle. Communications Biology, 2022, 5, .	2.0	11
305	Comprehensive single-cell transcriptional profiling defines shared and unique epithelial injury responses during kidney fibrosis. Cell Metabolism, 2022, 34, 1977-1998.e9.	7.2	46
309	Online single-cell data integration through projecting heterogeneous datasets into a common cell-embedding space. Nature Communications, 2022, 13, .	5.8	29
310	Human prefrontal cortex gene regulatory dynamics from gestation to adulthood at single-cell resolution. Cell, 2022, 185, 4428-4447.e28.	13.5	49
311	Deciphering molecular and cellular ex vivo responses to bispecific antibodies PD1-TIM3 and PD1-LAG3 in human tumors., 2022, 10, e005548.		9
312	Postnatal neuronal $\langle i \rangle$ Bace $1 \langle i \rangle$ deletion impairs neuroblast and oligodendrocyte maturation. Human Molecular Genetics, $0,$	1.4	0
313	Single cell profiling of primary and paired metastatic lymph node tumors in breast cancer patients. Nature Communications, 2022, 13, .	5.8	19
315	Distinct pathogenic roles for resident and monocyte-derived macrophages in lupus nephritis. JCI Insight, 2022, 7, .	2.3	10
316	Integrative Analyses of Single-Cell Multi-Omics Data: A Review from a Statistical Perspective. Springer Handbooks of Computational Statistics, 2022, , 53-69.	0.2	0
318	Thymic macrophages consist of two populations with distinct localization and origin. ELife, 0, 11 , .	2.8	6
320	Data analysis guidelines for single-cell RNA-seq in biomedical studies and clinical applications. Military Medical Research, 2022, 9, .	1.9	4
321	AP1/Fra1 confers resistance to MAPK cascade inhibition in pancreatic cancer. Cellular and Molecular Life Sciences, 2023, 80, .	2.4	3
323	A human fetal lung cell atlas uncovers proximal-distal gradients of differentiation and key regulators of epithelial fates. Cell, 2022, 185, 4841-4860.e25.	13.5	51
324	Learning single-cell chromatin accessibility profiles using meta-analytic marker genes. Briefings in Bioinformatics, 2023, 24, .	3.2	1
325	A spatially resolved atlas of the human lung characterizes a gland-associated immune niche. Nature Genetics, 2023, 55, 66-77.	9.4	40
326	SCIBER: a simple method for removing batch effects from single-cell RNA-sequencing data. Bioinformatics, 2023, 39, .	1.8	1
328	Integration of scATAC-Seq with scRNA-Seq Data. Methods in Molecular Biology, 2023, , 293-310.	0.4	4
330	Multiâ€omics integration reveals a core network involved in host defence and hyperkeratinization in psoriasis. Clinical and Translational Medicine, 2022, 12, .	1.7	4

#	Article	IF	CITATIONS
331	InÂvitro-derived medium spiny neurons recapitulate human striatal development and complexity at single-cell resolution. Cell Reports Methods, 2022, 2, 100367.	1.4	3
333	The hepatic integrated stress response suppresses the somatotroph axis to control liver damage in nonalcoholic fatty liver disease. Cell Reports, 2022, 41, 111803.	2.9	5
335	Reconstruction and deconstruction of human somitogenesis in vitro. Nature, 2023, 614, 500-508.	13.7	37
337	Spatial omics technologies at multimodal and single cell/subcellular level. Genome Biology, 2022, 23, .	3.8	32
338	Parallel single-cell and bulk transcriptome analyses reveal key features of the gastric tumor microenvironment. Genome Biology, 2022, 23, .	3.8	13
340	Molecular and spatial signatures of mouse brain aging at single-cell resolution. Cell, 2023, 186, 194-208.e18.	13.5	79
343	Skin programming of inflammatory responses to <i>Staphylococcus aureus</i> is compartmentalized according to epidermal keratinocyte differentiation status. British Journal of Dermatology, 2023, 188, 396-406.	1.4	2
346	Developmental diversity and unique sensitivity to injury of lung endothelial subtypes during postnatal growth. IScience, 2023, 26, 106097.	1.9	7
347	Differential cell composition and split epidermal differentiation in human palm, sole, and hip skin. Cell Reports, 2023, 42, 111994.	2.9	13
348	Integrative single-cell RNA-seq and ATAC-seq analysis of myogenic differentiation in pig. BMC Biology, 2023, 21, .	1.7	9
349	Integrating Multiple Single-Cell RNA Sequencing Datasets Using Adversarial Autoencoders. International Journal of Molecular Sciences, 2023, 24, 5502.	1.8	1
351	Analyzing genomic and epigenetic profiles in single cells by hybrid transposase (scGET-seq). STAR Protocols, 2023, 4, 102176.	0.5	1
353	Single-cell mapping of combinatorial target antigens for CAR switches using logic gates. Nature Biotechnology, 2023, 41, 1593-1605.	9.4	6
354	Batch alignment of single-cell transcriptomics data using deep metric learning. Nature Communications, 2023, 14 , .	5.8	10
355	IBRAP: integrated benchmarking single-cell RNA-sequencing analytical pipeline. Briefings in Bioinformatics, 2023, 24, .	3.2	2
356	scPrisma infers, filters and enhances topological signals in single-cell data using spectral template matching. Nature Biotechnology, 2023, 41, 1645-1654.	9.4	3
357	Single-cell transcriptomic profiling redefines the origin and specification of early adrenogonadal progenitors. Cell Reports, 2023, 42, 112191.	2.9	4
358	Integration of Single-Cell RNA-Seq Datasets: A Review of Computational Methods. Molecules and Cells, 2023, 46, 106-119.	1.0	8

#	ARTICLE	IF	CITATIONS
360	Single-cell transcriptomic atlas-guided development of CAR-T cells for the treatment of acute myeloid leukemia. Nature Biotechnology, 2023, 41, 1618-1632.	9.4	15
362	VIGET: A web portal for study of vaccine-induced host responses based on Reactome pathways and ImmPort data. Frontiers in Immunology, 0, 14 , .	2.2	1
365	Domain adaptation for supervised integration of scRNA-seq data. Communications Biology, 2023, 6, .	2.0	3
366	An integrated single cell and spatial transcriptomic map of human white adipose tissue. Nature Communications, 2023, 14, .	5.8	35
369	COVID-19 relapse associated with SARS-CoV-2 evasion from CD4+ T-cell recognition in an agammaglobulinemia patient. IScience, 2023, 26, 106685.	1.9	4
370	Generative pretraining from large-scale transcriptomes for single-cell deciphering. IScience, 2023, 26, 106536.	1.9	4
376	How Severe is Your COVID-19? Predicting SARS-CoV-2 Infection with Graph Attention Capsule Networks. , 2022, , .		0
382	scAEQN: A Batch Correction Joint Dimension Reduction Method on scRNA-seq Data. , 2023, , .		0
397	Applying SCALEX scRNA-Seq Data Integration for Precise Alzheimer's Disease Biomarker Discovery. IFIP Advances in Information and Communication Technology, 2023, , 294-302.	0.5	0
422	Representing and extracting knowledge from single-cell data. Biophysical Reviews, 2024, 16, 29-56.	1.5	4
445	A Graph Neural Network with Multiple Auxiliary Tasks for Accurate Single Cell Classià $\neg \varepsilon$ ation. , 2023, , .		0
452	A Gene Selection Strategy for Enhancing Single-Cell RNA-Seq Data Integration., 0,,.		0
501	Data Analysis Pipeline for scRNA-seq Experiments to Study Early Oogenesis. Methods in Molecular Biology, 2024, , 203-225.	0.4	0
504	Data Harmonization to Address the Non-biological Variances in Radiomic Studies. Imaging Informatics for Healthcare Professionals, 2023, , 95-115.	0.4	0