Empty-Car Routing in Ridesharing Systems

Operations Research 67, 1437-1452 DOI: 10.1287/opre.2018.1822

Citation Report

#	Article	IF	CITATIONS
1	Inventory Repositioning in On-Demand Product Rental Networks. SSRN Electronic Journal, 0, , .	0.4	13
2	Complexity, and New Dynamic-Pricing 'Learning' Models that Reduce Antitrust Liability, Deadweight Losses, Regret and GPS-Manipulation In the 'Sharing Economy'. SSRN Electronic Journal, 0, , .	0.4	0
3	Courteous or Crude? Understanding and Shaping User Behavior in Ride-hailing. SSRN Electronic Journal, 0, , .	0.4	1
4	Joint Pricing and Matching in Ridesharing Systems. SSRN Electronic Journal, 2018, , .	0.4	3
5	Ride-Hailing Networks with Strategic Drivers: The Impact of Platform Control Capabilities on Performance. SSRN Electronic Journal, 0, , .	0.4	59
6	Social Pricing in the Sharing Economy: Theory and Empirical Evidence From Airbnb. SSRN Electronic Journal, 2018, , .	0.4	1
7	Multi-Objective Online Ride-Matching. SSRN Electronic Journal, 0, , .	0.4	18
8	From the Classics to New Tunes: A Neoclassical View on Sharing Economy and Innovative Marketplaces. SSRN Electronic Journal, 0, , .	0.4	5
9	On the Optimal Design of a Bipartite Matching Queueing System. SSRN Electronic Journal, 2019, , .	0.4	2
10	Dynamic Pricing of Relocating Resources in Large Networks. SSRN Electronic Journal, 2019, , .	0.4	3
11	Operations Management in the Age of the Sharing Economy: What Is Old and What Is New?. Manufacturing and Service Operations Management, 2020, 22, 93-101.	2.3	169
12	An epidemiological diffusion framework for vehicular messaging in general transportation networks. Transportation Research Part B: Methodological, 2020, 131, 160-190.	2.8	11
13	Frontiers in Service Science: Ride Matching for Peer-to-Peer Ride Sharing: A Review and Future Directions. Service Science, 2020, 12, 44-60.	0.9	56
14	Resource Capacitated Collective Travel Planning in Spatial Databases. IEEE Access, 2020, 8, 135443-135457.	2.6	1
15	Joint pricing and matching in ride-sharing systems. European Journal of Operational Research, 2020, 287, 1149-1160.	3.5	41
16	WeDoShare: A Ridesharing Framework in Transportation Cyber-Physical System for Sustainable Mobility in Smart Cities. IEEE Consumer Electronics Magazine, 2020, 9, 41-48.	2.3	16
17	Approximate dynamic programming for planning a ride-hailing system using autonomous fleets of electric vehicles. European Journal of Operational Research, 2020, 284, 1088-1106.	3.5	82
18	Dispatch of autonomous vehicles for taxi services: A deep reinforcement learning approach. Transportation Research Part C: Emerging Technologies, 2020, 115, 102626.	3.9	59

TATION REDO

#	Article	IF	CITATIONS
19	Dataâ€Driven Driver Dispatching System with Allocation Constraints and Operational Risk Management for a Rideâ€6haring Platform. Decision Sciences, 2020, 51, 1490-1520.	3.2	14
20	From the Classics to New Tunes: A Neoclassical View on Sharing Economy and Innovative Marketplaces. Production and Operations Management, 2021, 30, 1668-1685.	2.1	41
21	A new <scp>rideâ€sharing</scp> model incorporating the passengers' efforts. Naval Research Logistics, 2021, 68, 397-411.	1.4	10
22	Fleet Repositioning for Vehicle Sharing Systems: the Optimality of Balanced Myopic Policy. SSRN Electronic Journal, 0, , .	0.4	Ο
23	Proactive Scheduling and Resource Management for Connected Autonomous Vehicles: A Data Science Perspective. IEEE Sensors Journal, 2021, 21, 25151-25160.	2.4	20
24	SOUP: Spatial-Temporal Demand Forecasting and Competitive Supply. IEEE Transactions on Knowledge and Data Engineering, 2021, , 1-1.	4.0	5
25	Dynamic Relocations in Car-Sharing Networks. SSRN Electronic Journal, 0, , .	0.4	1
26	On the Optimal Design of a Bipartite Matching Queueing System. Operations Research, 2022, 70, 363-401.	1.2	15
27	Identifying Ridesharing Risk, Response, and Challenges in the Emergence of Novel Coronavirus Using Interactions in Uber Drivers Forum. Frontiers in Built Environment, 2021, 7, .	1.2	12
28	Dimensioning On-Demand Vehicle Sharing Systems. Management Science, 2022, 68, 1218-1232.	2.4	22
29	Scalable Deep Reinforcement Learning for Ride-Hailing. , 2021, , .		1
30	Real-time Approximate Routing for Smart Transit Systems. , 2021, , .		0
31	Towards Minimum Fleet for Ridesharing-Aware Mobility-on-Demand Systems. , 2021, , .		3
32	Real-time Approximate Routing for Smart Transit Systems. Proceedings of the ACM on Measurement and Analysis of Computing Systems, 2021, 5, 1-30.	1.4	3
33	Throughput-fairness tradeoffs in mobility platforms. , 2021, , .		2
34	Incentives for Ridesharing: A Case Study of Welfare and Traffic Congestion. Journal of Advanced Transportation, 2021, 2021, 1-15.	0.9	8
35	Maximum-stability dispatch policy for shared autonomous vehicles. Transportation Research Part B: Methodological, 2021, 148, 132-151.	2.8	20
36	Do Emotions Sell? The Impact of Emotional Expressions on Sales in the Spaceâ€Sharing Economy. Production and Operations Management, 2022, 31, 65-82.	2.1	14

		CITATION REPORT		
#	Article		IF	CITATIONS
37	Dynamic Ride-Hailing with Electric Vehicles. Transportation Science, 2022, 56, 775-794.		2.6	33
38	A mean-field Markov decision process model for spatial-temporal subsidies in ride-sourci Transportation Research Part B: Methodological, 2021, 150, 540-565.	ng markets.	2.8	42
39	A generalized fluid model of ride-hailing systems. Transportation Research Part B: Metho 2021, 150, 587-605.	odological,	2.8	12
40	Robust matching-integrated vehicle rebalancing in ride-hailing system with uncertain de Transportation Research Part B: Methodological, 2021, 150, 161-189.	mand.	2.8	33
41	Real-Time Pricing Optimization for Ride-Hailing Quality of Service. , 2021, , .			4
42	Driver Positioning and Incentive Budgeting with an Escrow Mechanism for Ride-Sharing INFORMS Journal on Applied Analytics, 2021, 51, 373-390.	Platforms.	0.7	7
43	Book-ahead & supply management for ridesourcing platforms. Transportation Rese Emerging Technologies, 2021, 130, 103266.	arch Part C:	3.9	7
44	Anticipatory routing methods for an on-demand ridepooling mobility system. Transporta 1921-1962.	ation, 2022, 49,	2.1	5
45	Managing price and fleet size for courier service with shared drones. Omega, 2021, 104	, 102482.	3.6	11
46	Dynamic routing in a distributed parallel many-server service system: The effect of ξ-cł Journal of Operational Research, 2021, 294, 219-235.	ioice. European	3.5	4
47	Scalable Deep Reinforcement Learning for Ride-Hailing. , 2021, 5, 2060-2065.			2
48	Optimizing large on-demand transportation systems through stochastic conic programi European Journal of Operational Research, 2021, 295, 427-442.	ning.	3.5	5
49	BM-DDPG: An Integrated Dispatching Framework for Ride-Hailing Systems. IEEE Transac Intelligent Transportation Systems, 2022, 23, 11666-11676.	tions on	4.7	3
50	Autonomous Vehicles for Ride-Hailing. SSRN Electronic Journal, 0, , .		0.4	0
51	An Iterated Local Search for the Multi-objective Dial-a-Ride Problem. Advances in Intellig and Computing, 2021, , 1302-1313.	ent Systems	0.5	0
52	Vehicle Redistribution in Ride-Sourcing Markets Using Convex Minimum Cost Flows. IEE on Intelligent Transportation Systems, 2022, 23, 10287-10298.	E Transactions	4.7	2
53	Optimal design of intermodal mobility networks under uncertainty: Connecting microm mobility-on-demand transit. EURO Journal on Transportation and Logistics, 2021, 10, 10		1.3	9
54	Idle Vehicle Repositioning for Dynamic Ride-Sharing. Lecture Notes in Computer Science	e, 2020, , 507-521.	1.0	7

#	Article	IF	CITATIONS
55	Dimensioning On-Demand Vehicle Sharing Systems. SSRN Electronic Journal, 0, , .	0.4	1
56	Vehicle Repositioning under Uncertainty. SSRN Electronic Journal, 0, , .	0.4	3
57	A Generalized Fluid Model of Ride-Hailing Systems. SSRN Electronic Journal, 0, , .	0.4	1
58	Data-Driven Competitor-Aware Positioning in On-Demand Vehicle Rental Networks. SSRN Electronic Journal, 0, , .	0.4	0
59	Joint Order Dispatch and Repositioning for Urban Vehicle Sharing Systems via Robust Optimization. , 2021, , .		3
60	Exploiting Hidden Convexity in Queueing Networks: A Novel Approach to Optimal Control of Flows. SSRN Electronic Journal, 0, , .	0.4	1
61	The 'Glocal' Challenge: Impact of Culture Differences on Sharing Economy – An Empirical Analysis. SSRN Electronic Journal, 0, , .	0.4	0
62	Learning-based open driver guidance and rebalancing for reducing riders' wait time in ride-hailing platforms. , 2020, , .		2
63	Fair Pricing of Ridehailing Services With Asymmetric Demand and Travel Time. IEEE Transactions on Control of Network Systems, 2022, 9, 670-681.	2.4	1
64	Learning to price vehicle service with unknown demand. , 2020, , .		1
65	Pricing and Optimization in Shared Vehicle Systems: An Approximation Framework. Operations Research, 2022, 70, 1783-1805.	1.2	25
66	Analysis and Control of Autonomous Mobility-on-Demand Systems. Annual Review of Control, Robotics, and Autonomous Systems, 2022, 5, 633-658.	7.5	34
67	Data-Driven Competitor-Aware Positioning in On-Demand Vehicle Rental Networks. Transportation Science, 2022, 56, 182-200.	2.6	11
68	Pricing in On-Demand (and One-Way) Vehicle Sharing Networks. SSRN Electronic Journal, 0, , .	0.4	0
69	Supply-Demand-aware Deep Reinforcement Learning for Dynamic Fleet Management. ACM Transactions on Intelligent Systems and Technology, 2022, 13, 1-19.	2.9	6
70	Dynamic Inventory Repositioning in On-Demand Rental Networks. Management Science, 2022, 68, 7861-7878.	2.4	8
71	Data-Driven Vehicle Rebalancing With Predictive Prescriptions in the Ride-Hailing System. IEEE Open Journal of Intelligent Transportation Systems, 2022, 3, 251-266.	2.6	9
72	Courteous or Crude? Managing User Conduct to Improve On-Demand Service Platform Performance. Management Science, 2023, 69, 996-1016.	2.4	13

~			<u> </u>	
(15	ГАТ	ON	REPC	TDT
			NLFC	ואנ

#	Article	IF	CITATIONS
73	Mitigating traffic congestion induced by transportation network companies: A policy analysis. Transportation Research, Part A: Policy and Practice, 2022, 159, 96-118.	2.0	7
74	A Probabilistic Approach to Growth Networks. Operations Research, 2022, 70, 3386-3402.	1.2	0
75	Joint Pricing and Routing for a Ride-Sharing Platform in Low-Density Rural Areas. SSRN Electronic Journal, 0, , .	0.4	0
76	Prohibiting cherry-picking: Regulating vehicle sharing services who determine fleet and service structure. Transportation Research, Part E: Logistics and Transportation Review, 2022, 161, 102692.	3.7	3
77	Double-ended queues with non-Poisson inputs and their effective algorithms. Computers and Operations Research, 2022, 144, 105793.	2.4	5
78	Joint Order Dispatch and Charging for Electric Self-Driving Taxi Systems. , 2022, , .		3
79	Real-time Approximate Routing for Smart Transit Systems. Performance Evaluation Review, 2021, 49, 73-74.	0.4	0
80	Smart urban transport and logistics: A business analytics perspective. Production and Operations Management, 2022, 31, 3771-3787.	2.1	11
81	A Review of Volume-Delay Functions: Connecting Theoretical Fundamental, Practical Deployment and Emerging Applications. SSRN Electronic Journal, 0, , .	0.4	0
82	Optimality-guaranteed algorithms on the dynamic shared-taxi problem. Transportation Research, Part E: Logistics and Transportation Review, 2022, 164, 102809.	3.7	7
83	HMDRL: Hierarchical Mixed Deep Reinforcement Learning to Balance Vehicle Supply and Demand. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 21861-21872.	4.7	5
84	Ridesharing Evacuation Models of Disaster Response. SSRN Electronic Journal, 0, , .	0.4	0
85	On the Supply of Autonomous Technologies in Open Platforms. SSRN Electronic Journal, 0, , .	0.4	0
86	Rebalancing inÂShared Mobility Systems – Competition, Feature-Based Mode Selection andÂTechnology Choice. , 2022, , 33-38.		0
87	Dynamic Joint Pricing and Empty Relocation Policies For Ride-Sourcing Systems. SSRN Electronic Journal, 0, , .	0.4	0
88	The cost of convenience: Ridehailing and traffic fatalities. Journal of Operations Management, 2023, 69, 823-855.	3.3	10
89	Development and Comparison of Ten Differential-Evolution and Particle Swarm-Optimization Based Algorithms for Discount-Guaranteed Ridesharing Systems. Applied Sciences (Switzerland), 2022, 12, 9544.	1.3	6
90	It's All in the Mix: Technology Choice between Driverless and Human-Driven Vehicles in Sharing Systems. SSRN Electronic Journal, 0, , .	0.4	2

#	Article	IF	CITATIONS
91	A Learning Method for Real-Time Repositioning in E-Hailing Services. IEEE Transactions on Intelligent Transportation Systems, 2022, , 1-11.	4.7	1
92	Learning While Repositioning in On-Demand Vehicle Sharing Networks. SSRN Electronic Journal, 0, , .	0.4	Ο
93	Pricing, competition and market segmentation in ride hailing. , 2022, , .		0
94	Applications of fluid models in service operations management. Queueing Systems, 2023, 103, 161-185.	0.6	3
95	Approximating a ride-sourcing system with block matching. Transportation Research Part C: Emerging Technologies, 2022, 145, 103920.	3.9	2
96	Measurement and mitigation of the "wild goose chase―phenomenon in taxi services. Transportation Research Part B: Methodological, 2023, 167, 217-234.	2.8	2
97	On-Demand Ride-Matching in a Spatial Model with Abandonment and Cancellation. Operations Research, 0, , .	1.2	3
98	Real-Time Spatial-Intertemporal Pricing and Relocation in a Ride-Hailing Network: Near-Optimal Policies and The Value of Dynamic Pricing. SSRN Electronic Journal, 0, , .	0.4	0
99	Ridesharing and Crowdsourcing for Smart Cities: Technologies, Paradigms and Use Cases. IEEE Access, 2023, 11, 18038-18081.	2.6	1
100	Pricing in On-Demand and One-Way Vehicle-Sharing Networks. Operations Research, 0, , .	1.2	0
101	Vehicle repositioning for a ride-sourcing network system providing differentiated services. Transportation Research Part B: Methodological, 2023, 170, 221-243.	2.8	0
102	Smart Transportation Behavior through the COVID-19 Pandemic: A Ride-Hailing System in Iran. Sustainability, 2023, 15, 4178.	1.6	7
103	Optimization of ride-sharing with passenger transfer via deep reinforcement learning. Transportation Research, Part E: Logistics and Transportation Review, 2023, 172, 103080.	3.7	4
104	The categorical paradoxes in the sharing economy: Empirical evidence from Airbnb. Production and Operations Management, 0, , .	2.1	1
105	Heatmap-Based Decision Support for Repositioning in Ride-Sharing Systems. Transportation Science, 2024, 58, 110-130.	2.6	1
106	On the Relocation Behavior of Ride-sourcing Drivers. Transportation Letters, 0, , 1-8.	1.8	2
107	Routing Optimization with Vehicle–Customer Coordination. Management Science, 2023, 69, 6876-6897.	2.4	1
108	Real-Time Spatial–Intertemporal Pricing and Relocation in a Ride-Hailing Network: Near-Optimal Policies and the Value of Dynamic Pricing. Operations Research, 0, , .	1.2	1

#	Article	IF	Citations
134	Repositioning Fleet Vehicles: A Learning Pipeline. Lecture Notes in Computer Science, 2023, , 301-317.	1.0	0
137	A Unified Representation Framework for Rideshare Marketplace Equilibrium and Efficiency. , 2023, , .		0
139	A* Search Algorithm forÂanÂOptimal Investment Problem inÂVehicle-Sharing Systems. Lecture Notes in Computer Science, 2024, , 162-173.	1.0	0
140	Editorial: Emerging on-demand passenger and logistics systems: Modelling, optimization, and data analytics. Transportation Research Part C: Emerging Technologies, 2024, 161, 104574.	3.9	0