The effects of resveratrol on metabolic status in patient coronary heart disease

Food and Function 10, 6042-6051 DOI: 10.1039/c9fo01075k

Citation Report

#	ARTICLE	IF	CITATIONS
"	Altered mitochondrial metabolism in the insulinâ€resistant heart. Acta Physiologica. 2020. 228. e13430.	1.8	56
2	Medicinal plants and bioactive natural compounds as inhibitors of <scp>HMG oA</scp> reductase: A literature review. BioFactors, 2020, 46, 906-926.	2.6	30
3	SIRT1-dependent effects of resveratrol and grape juice in an in vitro model of preeclampsia. Biomedicine and Pharmacotherapy, 2020, 131, 110659.	2.5	13
4	Grape (Vitis vinifera L.) Seed Oil: A Functional Food from the Winemaking Industry. Foods, 2020, 9, 1360.	1.9	67
5	A Novel Promising Frontier for Human Health: The Beneficial Effects of Nutraceuticals in Cardiovascular Diseases. International Journal of Molecular Sciences, 2020, 21, 8706.	1.8	32
6	Is it scientifically justifiable to exclude wine and/or unfermented grape derivatives from the diet of consumers with or at risk of developing type-2 diabetes?. Food and Function, 2020, 11, 10266-10278.	2.1	3
7	Resveratrol Improves Bnip3-Related Mitophagy and Attenuates High-Fat-Induced Endothelial Dysfunction. Frontiers in Cell and Developmental Biology, 2020, 8, 796.	1.8	41
8	Early-life nutrition and metabolic disorders in later life: a new perspective on energy metabolism. Chinese Medical Journal, 2020, 133, 1961-1970.	0.9	21
9	Resveratrol Regulates the Expression of Genes Involved in CoQ Synthesis in Liver in Mice Fed with High Fat Diet. Antioxidants, 2020, 9, 431.	2.2	11
10	Resveratrol targeting tau proteins, amyloidâ€beta aggregations, and their adverse effects: An updated review. Phytotherapy Research, 2020, 34, 2867-2888.	2.8	16
11	The Role of Histone Acetylation and the Microbiome in Phytochemical Efficacy for Cardiovascular Diseases. International Journal of Molecular Sciences, 2020, 21, 4006.	1.8	10
12	Resveratrol and Diabetic Cardiomyopathy: Focusing on the Protective Signaling Mechanisms. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-19.	1.9	15
13	Efficacy and Safety of Resveratrol in Type 1 Diabetes Patients: A Two-Month Preliminary Exploratory Trial. Nutrients, 2020, 12, 161.	1.7	53
14	The impact of coenzyme Q ₁₀ on metabolic and cardiovascular disease profiles in diabetic patients: A systematic review and metaâ€analysis of randomized controlled trials. Endocrinology, Diabetes and Metabolism, 2020, 3, e00118.	1.0	24
15	Sirtuin 1 deficiency decreases bone mass and increases bone marrow adiposity in a mouse model of chronic energy deficiency. Bone, 2020, 136, 115361.	1.4	27
16	Nutraceuticals in Chronic Coronary Syndromes: Preclinical Data and Translational Experiences. High Blood Pressure and Cardiovascular Prevention, 2021, 28, 13-25.	1.0	3
17	Reproductive Longevity and Aging: Geroscience Approaches to Maintain Long-Term Ovarian Fitness. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2021, 76, 1551-1560.	1.7	35
18	Effects of resveratrol on mitochondrial biogenesis and physiological diseases. Advances in Traditional Medicine, 2021, 21, 1-14.	1.0	5

ATION RE

#	Article	IF	CITATIONS
19	Beneficial phytoestrogenic effects of resveratrol on polycystic ovary syndromein rat model. Gynecological Endocrinology, 2021, 37, 337-341.	0.7	11
20	Resveratrol's Anti-Cancer Effects through the Modulation of Tumor Glucose Metabolism. Cancers, 2021, 13, 188.	1.7	49
21	Resveratrol. , 2021, , 349-378.		2
22	Resveratrol supplementation and type 2 diabetes: a systematic review and meta-analysis. Critical Reviews in Food Science and Nutrition, 2022, 62, 4465-4480.	5.4	12
23	Resveratrol Affects Insulin Signaling in Type 2 Diabetic Goto-Kakizaki Rats. International Journal of Molecular Sciences, 2021, 22, 2469.	1.8	10
24	Resveratrol and cardiac fibrosis prevention and treatment. Current Pharmaceutical Biotechnology, 2021, 22, .	0.9	12
25	The Use of Micro- and Nanocarriers for Resveratrol Delivery into and across the Skin in Different Skin Diseases—A Literature Review. Pharmaceutics, 2021, 13, 451.	2.0	20
26	Nanomaterial Complexes Enriched With Natural Compounds Used in Cancer Therapies: A Perspective for Clinical Application. Frontiers in Oncology, 2021, 11, 664380.	1.3	8
27	Functional Food and Bioactive Compounds on the Modulation of the Functionality of HDL-C: A Narrative Review. Nutrients, 2021, 13, 1165.	1.7	9
28	An updated pharmacological insight of resveratrol in the treatment of diabetic nephropathy. Gene, 2021, 780, 145532.	1.0	32
29	Natural Compounds in Glioblastoma Therapy: Preclinical Insights, Mechanistic Pathways, and Outlook. Cancers, 2021, 13, 2317.	1.7	25
30	Oxidative Stress: Pathogenetic Role in Diabetes Mellitus and Its Complications and Therapeutic Approaches to Correction. Bulletin of Experimental Biology and Medicine, 2021, 171, 179-189.	0.3	106
31	Sirtuins: To Be or Not To Be in Diabetic Cardiomyopathy. Trends in Molecular Medicine, 2021, 27, 554-571.	3.5	22
32	Natural Polyphenols in Metabolic Syndrome: Protective Mechanisms and Clinical Applications. International Journal of Molecular Sciences, 2021, 22, 6110.	1.8	34
33	Increasing the Power of Polyphenols through Nanoencapsulation for Adjuvant Therapy against Cardiovascular Diseases. Molecules, 2021, 26, 4621.	1.7	10
34	Can resveratrol modulate sirtuins in obesity and related diseases? A systematic review of randomized controlled trials. European Journal of Nutrition, 2021, 60, 2961-2977.	1.8	12
35	Efficacy and Safety of Resveratrol Supplements on Blood Lipid and Blood Glucose Control in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Evidence-based Complementary and Alternative Medicine, 2021, 2021, 1-15.	0.5	11
36	Dietary Blueberry and Soluble Fiber Improve Serum Antioxidant and Adipokine Biomarkers and Lipid Peroxidation in Pregnant Women with Obesity and at Risk for Gestational Diabetes. Antioxidants, 2021, 10, 1318.	2.2	12

#	Article	IF	CITATIONS
37	A comprehensive insight into the potential effects of resveratrol supplementation on SIRT-1: A systematic review. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 2021, 15, 102224.	1.8	6
38	Effect of resveratrol on Câ€reactive protein: An updated metaâ€analysis of randomized controlled trials. Phytotherapy Research, 2021, 35, 6754-6767.	2.8	8
39	The Effect of Resveratrol on the Cardiovascular System from Molecular Mechanisms to Clinical Results. International Journal of Molecular Sciences, 2021, 22, 10152.	1.8	35
40	Natural products and analogs as preventive agents for metabolic syndrome via peroxisome proliferator-activated receptors: An overview. European Journal of Medicinal Chemistry, 2021, 221, 113535.	2.6	29
41	Hypoglycemic Effect of Resveratrol: A Systematic Review and Meta-Analysis. Antioxidants, 2021, 10, 69.	2.2	16
42	Natural products and phytochemical nanoformulations targeting mitochondria in oncotherapy: an updated review on resveratrol. Bioscience Reports, 2020, 40, .	1.1	33
43	The Glitazars Paradox: Cardiotoxicity of the Metabolically Beneficial Dual PPARα and PPARÎ ³ Activation. Journal of Cardiovascular Pharmacology, 2020, 76, 514-526.	0.8	14
44	Targeting microRNAs with thymoquinone: a new approach for cancer therapy. Cellular and Molecular Biology Letters, 2021, 26, 43.	2.7	21
45	Effect of resveratrol supplementation on biomarkers associated with atherosclerosis in humans. Complementary Therapies in Clinical Practice, 2022, 46, 101491.	0.7	7
46	The effects of resveratrol on glycemic control and cardiometabolic parameters in patients with T2DM: A systematic review and meta-analysis. Medicina ClÃnica, 2022, 158, 576-585.	0.3	12
47	Chitosan as possible inhibitory agents and delivery systems in leukemia. Cancer Cell International, 2021, 21, 544.	1.8	10
48	Human Sirtuin Regulators: The "Success―Stories. Frontiers in Physiology, 2021, 12, 752117.	1.3	52
49	Resveratrol shortens the chronological lifespan of <scp><i>Saccharomyces cerevisiae</i></scp> by a proâ€oxidant mechanism. Yeast, 2022, 39, 193-207.	0.8	4
51	Antidiabetic herbal biomolecules. , 2022, , 407-434.		0
52	Serum concentration of vitamin A and its relationship with body adiposity, oxidative stress, and cardiovascular risk in women with recommended dietary intake of vitamin A. Nutricion Hospitalaria, 2020, 37, 1135-1142.	0.2	2
53	Circular RNAs and glioblastoma multiforme: focus on molecular mechanisms. Cell Communication and Signaling, 2022, 20, 13.	2.7	28
54	Resveratrol and Cervical Cancer: A New Therapeutic Option?. Mini-Reviews in Medicinal Chemistry, 2022, 22, .	1.1	3
55	Nutraceuticals use and type 2 diabetes mellitus. Current Opinion in Pharmacology, 2022, 62, 168-176.	1.7	10

#	Article	IF	CITATIONS
56	The association between dietary phytochemical index with depression and quality of life in iranian adolescent girls. BioPsychoSocial Medicine, 2022, 16, 5.	0.9	4
57	Resveratrol ameliorates diabetic kidney injury by reducing lipotoxicity and modulates expression of components of the junctional adhesion molecule-like/sirtuin 1 lipid metabolism pathway. European Journal of Pharmacology, 2022, 918, 174776.	1.7	12
58	Effects of Resveratrol on Metabolic Indicators in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis. International Journal of Clinical Practice, 2022, 2022, 1-19.	0.8	9
59	Preventive Effect of Ellagic Acid on Cardiac Dysfunction in Diabetic Mice through Regulating DNA Hydroxymethylation. Journal of Agricultural and Food Chemistry, 2022, 70, 1902-1910.	2.4	5
60	Current Status of Autophagy Enhancers in Metabolic Disorders and Other Diseases. Frontiers in Cell and Developmental Biology, 2022, 10, 811701.	1.8	5
61	The Effect of Dietary Supplementation with Resveratrol on Growth Performance, Carcass and Meat Quality, Blood Lipid Levels and Ruminal Microbiota in Fattening Goats. Foods, 2022, 11, 598.	1.9	8
62	The Role of Nutraceutical Containing Polyphenols in Diabetes Prevention. Metabolites, 2022, 12, 184.	1.3	18
63	Potential anticancer properties and mechanisms of thymoquinone in osteosarcoma and bone metastasis. Cellular and Molecular Biology Letters, 2022, 27, 21.	2.7	21
64	Could Polyphenolic Food Intake Help in the Control of Type 2 Diabetes? A Narrative Review of the Last Evidence. Current Nutrition and Food Science, 2022, 18, 785-798.	0.3	2
65	Efficacy of Resveratrol Supplementation on Glucose and Lipid Metabolism: A Meta-Analysis and Systematic Review. Frontiers in Physiology, 2022, 13, 795980.	1.3	10
66	Type 2 Diabetes Complicated With Heart Failure: Research on Therapeutic Mechanism and Potential Drug Development Based on Insulin Signaling Pathway. Frontiers in Pharmacology, 2022, 13, 816588.	1.6	10
67	Application of Quercetin in the Treatment of Gastrointestinal Cancers. Frontiers in Pharmacology, 2022, 13, 860209.	1.6	17
68	Effect of resveratrol supplementation on hepatic steatosis and cardiovascular indices in overweight subjects with type 2 diabetes: a double-blind, randomized controlled trial. BMC Cardiovascular Disorders, 2022, 22, 212.	0.7	12
69	Sirtuin modulators: past, present, and future perspectives. Future Medicinal Chemistry, 2022, 14, 915-939.	1.1	24
70	Systematic analysis of nutrigenomic effects of polyphenols related to cardiometabolic health in humans – Evidence from untargeted mRNA and miRNA studies. Ageing Research Reviews, 2022, 79, 101649.	5.0	11
71	4-Hydroxydibenzyl: a novel metabolite from the human gut microbiota after consuming resveratrol. Food and Function, 2022, 13, 7487-7493.	2.1	10
72	The effects of resveratrol on glycemic control and cardiometabolic parameters in patients with T2DM: A systematic review and meta-analysis. Medicina ClÃnica (English Edition), 2022, 158, 576-585.	0.1	0
73	Role of Drug Delivery System in Improving the Bioavailability of Resveratrol. Current Pharmaceutical Design, 2022, 28, 1632-1642.	0.9	10

			2
#	ARTICLE	IF	CITATIONS
74	Neuroprotective Effects of Resveratrol by Modifying Cholesterol Metabolism and Al ² Processing in SAMP8 Mice. International Journal of Molecular Sciences, 2022, 23, 7580.	1.8	6
75	Potential mechanisms underlying the association between type II diabetes mellitus and cognitive dysfunction in rats: a link between miRNA-21 and Resveratrol's neuroprotective action. Metabolic Brain Disease, 2022, 37, 2375-2388.	1.4	5
76	SIRT1 and Autophagy: Implications in Endocrine Disorders. Frontiers in Endocrinology, 0, 13, .	1.5	25
77	Role of Oxidative Stress in the Pathogenesis of Atherothrombotic Diseases. Antioxidants, 2022, 11, 1408.	2.2	21
78	Influence of Age and Dose on the Effect of Resveratrol for Glycemic Control in Type 2 Diabetes Mellitus: Systematic Review and Meta-Analysis. Molecules, 2022, 27, 5232.	1.7	12
79	Effects of resveratrol therapy on glucose metabolism, insulin resistance, inflammation, and renal function in the elderly patients with type 2 diabetes mellitus: A randomized controlled clinical trial protocol. Medicine (United States), 2022, 101, e30049.	0.4	7
80	Anti-inflammatory effects of resveratrol in patients with cardiovascular disease: A systematic review and meta-analysis of randomized controlled trials. Complementary Therapies in Medicine, 2022, 70, 102863.	1.3	15
81	Impact of Phytochemicals on PPAR Receptors: Implications for Disease Treatments. PPAR Research, 2022, 2022, 1-43.	1.1	5
82	The Effect of Resveratrol on Blood Lipid Profile: A Dose-Response Meta-Analysis of Randomized Controlled Trials. Nutrients, 2022, 14, 3755.	1.7	18
83	Treatment with combined resveratrol and myoinositol ameliorates endocrine, metabolic alterations and perceived stress response in women with PCOS: a double-blind randomized clinical trial. Endocrine, 2023, 79, 208-220.	1.1	7
84	The Journey of Resveratrol from Vineyards to Clinics. Cancer Investigation, 0, , 1-38.	0.6	1
85	Health benefits of dietary polyphenols: Insight into interindividual variability in absorption and metabolism. Current Opinion in Food Science, 2022, , 100941.	4.1	10
86	Role of resveratrol in inhibiting pathological cardiac remodeling. Frontiers in Pharmacology, 0, 13, .	1.6	11
87	Detrimental Effects of Lipid Peroxidation in Type 2 Diabetes: Exploring the Neutralizing Influence of Antioxidants. Antioxidants, 2022, 11, 2071.	2.2	13
88	Resveratrol impacts health in patients with diabetes mellitus and other metabolic conditions. Journal of Education, Health and Sport, 2022, 12, 341-346.	0.0	1
89	Nutraceutical Approaches to Dyslipidaemia: The Main Formulative Issues Preventing Efficacy. Nutrients, 2022, 14, 4769.	1.7	4
90	Progress in the Preclinical and Clinical Study of Resveratrol for Vascular Metabolic Disease. Molecules, 2022, 27, 7524.	1.7	6
91	Alcoholic fermentation with Pichia kluyveri could improve the melatonin bioavailability of orange juice. Journal of Functional Foods, 2022, 99, 105325.	1.6	1

#	Article	IF	CITATIONS
92	Resveratrol and lycopene ameliorate contrast-induced nephropathy in a rabbit model. Human and Experimental Toxicology, 2022, 41, 096032712211453.	1.1	1
93	Exploiting Polyphenol-Mediated Redox Reorientation in Cancer Therapy. Pharmaceuticals, 2022, 15, 1540.	1.7	8
94	Quercetin and polycystic ovary syndrome. Frontiers in Pharmacology, 0, 13, .	1.6	6
95	Resveratrol in disease prevention and health promotion: A role of the gut microbiome. Critical Reviews in Food Science and Nutrition, 0, , 1-18.	5.4	4
96	Resveratrol regulates insulin resistance to improve the glycolytic pathway by activating SIRT2 in PCOS granulosa cells. Frontiers in Nutrition, 0, 9, .	1.6	4
97	The role of dietary antioxidants in type 2 diabetes and neurodegenerative disorders: An assessment of the benefit profile. Heliyon, 2023, 9, e12698.	1.4	8
98	The sirtuin family in health and disease. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	115
99	Gut microbial characteristical comparison reveals potential anti-aging function of Dubosiella newyorkensis in mice. Frontiers in Endocrinology, 0, 14, .	1.5	15
100	Glutathione system enhancement for cardiac protection: pharmacological options against oxidative stress and ferroptosis. Cell Death and Disease, 2023, 14, .	2.7	32
101	Effects of resveratrol supplementation on cardiac remodeling in hypertensive patients: a randomized controlled clinical trial. Hypertension Research, 2023, 46, 1493-1503.	1.5	5
102	Effect of Resveratrol on Markers of Oxidative Stress and Sirtuin 1 in Elderly Adults with Type 2 Diabetes. International Journal of Molecular Sciences, 2023, 24, 7422.	1.8	10
115	Natural Sirtuin1 Activators and Atherosclerosis: an Overview. Current Atherosclerosis Reports, 2023, 25, 979-994.	2.0	2

Antitumor effects induced by natural molecules in the brain. , 2024, , 281-323.