Self-interaction-free electric dipole polarizabilities for a Fermi-Löwdin self-interaction correction

Physical Review A 100,

DOI: 10.1103/physreva.100.012505

Citation Report

#	Article	IF	CITATIONS
1	Fermi-L \tilde{A} ¶wdin orbital self-interaction correction using the strongly constrained and appropriately normed meta-GGA functional. Journal of Chemical Physics, 2019, 151, 154105.	1.2	38
2	A step in the direction of resolving the paradox of Perdew-Zunger self-interaction correction. Journal of Chemical Physics, 2019, 151, 214108.	1.2	56
3	Importance of self-interaction-error removal in density functional calculations on water cluster anions. Physical Chemistry Chemical Physics, 2020, 22, 3789-3799.	1.3	32
4	The Fermi–Löwdin self-interaction correction for ionization energies of organic molecules. Journal of Chemical Physics, 2020, 153, 184303.	1.2	12
5	Assessing the effect of regularization on the molecular properties predicted by SCAN and self-interaction corrected SCAN meta-GGA. Physical Chemistry Chemical Physics, 2020, 22, 18060-18070.	1.3	6
6	Study of self-interaction errors in density functional predictions of dipole polarizabilities and ionization energies of water clusters using Perdew–Zunger and locally scaled self-interaction corrected methods. Journal of Chemical Physics, 2020, 153, 164304.	1.2	21
7	Application of Self-Interaction Corrected Density Functional Theory to Early, Middle, and Late Transition States. Journal of Physical Chemistry A, 2020, 124, 8223-8234.	1.1	12
8	PyFLOSIC: Python-based Fermi–Löwdin orbital self-interaction correction. Journal of Chemical Physics, 2020, 153, 084104.	1.2	17
9	Improvements in the orbitalwise scaling down of Perdew–Zunger self-interaction correction in many-electron regions. Journal of Chemical Physics, 2020, 152, 174112.	1.2	23
10	A step in the direction of resolving the paradox of Perdew–Zunger self-interaction correction. II. Gauge consistency of the energy density at three levels of approximation. Journal of Chemical Physics, 2020, 152, 214109.	1.2	23
11	Local self-interaction correction method with a simple scaling factor. Physical Chemistry Chemical Physics, 2021, 23, 2406-2418.	1.3	14
12	Density-related properties from self-interaction corrected density functional theory calculations. Journal of Chemical Physics, 2021, 154, 024102.	1.2	8
13	Too big, too small, or just right? A benchmark assessment of density functional theory for predicting the spatial extent of the electron density of small chemical systems. Journal of Chemical Physics, 2021, 154, 074109.	1.2	15
14	Implementation of Perdew–Zunger self-interaction correction in real space using Fermi–Löwdin orbitals. Journal of Chemical Physics, 2021, 154, 084112.	1.2	7
15	Self-interaction correction in water–ion clusters. Journal of Chemical Physics, 2021, 154, 094302.	1.2	16
16	Static dipole polarizabilities of polyacenes using self-interaction-corrected density functional approximations. Journal of Chemical Physics, 2021, 154, 114305.	1.2	12
17	Exploring and enhancing the accuracy of interior-scaled Perdew–Zunger self-interaction correction. Journal of Chemical Physics, 2021, 154, 094105.	1.2	12
18	Fermi-LÃ \P wdin-orbital self-interaction correction using the optimized-effective-potential method within the Krieger-Li-lafrate approximation. Physical Review A, 2021, 103, .	1.0	14

#	Article	IF	CITATIONS
19	General Many-Body Framework for Data-Driven Potentials with Arbitrary Quantum Mechanical Accuracy: Water as a Case Study. Journal of Chemical Theory and Computation, 2021, 17, 5635-5650.	2.3	28
20	How well do self-interaction corrections repair the overestimation of static polarizabilities in density functional calculations?. Physical Chemistry Chemical Physics, 2021, 23, 18678-18685.	1.3	14
21	Molecule-surface interaction from van der Waals-corrected semilocal density functionals: The example of thiophene on transition-metal surfaces. Physical Review Materials, 2020, 4, .	0.9	13
22	Study of Self-Interaction Errors in Density Functional Calculations of Magnetic Exchange Coupling Constants Using Three Self-Interaction Correction Methods. Journal of Physical Chemistry A, 2022, 126, 1923-1935.	1.1	6
23	Fermi–Löwdin orbital self-interaction correction of adsorption energies on transition metal ions. Journal of Chemical Physics, 2022, 156, 134102.	1.2	2
24	Improving Results by Improving Densities: Density-Corrected Density Functional Theory. Journal of the American Chemical Society, 2022, 144, 6625-6639.	6.6	45
25	Density Matrix Implementation of the Fermi–Löwdin Orbital Self-Interaction Correction Method. Journal of Physical Chemistry A, 2023, 127, 527-534.	1.1	2
26	Self-consistent implementation of locally scaled self-interaction-correction method. Journal of Chemical Physics, 2023, 158, .	1.2	6
27	Downward quantum learning from element 118: Automated generation of Fermi–Löwdin orbitals for all atoms. Journal of Chemical Physics, 2023, 158, .	1.2	5