Governing autonomous vehicles: emerging responses for cybersecurity, and industry risks

Transport Reviews 39, 103-128 DOI: 10.1080/01441647.2018.1494640

Citation Report

#	Article	IF	CITATIONS
1	User Perceptions in Adopting Cloud Computing in Autonomous Vehicle. , 2018, , .		7
2	Connected, Autonomous and Electric Vehicles: The Optimum Value for a Successful Business Model. , 2018, , .		8
3	The Meaning of Adaptation: Mastering the Unforeseen?. Lecture Notes in Computer Science, 2018, , 109-117.	1.0	2
4	The Potential Implications of Autonomous Vehicles in and around the Workplace. International Journal of Environmental Research and Public Health, 2018, 15, 1876.	1.2	66
5	Influencing Factors of Driving Decision-Making Under the Moral Dilemma. IEEE Access, 2019, 7, 104132-104142.	2.6	26
6	An adaptive approach for trialling fully automated vehicles in Queensland Australia: A brief report. Transport Policy, 2019, 81, 275-281.	3.4	4
7	Multimedia for Autonomous Driving. IEEE MultiMedia, 2019, 26, 5-8.	1.5	11
8	The potential implications of autonomous vehicles for active transport. Journal of Transport and Health, 2019, 15, 100623.	1.1	25
9	Human Factors in the Cybersecurity of Autonomous Vehicles: Trends in Current Research. Frontiers in Psychology, 2019, 10, 995.	1.1	34
10	Stakeholder views on the social issues relating to the introduction of autonomous vehicles. Transport Policy, 2019, 81, 64-67.	3.4	27
11	Introducing autonomous buses and taxis: Quantifying the potential benefits in Japanese transportation systems. Transportation Research, Part A: Policy and Practice, 2019, 126, 94-113.	2.0	58
12	Dimensions of attitudes to autonomous vehicles. Urban, Planning and Transport Research, 2019, 7, 19-33.	0.8	49
13	Neural Network Based Uncertainty Prediction for Autonomous Vehicle Application. Frontiers in Neurorobotics, 2019, 13, 12.	1.6	10
14	CAD: Command-Level Anomaly Detection for Vehicle-Road Collaborative Charging Network. IEEE Access, 2019, 7, 34910-34924.	2.6	23
15	Pigouvian road congestion pricing under autonomous driving mode choice. Transportation Research Part C: Emerging Technologies, 2019, 101, 79-95.	3.9	27
16	Predictive Freeway Overtaking Strategy for Automated Vehicles Using Deep Reinforcement Learning. , 2019, , .		12
17	Algorithmic Decision-Making in AVs: Understanding Ethical and Technical Concerns for Smart Cities. Sustainability, 2019, 11, 5791.	1.6	50
18	The effect of population age on the acceptable safety of self-driving vehicles. Reliability Engineering and System Safety. 2019, 185, 341-347.	5.1	38

ATION REDO

		CITATION RE	PORT	
#	Article		IF	CITATIONS
19	Long-term implications of automated vehicles: an introduction. Transport Reviews, 2019, 3	39, 1-8.	4.7	64
20	Legal and ethical implications of applications based on agreement technologies: the case of auction-based road intersections. Artificial Intelligence and Law, 2020, 28, 385-414.	of	3.0	2
21	Corporate ownership of automated vehicles: discussing potential negative externalities. Tr Reviews, 2020, 40, 95-113.	ansport	4.7	17
22	Shared autonomous vehicle services: A comprehensive review. Transportation Research Pa Emerging Technologies, 2020, 111, 255-293.	rt C:	3.9	362
23	The Sustainability of Artificial Intelligence: An Urbanistic Viewpoint from the Lens of Smart Sustainable Cities. Sustainability, 2020, 12, 8548.	and	1.6	124
24	Toward ethical cognitive architectures for the development of artificial moral agents. Cogr Systems Research, 2020, 64, 117-125.	itive	1.9	5
25	Exploring expert perceptions about the cyber security and privacy of Connected and Autor Vehicles: A thematic analysis approach. Transportation Research Part F: Traffic Psychology Behaviour, 2020, 75, 66-86.	iomous and	1.8	71
26	Regulatory governance in emerging technologies: The case of autonomous vehicles in Swe Norway. Research in Transportation Economics, 2020, 83, 100967.	den and	2.2	26
28	Strategies to accelerate the production and diffusion of fuel cell electric vehicles: Experien California. Energy Reports, 2020, 6, 2503-2519.	ces from	2.5	53
29	Impacts of Autonomous Vehicles on Public Health: A Conceptual Model and Policy Recomr Sustainable Cities and Society, 2020, 63, 102457.	nendations.	5.1	51
30	Big Picture on Privacy Enhancing Technologies in e-Health: A Holistic Personal Privacy Wor Information (Switzerland), 2020, 11, 356.	rflow.	1.7	9
31	What drives the acceptance of autonomous driving? An investigation of acceptance factor end-user's perspective. Technological Forecasting and Social Change, 2020, 161, 120319.	s from an	6.2	131
32	Transitions governance with a sense of direction: synchronization challenges in the case of dutch †Driverless Car' transition. Technological Forecasting and Social Change, 2020	⁻ the), 160, 120244.	6.2	29
33	Can Autonomous Vehicles Prevent Traffic Accidents?. , 0, , .			7
34	Establishing Face and Content Validity of a Survey to Assess Users' Perceptions of Aut Transportation Research Record, 2020, 2674, 538-547.	omated Vehicles.	1.0	27
35	Customer perceptions of shared autonomous vehicle usage: an empirical study. Internation of Automotive Technology and Management, 2020, 20, 108.	nal Journal	0.4	4
36	Regulating human control over autonomous systems. Regulation and Governance, 2021, 1	5, 1071-1091.	1.9	17
37	Governance cultures and sociotechnical imaginaries of self-driving vehicle technology: Con analysis of Finland, UK and Germany. Advances in Transport Policy and Planning, 2020, 5, 2	nparative 235-262.	0.7	20

		LPUKI	
#	Article	IF	CITATIONS
38	Examining public acceptance of autonomous mobility. Travel Behaviour & Society, 2020, 21, 235-246.	2.4	36
39	Uncertainty, institutions and regulatory responses to emerging technologies: <scp>CRISPR</scp> Gene editing in the <scp>US</scp> and the <scp>EU</scp> (2012–2019). Regulation and Governance, 2021, 15, 1111-1127.	1.9	12
40	Automated bus systems in Europe: A systematic review of passenger experience and road user interaction. Advances in Transport Policy and Planning, 2020, 5, 51-71.	0.7	9
41	Path Tracking and Handling Stability Control Strategy With Collision Avoidance for the Autonomous Vehicle Under Extreme Conditions. IEEE Transactions on Vehicular Technology, 2020, 69, 14602-14617.	3.9	40
42	Collaborative Localization Based on Traffic Landmarks for Autonomous Driving. , 2020, , .		1
43	Dynamic Prioritization of Emergency Vehicles For Self-Organizing Traffic using VTL+EV. , 2020, , .		1
44	Attacks on Self-Driving Cars and Their Countermeasures: A Survey. IEEE Access, 2020, 8, 207308-207342.	2.6	63
45	Users' Acceptance of Connected and Automated Shuttles for Tourism Purposes: A Survey Study. Sustainability, 2020, 12, 10188.	1.6	5
46	Digitalization concept: Cyber-risks and damages for companies in adhered industries. IOP Conference Series: Materials Science and Engineering, 2020, 898, 012044.	0.3	0
47	Assessing and Forecasting Cybersecurity Impacts. Decision Analysis, 2020, 17, 356-374.	1.2	24
48	Preparing Society for Automated Vehicles: Perceptions of the Importance and Urgency of Emerging Issues of Governance, Regulations, and Wider Impacts. Sustainability, 2020, 12, 7844.	1.6	7
49	Cyber security and its impact on CAV safety: Overview, policy needs and challenges. Advances in Transport Policy and Planning, 2020, 5, 73-94.	0.7	7
50	Cyber-attacks in the next-generation cars, mitigation techniques, anticipated readiness and future directions. Accident Analysis and Prevention, 2020, 148, 105837.	3.0	68
51	Deep LSTM with Dynamic Time Warping Processing Framework: A Novel Advanced Algorithm with Biosensor System for an Efficient Car-Driver Recognition. Electronics (Switzerland), 2020, 9, 616.	1.8	7
52	Overcoming barriers to developing and diffusing fuel-cell vehicles: Governance strategies and experiences in Japan. Energy Policy, 2020, 142, 111533.	4.2	49
53	New and emerging data forms in transportation planning and policy: Opportunities and challenges for "Track and Trace―data. Transportation Research Part C: Emerging Technologies, 2020, 117, 102672.	3.9	42
54	The transition to autonomous cars, the redesign of cities and the future of urban sustainability. Urban Geography, 2021, 42, 833-859.	1.7	64
55	The potential effects of autonomous vehicles on alcohol consumption and drinkâ€driving behaviours. Drug and Alcohol Review, 2020, 39, 604-607.	1.1	9

#	Article	IF	CITATIONS
56	Analysis of consumer attitudes towards autonomous, connected, and electric vehicles: A survey in China. Research in Transportation Economics, 2020, 80, 100828.	2.2	58
57	Older Drivers' Experience With Automated Vehicle Technology: Interim Analysis of a Demonstration Study. Frontiers in Sustainable Cities, 2020, 2, .	1.2	18
58	Autonomous Shuttle Bus for Public Transportation: A Review. Energies, 2020, 13, 2917.	1.6	68
59	A methodology for out of position occupant identification from pressure sensors embedded in a vehicle seat. Human-Intelligent Systems Integration, 2020, 2, 35-44.	1.2	6
60	A multicriteria decision making approach to study barriers to the adoption of autonomous vehicles. Transportation Research, Part A: Policy and Practice, 2020, 133, 122-137.	2.0	40
61	A systematic literature review of the factors influencing the adoption of autonomous driving. International Journal of Systems Assurance Engineering and Management, 2020, 11, 1065-1082.	1.5	39
62	Artificial intelligence applications in the development of autonomous vehicles: a survey. IEEE/CAA Journal of Automatica Sinica, 2020, 7, 315-329.	8.5	258
63	Are parents ready to use autonomous vehicles to transport children? Concerns and safety features. Journal of Safety Research, 2020, 72, 287-297.	1.7	22
64	Is tomorrow's car appealing today? Ethical issues and user attitudes beyond automation. Al and Society, 2020, 35, 1033-1046.	3.1	7
65	Regulations for on-road testing of connected and automated vehicles: Assessing the potential for global safety harmonization. Transportation Research, Part A: Policy and Practice, 2020, 136, 85-98.	2.0	37
66	Technological advances relevant to transport – understanding what drives them. Transportation Research, Part A: Policy and Practice, 2020, 135, 80-95.	2.0	12
67	Review and analysis of the importance of autonomous vehicles liability: a systematic literature review. International Journal of Systems Assurance Engineering and Management, 2020, 11, 1227-1249.	1.5	23
68	Toward a Commonly Shared Public Policy Perspective for Analyzing Risk Coping Strategies. Risk Analysis, 2021, 41, 519-532.	1.5	12
69	Governing the adoption of robotics and autonomous systems in long-term care in Singapore. Policy and Society, 2021, 40, 211-231.	2.9	35
70	Mapping for Autonomous Driving: Opportunities and Challenges. IEEE Intelligent Transportation Systems Magazine, 2021, 13, 91-106.	2.6	34
71	Systematic Assessment of Cyber-Physical Security of Energy Management System for Connected and Automated Electric Vehicles. IEEE Transactions on Industrial Informatics, 2021, 17, 3335-3347.	7.2	36
72	Planning the transition to autonomous driving: A policy pathway towards urban liveability. Cities, 2021, 108, 102996.	2.7	24
73	Autonomous vehicles and smart cities: A case study of Singapore. , 2021, , 265-287.		5

#	Article	IF	CITATIONS
74	HCI Based In-Cabin Monitoring System for Irregular Situations with Occupants Facial Anonymization. Lecture Notes in Computer Science, 2021, , 380-390.	1.0	2
75	Construct Validity and Test–Retest Reliability of the Automated Vehicle User Perception Survey. Frontiers in Psychology, 2021, 12, 626791.	1.1	18
76	The development of autonomous driving technology: perspectives from patent citation analysis. Transport Reviews, 2021, 41, 685-711.	4.7	19
77	Real-Time Driver's Focus of Attention Extraction and Prediction using Deep Learning. International Journal of Advanced Computer Science and Applications, 2021, 12, .	0.5	1
78	Towards Autonomous Vehicles in Smart Cities: Risks and Risk Governance. EAI/Springer Innovations in Communication and Computing, 2021, , 169-190.	0.9	1
79	REF-Net: Robust, Efficient, and Fast Network for Semantic Segmentation Applications Using Devices With Limited Computational Resources. IEEE Access, 2021, 9, 15084-15098.	2.6	12
80	Application of Big Data with Fintech in Financial Services. Blockchain Technologies, 2021, , 107-132.	0.6	17
81	Autonomous buses: Intentions to use, passenger experiences, and suggestions for improvement. Transportation Research Part F: Traffic Psychology and Behaviour, 2021, 76, 321-335.	1.8	39
82	AnsÃæze integrierter strategischer Planung für automatisierte MobilitÃæim Kontext der MobilitÃæswende. , 2021, , 269-314.		0
83	Decision support issues in automated driving systems. International Transactions in Operational Research, 2023, 30, 1216-1244.	1.8	13
84	Ethical issues in focus by the autonomous vehicles industry. Transport Reviews, 2021, 41, 556-577.	4.7	62
85	A Comprehensive Review on 3D Object Detection and 6D Pose Estimation With Deep Learning. IEEE Access, 2021, 9, 143746-143770.	2.6	25
86	Blockchain and Autonomous Vehicles: Recent Advances and Future Directions. IEEE Access, 2021, 9, 130264-130328.	2.6	37
87	Advanced Temporal Dilated Convolutional Neural Network for a Robust Car Driver Identification. Lecture Notes in Computer Science, 2021, , 184-199.	1.0	0
88	Drivers and Barriers to the Adoption of Fuel Cell Passenger Vehicles and Buses in Germany. Energies, 2021, 14, 833.	1.6	40
89	Public acceptance and perception of autonomous vehicles: a comprehensive review. AI and Ethics, 2021, 1, 355-387.	4.6	120
90	Influence of Social Distance Expressed by Driving Support Agent's Utterance on Psychological Acceptability. Frontiers in Psychology, 2021, 12, 526942.	1.1	6
91	Vulnerable road users and the coming wave of automated vehicles: Expert perspectives. Transportation Research Interdisciplinary Perspectives, 2021, 9, 100293.	1.6	69

#	Article	IF	CITATIONS
92	Measuring DAO Autonomy: Lessons From Other Autonomous Systems. IEEE Transactions on Technology and Society, 2021, 2, 43-53.	2.4	11
93	Cyber resilience of autonomous mobility systems: cyber-attacks and resilience-enhancing strategies. Journal of Transportation Security, 2021, 14, 137-155.	0.9	8
94	Assessing the regulatory challenges of emerging disruptive technologies. Regulation and Governance, 2021, 15, 1009-1019.	1.9	54
95	Quantifying the automated vehicle safety performance: A scoping review of the literature, evaluation of methods, and directions for future research. Accident Analysis and Prevention, 2021, 152, 106003.	3.0	46
96	Transportation technologies, sharing economy, and teleactivities: Implications for built environment and travel. Transportation Research, Part D: Transport and Environment, 2021, 92, 102716.	3.2	65
97	Autonomous Vehicles: An Analysis Both on Their Distinctiveness and the Potential Impact on Urban Transport Systems. Applied Sciences (Switzerland), 2021, 11, 3604.	1.3	27
98	What rules? Framing the governance of artificial agency. Policy and Society, 2021, 40, 194-210.	2.9	11
99	Adaptive governance of autonomous vehicles: Accelerating the adoption of disruptive technologies in Singapore. Government Information Quarterly, 2021, 38, 101546.	4.0	26
100	Steering the governance of artificial intelligence: national strategies in perspective. Policy and Society, 2021, 40, 178-193.	2.9	55
101	Governance of artificial intelligence. Policy and Society, 2021, 40, 137-157.	2.9	83
102	Is this all about about handling unanticipated changes or about foreseeing what needs handling?. , 2021, , .		0
103	Comparing user acceptance of integrated and retrofit driver assistance systems – A real-traffic study. Transportation Research Part F: Traffic Psychology and Behaviour, 2021, 79, 139-156.	1.8	6
104	CNNâ€OHGS: CNNâ€oppositionalâ€based Henry gas solubility optimization model for autonomous vehicle control system. Journal of Field Robotics, 2021, 38, 967-979.	3.2	48
105	The Governance Conundrum of Powered Micromobility Devices: An In-Depth Case Study from Singapore. Sustainability, 2021, 13, 6202.	1.6	2
106	Process Safety for Sustainable Applications. International Journal of Reliability, Quality and Safety Engineering, 2021, 28, 2150033.	0.4	1
107	LiDAR Simulation for Performance Evaluation of UAS Detect and Avoid. , 2021, , .		10
108	The societal dimension of the automated vehicles transition: Towards a research agenda. Cities, 2021, 113, 103144.	2.7	36
109	Tensions and antagonistic interactions of risks and ethics of using robotics and autonomous systems in long-term care. Technological Forecasting and Social Change, 2021, 167, 120686.	6.2	29

#	Article	IF	CITATIONS
110	Governance of the Risks of Ridesharing in Southeast Asia: An In-Depth Analysis. Sustainability, 2021, 13, 6474.	1.6	10
111	A closer look at urban development under the emergence of autonomous vehicles: Traffic, land use and air quality impacts. Journal of Transport Geography, 2021, 94, 103113.	2.3	15
113	Autonomous vehicles and employment: An urban futures revolution or catastrophe?. Cities, 2021, 114, 103203.	2.7	48
114	THE MALAYSIAN PERSPECTIVE ON IMPOSING CIVIL LIABILITIES IN ROAD ACCIDENTS INVOLVING AUTONOMOUS VEHICLE. UUM Journal of Legal Studies, 2021, 12, 203-228.	0.1	0
115	A Crash Injury Model Involving Autonomous Vehicle: Investigating of Crash and Disengagement Reports. Sustainability, 2021, 13, 7938.	1.6	14
116	Virtual Agent Representation for Critical Transactions. , 2021, , .		2
117	Do People Prefer Cars That People Don't Drive? A Survey Study on Autonomous Vehicles. Energies, 2021, 14, 4795.	1.6	5
118	Automatic lane marking prediction using convolutional neural network and S-Shaped Binary Butterfly Optimization. Journal of Supercomputing, 2022, 78, 3715-3745.	2.4	3
119	Safety implications of higher levels of automated vehicles: a scoping review. Transport Reviews, 2022, 42, 245-267.	4.7	24
120	An Evaluation of RGB-Thermal Image Segmentation for Snowy Road Environment. , 2021, , .		2
121	Safety of autonomous vehicles: what are the insights from experienced industry professionals?. Transportation Research Part F: Traffic Psychology and Behaviour, 2021, 81, 472-489.	1.8	14
122	God does not play dice but self-driving cars should. AI and Ethics, 0, , 1.	4.6	0
123	The role of artificial intelligence in the mass adoption of electric vehicles. Joule, 2021, 5, 2296-2322.	11.7	52
124	Industry 4.0 an empirical analysis of users' intention in the automotive sector. International Journal of Quality and Service Sciences, 2021, ahead-of-print, .	1.4	1
125	Connected and Autonomous Vehicles: Priorities for Policy and Planning. , 2021, , 167-172.		0
126	Health Impacts of Connected and Autonomous Vehicles. , 2021, , 364-371.		0
127	3D Point Cloud Processing and Learning for Autonomous Driving: Impacting Map Creation, Localization, and Perception. IEEE Signal Processing Magazine, 2021, 38, 68-86.	4.6	101
128	Exploration of an integrated automated public transportation system. Transportation Research Interdisciplinary Perspectives, 2020, 8, 100275.	1.6	6

#	Article	IF	CITATIONS
129	Framing governance for a contested emerging technology:insights from AI policy. Policy and Society, 2021, 40, 158-177.	2.9	56
130	What we know and do not know about connected and autonomous vehicles. Transportmetrica A: Transport Science, 2020, 16, 987-1029.	1.3	22
131	Impacts of Autonomous Vehicles on Traffic Flow Characteristics under Mixed Traffic Environment: Future Perspectives. Sustainability, 2021, 13, 11052.	1.6	24
132	Risk and Approaches to Risk-Taking in Testbed Planning. Planning Practice and Research, 2022, 37, 79-94.	0.8	3
133	Issues of Strategic Legal Regulation of the Implementation of Digital Technologies in Transport. Siberian Law Review, 2021, 18, 128-137.	0.1	1
134	Pedestrian Facilities Capacity and Level of Service at Intersections in a Connected and Autonomous Vehicle Environment. Journal of Transportation Technologies, 2019, 09, 423-438.	0.2	2
135	Reliability: understanding cognitive human bias in artificial intelligence for national security and intelligence analysis. Security Journal, 2022, 35, 1328-1348.	1.0	4
136	Bridging Gaps for the Adoption of Automated Vehicles—BRAVE Aspects for TrustVehicles—Development of Innovative HMIs to Increase Acceptance. Lecture Notes in Intelligent Transportation and Infrastructure, 2021, , 25-43.	0.3	0
137	Big Data, Artificial Intelligence and the Rise of Autonomous Smart Cities. Sustainable Urban Futures, 2021, , 7-30.	0.2	4
138	Vehicle Lateral Stability Control Based on Shiftable Stability Regions and Dynamic Margins. IEEE Transactions on Vehicular Technology, 2020, 69, 14727-14738.	3.9	23
139	Autonomous Vehicles: Data Protection and Ethical Considerations. , 2020, , .		13
140	ÄŒo vieÅį o mojom vozidle? Ochrana osobných òdajov a kybernetickÃį bezpeÄnosÅ¥ v kontexte autonómny vozidiel. Revue Pro PrÃįvo A Technologie, 2020, 11, 3-50.	vch.o	2
141	An Efficient Deep Convolutional Neural Network for Semantic Segmentation. , 2020, , .		5
142	Public Policy and Regulatory Challenges of Artificial Intelligence (AI). IFIP Advances in Information and Communication Technology, 2020, , 100-111.	0.5	4
143	Making autonomous vehicle systems human-like: lessons learned from accident experiences in traffic. Enterprise Information Systems, 2023, 17, .	3.3	3
144	Autonomous Vehicles in Computer Engineering Program. , 0, , .		0
145	The Impact of GDPR Regulations on Cyber Security Effectiveness Whilst Working Remotely. Advanced Sciences and Technologies for Security Applications, 2021, , 253-279.	0.4	1
146	Analyzing Change in Business Activity before, during, and after Autonomous Shuttle Bus Service in the Old Las Vegas Downtown Area. Journal of the Urban Planning and Development Division, ASCE, 2022, 148, .	0.8	1

#	Article	IF	CITATIONS
147	Connected and Autonomous Vehicles and Infrastructures: A Literature Review. International Journal of Pavement Research and Technology, 2023, 16, 264-284.	1.3	23
148	Analysis of the Necessity of Quantum Computing Capacity Development for National Defense and Homeland Security. , 2021, , .		1
149	University students' perspectives on autonomous vehicle adoption: Adelaide case study. Case Studies on Transport Policy, 2021, 9, 1956-1964.	1.1	6
150	Network user equilibrium problems with infrastructure-enabled autonomy. Transportation Research Part B: Methodological, 2021, 154, 207-241.	2.8	12
151	Towards the governance of government data using artificial intelligence. SSRN Electronic Journal, 0, , .	0.4	0
152	Technological solutions in Logistics 4.0. Ekonomika Preduzeca, 2021, 69, 385-401.	0.3	7
153	Bibliometric Analysis on the Safety of Autonomous Vehicles with Artificial Intelligence. Lecture Notes in Computer Science, 2021, , 278-289.	1.0	0
154	A conceptual system dynamics model for cybersecurity assessment of connected and autonomous vehicles. Accident Analysis and Prevention, 2022, 165, 106515.	3.0	26
155	Studying Adversarial Attacks on Behavioral Cloning Dynamics. , 2020, , .		2
156	Imaginaries of Road Transport Automation in Finnish Governance Culture—A Critical Discourse Analysis. Sustainability, 2022, 14, 1437.	1.6	6
157	Operationalizing the Ethics of Connected and Automated Vehicles. International Journal of Technoethics, 2022, 13, 1-20.	0.6	8
158	Synthesis of Autonomous Vehicle Guideline for Public Road-Testing Sustainability. Sustainability, 2022, 14, 1456.	1.6	7
159	Cybercrimes and defense approaches in vehicular networks. , 2022, , 37-63.		0
160	Towards a robust and trustworthy machine learning system development: An engineering perspective. Journal of Information Security and Applications, 2022, 65, 103121.	1.8	7
161	A Systematic Review of Observational Studies Investigating the Influence of Mobile Phone Distraction on Road Crossing Behaviour of Pedestrians. SSRN Electronic Journal, 0, , .	0.4	0
162	Performance Evaluation of an Autonomous Vehicle Using Resilience Engineering. , 0, , .		2
163	Connected and vulnerable: cybersecurity in vehicles. International Review of Law, Computers and Technology, 2022, 36, 161-180.	0.7	1
164	Social implications of autonomous vehicles: a focus on time. Al and Society, 2022, 37, 791-800.	3.1	7

#	Article	IF	CITATIONS
165	Hiding Behind Machines: Artificial Agents May Help to Evade Punishment. Science and Engineering Ethics, 2022, 28, 19.	1.7	9
166	Ochrana osobnÃch údajÅ⁻ v systémech autonomnÃho Å™ÃzenÃ. Co je nezbytné pro bezpeÄné fungovÃjr toho dosÃjhnout?. Revue Pro PrÃjvo A Technologie, 2021, 12, 3-37.	nÃ-a jak 0.0	1
167	Otonom Araçlar İçin Siber Güvenlik Risklerinin Araştırılması ve Savunma Metotları. European Jour Science and Technology, 0, , .	nal of 0.5	1
168	Object Detection and Distance Measurement Using Al. , 2021, , .		9
169	Analysis on the Realization of Autonomous Driving Technologyand Its Development Prospect. , 2022, , .		0
170	Lidar Point Cloud Compression, Processing and Learning for Autonomous Driving. IEEE Transactions on Intelligent Transportation Systems, 2023, 24, 962-979.	4.7	21
171	The Interface of Privacy and Data Security in Automated City Shuttles: The GDPR Analysis. Applied Sciences (Switzerland), 2022, 12, 4413.	1.3	5
172	Privacy-Preserved In-Cabin Monitoring System for Autonomous Vehicles. Computational Intelligence and Neuroscience, 2022, 2022, 1-15.	1.1	3
173	Statistical Model Checking for Stochastic and Hybrid Autonomous Driving Based on Spatio-Clock Constraints. International Journal of Software Engineering and Knowledge Engineering, 2022, 32, 553-582.	0.6	1
174	Replace Traditional Human Resource with Autonomous Vehicles: Evaluate Sustainability for the Last-Mile Delivery Industry. SSRN Electronic Journal, 0, , .	0.4	0
175	Regulating connected and automated vehicles: How do drivers experience being automatically regulated by digital traffic rules?. Transportation Research Interdisciplinary Perspectives, 2022, 14, 100611.	1.6	1
176	Smart Tire Sensor Design Using Numerical Simulations. , 2022, , .		2
177	Factor Analysis on Intention to Use Autonomous Buses Without Service Level Improvements: Focusing on Crew Availability and Drivers' Licenses. SSRN Electronic Journal, 0, , .	0.4	0
178	Sustainable Operation of Unmanned Ships under Current International Maritime Law. Sustainability, 2022, 14, 7369.	1.6	6
179	Personal Mobility in Metaverse With Autonomous Vehicles Using Q-Rung Orthopair Fuzzy Sets Based OPA-RAFSI Model. IEEE Transactions on Intelligent Transportation Systems, 2023, 24, 15642-15651.	4.7	57
180	The art of cyber security in the age of the digital supply chain. , 2022, , 215-233.		0
182	Thoughts on Whether Unmanned Driving Can Be Safe on the Road. , 2022, , .		0
183	Review of shared online hailing and autonomous taxi services. Transportmetrica B, 2023, 11, 486-509.	1.4	6

#	Article	IF	Citations
184	Investigating safety and liability of autonomous vehicles: Bayesian random parameter ordered probit model analysis. Journal of Intelligent and Connected Vehicles, 2022, 5, 199-205.	3.6	8
185	The adoption of self-driving vehicles in Africa: insight from Ghana. Urban, Planning and Transport Research, 2022, 10, 333-357.	0.8	5
186	Stakeholder viewpoints analysis of the autonomous vehicle industry by using multi-actors multi-criteria analysis. Transport Policy, 2022, 126, 65-84.	3.4	13
187	What factors drive policy transfer in smart city development? Insights from a Delphi study. Sustainable Cities and Society, 2022, 84, 104008.	5.1	15
188	Making regulation flexible for the governance of disruptive innovation: A comparative study of AVs regulation in the United Kingdom and South Korea. Journal of European Public Policy, 0, , 1-21.	2.4	1
189	On-Demand Logistics: Solutions, Barriers, and Enablers. Sustainability, 2022, 14, 9465.	1.6	5
190	Ranking preferences towards adopting autonomous vehicles based on peer inputs and advertisements. Transportation, 2023, 50, 2139-2192.	2.1	5
191	Deep learning: applications in retinal and optic nerve diseases. Australasian journal of optometry, The, 2023, 106, 466-475.	0.6	3
192	Conceptualising the adoption of safer autonomous mobilities. Transportation Planning and Technology, 2022, 45, 403-426.	0.9	1
193	Effect of Connected and Autonomous Vehicles on Supply Chain Performance. Transportation Research Record, 2023, 2677, 402-424.	1.0	3
194	Safety and privacy regulations for unmanned aerial vehicles: A multiple comparative analysis. Technology in Society, 2022, 71, 102079.	4.8	28
195	Automated city shuttles: Mapping the key challenges in cybersecurity, privacy and standards to future developments. Computers and Security, 2022, 122, 102904.	4.0	11
196	Citizen science - science - industry: A case study in self-driving car. Zbornik Matice Srpske Za Prirodne Nauke, 2022, , 73-83.	0.0	0
197	Public Perspectives on Automated Vehicles in Online Discussion Forums: A Social Constructionist Perspective. SSRN Electronic Journal, 0, , .	0.4	0
198	Autonomous Driving Systems: An Overview of Challenges in Safety, Reliability and Privacy. , 2022, , .		0
199	Privacy Expectations for Human-Autonomous Vehicle Interactions. , 2022, , .		2
200	Advising Autonomous Cars about the Rules of the Road. Electronic Proceedings in Theoretical Computer Science, EPTCS, 0, 371, 62-76.	0.8	1
201	A strategic review approach on adoption of autonomous vehicles and its risk perception by road users. Innovative Infrastructure Solutions, 2022, 7, .	1.1	6

#	Article	IF	Citations
202	ACR-MLM: A privacy-preserving framework for anonymous and confidential rewarding in blockchain-based multi-level marketing. Data Science and Management, 2022, , .	4.1	4
203	Detection Beyond What and Where: A Benchmark forÂDetecting Occlusion State. Lecture Notes in Computer Science, 2022, , 464-476.	1.0	3
204	Relevance of modern technologies for sustainability-focused road freight transport service management in a competitive market. Procedia Computer Science, 2022, 207, 2013-2022.	1.2	1
205	Temporal Blockchains for Intelligent Transportation Management and Autonomous Vehicle Support in the Internet of Vehicles. Advances in Wireless Technologies and Telecommunication Book Series, 2022, , 155-189.	0.3	0
206	Do bicyclists and pedestrians support their city as an autonomous vehicle proving ground? Evidence from Pittsburgh. Case Studies on Transport Policy, 2022, 10, 2401-2412.	1.1	2
207	Game theory approaches for autonomy. Frontiers in Physics, 0, 10, .	1.0	2
208	A systematic review of observational studies investigating the influence of mobile phone distraction on road crossing behaviour of pedestrians. Transportation Research Part F: Traffic Psychology and Behaviour, 2022, 91, 236-259.	1.8	6
209	Exploration on prior driving modes for automated vehicle collisions. International Journal of Urban Sciences, 2023, 27, 622-644.	1.3	4
210	Al-Based Intrusion Detection Systems for In-Vehicle Networks: A Survey. ACM Computing Surveys, 2023, 55, 1-40.	16.1	25
211	A Survey of Intellectual Property Rights Protection in Big Data Applications. Algorithms, 2022, 15, 418.	1.2	2
212	Milestones in Autonomous Driving and Intelligent Vehicles: Survey of Surveys. IEEE Transactions on Intelligent Vehicles, 2023, 8, 1046-1056.	9.4	111
213	Humans vs, machines; motorcyclists and car drivers differ in their opinion and trust of self-drive vehicles. Transportation Research Part F: Traffic Psychology and Behaviour, 2023, 92, 143-154.	1.8	1
214	Safety risk sources of autonomous mobile machines. Open Engineering, 2022, 12, 977-990.	0.7	2
215	Self-Driving Vehicle Data Scheduling in Edge-Clouds. , 2022, , .		0
216	Application of Digital Twin Technology in the Field of Autonomous Driving Test. , 2022, , .		7
217	Autonomous Vehicles. , 2023, , 1-7.		0
218	Blending Human Ware with Software and Hardware in the Design of Smart Cities. , 0, , .		1
219	Public discourse on automated vehicles in online discussion forums: A social constructionist perspective. Transportation Research Interdisciplinary Perspectives, 2023, 17, 100743.	1.6	3

#	Article	IF	CITATIONS
220	Data-Driven. Privacy, Surveillance, Manipulation. Studies in Applied Philosophy, Epistemology and Rational Ethics, 2023, , 41-64.	0.2	1
221	Safety First. Old and New Risks. Studies in Applied Philosophy, Epistemology and Rational Ethics, 2023, , 19-39.	0.2	0
222	The role of values and ethics in influencing consumers' intention to use autonomous vehicle hailing services. Technological Forecasting and Social Change, 2023, 188, 122267.	6.2	14
223	Addressing operational challenges of small and medium enterprises of the logistics industry – Potential for autonomous vehicles. , 2022, , .		Ο
224	Developing a Regulatory Framework for Autonomous Vehicles: A Proximal Analysis of European Approach and Its Application to ASEAN Countries. TalTech Journal of European Studies, 2022, 12, 165-188.	0.4	1
225	Governing beyond innovation: Exploring the impact of connected and automated vehicles on the organization of vehicle accident investigations. International Journal of Sustainable Transportation, 0, , 1-12.	2.1	1
226	Challenges and prospects for unmanned urban transport. E3S Web of Conferences, 2022, 363, 04047.	0.2	0
227	Autonomous Vehicles Security: Challenges and Solutions Using Blockchain and Artificial Intelligence. IEEE Transactions on Intelligent Transportation Systems, 2023, 24, 3614-3637.	4.7	26
228	Fear of AI: an inquiry into the adoption of autonomous cars in spite of fear, and a theoretical framework for the study of artificial intelligence technology acceptance. Al and Society, 0, , .	3.1	10
229	Evolution of Equipment in Electromobility and Autonomous Driving Regarding Safety Issues. Energies, 2023, 16, 1271.	1.6	1
230	Perceived benefits as a driver and necessary condition for the willingness of air passengers to provide personal data for non-mandatory digital services at airports. Transportation Research, Part A: Policy and Practice, 2023, 171, 103659.	2.0	0
231	Cyber-seaworthiness: A critical review of the literature. Marine Policy, 2023, 151, 105592.	1.5	4
232	Modelling cybersecurity regulations for automated vehicles. Accident Analysis and Prevention, 2023, 186, 107054.	3.0	3
233	Opinions of active transportation users on policies to ensure their perceived safety in the era of autonomous vehicles. Case Studies on Transport Policy, 2023, 12, 101002.	1.1	3
234	Deep learning for 6D pose estimation of objects — A case study for autonomous driving. Expert Systems With Applications, 2023, 223, 119838.	4.4	8
235	Imagining urban mobility futures in the era of autonomous vehicles—insights from participatory visioning and multi-criteria appraisal in the UK and Australia. Transport Policy, 2023, 136, 193-208.	3.4	7
236	An Automotive Reference Testbed with Trusted Security Services. Electronics (Switzerland), 2023, 12, 888.	1.8	2
237	Autonomous Vehicles Enabled by the Integration of IoT, Edge Intelligence, 5C, and Blockchain. Sensors, 2023, 23, 1963.	2.1	23

#	Article	IF	CITATIONS
238	The Social Perception of Autonomous Delivery Vehicles Based on the Stereotype Content Model. Sustainability, 2023, 15, 5194.	1.6	3
239	Conceptualizing the Secure Machine Learning Operations (SecMLOps) Paradigm. , 2022, , .		1
240	Review of studies on public acceptability and acceptance of shared autonomous mobility services: past, present and future. Transport Reviews, 2023, 43, 970-996.	4.7	3
241	Driving Into Cybersecurity Trouble With Autonomous Vehicles. Advances in Information Security, Privacy, and Ethics Book Series, 2023, , 255-273.	0.4	1
242	A precautionary approach to autonomous vehicles. Al and Ethics, 0, , .	4.6	2
243	Integrated strategic planning approaches to automated transport in the context of the mobility transformation. , 2023, , 267-310.		0
244	Governance and the provision of roads and mobility in five Japanese â€~societies'. Case Studies on Transport Policy, 2023, 12, 101000.	1.1	1
245	How to Design the eHMI of AVs for Urgent Warning to Other Drivers with Limited Visibility?. Sensors, 2023, 23, 3721.	2.1	1
246	Semantic Segmentation with High Inference Speed in Off-Road Environments. , 0, , .		0
247	Navigating the governance challenges of disruptive technologies: insights from regulation of autonomous systems in Singapore. Journal of Economic Policy Reform, 2023, 26, 298-319.	1.9	6
248	Quantitative Resilience Assessment of GPS, IMU, and LiDAR Sensor Fusion for Vehicle Localization Using Resilience Engineering Theory. , 0, , .		1
249	Trolleys, crashes, and perceptionâ \in "a survey on how current autonomous vehicles debates invoke problematic expectations. Al and Ethics, 0, , .	4.6	0
250	Compression of GNSS Data with the Aim of Speeding up Communication to Autonomous Vehicles. Remote Sensing, 2023, 15, 2165.	1.8	9
253	Role of Technology Under Advancement of Industrialisation in Intellectual Property Rights. , 2023, , .		3
254	Investigation in Automotive Technologies Transitions. Smart Innovation, Systems and Technologies, 2023, , 67-77.	0.5	0
260	Government Response and Perspective on Autonomous Vehicles. Advances in Public Policy and Administration, 2023, , 137-153.	0.1	0
269	A Systematic Review on Sensor Fusion Technology in Autonomous Vehicles. , 2023, , .		0
271	Gaming the Driving System: On Interaction Attacks Against Connected and Automated Vehicles. Studies in Applied Philosophy, Epistemology and Rational Ethics, 2023, , 105-122.	0.2	0

#	Article	IF	CITATIONS
274	A Reliability Analysis of Self-Driving Vehicles: Evaluating the Safety and Performance of Autonomous Driving Systems. , 2023, , .		0
280	Thinking About Innovation: The Case of Autonomous Vehicles. Studies in Applied Philosophy, Epistemology and Rational Ethics, 2023, , 161-174.	0.2	0
282	Towards a Lifelong Mapping Approach Using Lanelet 2 for Autonomous Open-Pit Mine Operations. , 2023, , .		1
289	Legal Implications for Autonomous Vehicles Mobility in Future Smart Cities. , 2023, , .		0
291	On Detection and Size Estimation of Cyber-Attacks Against Autonomous Systems. , 2023, , .		2
295	Autonomous Vehicles. , 2023, , 186-192.		0
295 298	Autonomous Vehicles. , 2023, , 186-192. Preparing Human Factors for Digital Transformation: A Framework for Innovations in Industrial Engineering Education. Springer Proceedings in Mathematics and Statistics, 2023, , 289-301.	0.1	0
295 298 299	Autonomous Vehicles., 2023, , 186-192. Preparing Human Factors for Digital Transformation: A Framework for Innovations in Industrial Engineering Education. Springer Proceedings in Mathematics and Statistics, 2023, , 289-301. Modeling of Barriers to the Adoption of Autonomous Vehicles: DEMATEL Method., 0, , .	0.1	0 0 0
295 298 299 300	Autonomous Vehicles., 2023, , 186-192. Preparing Human Factors for Digital Transformation: A Framework for Innovations in Industrial Engineering Education. Springer Proceedings in Mathematics and Statistics, 2023, , 289-301. Modeling of Barriers to the Adoption of Autonomous Vehicles: DEMATEL Method., 0, , . Users' Perception of Data Privacy in Self-Driving Vehicles in Dubai., 0, , .	0.1	0 0 0
295 298 299 300 304	Autonomous Vehicles., 2023,, 186-192. Preparing Human Factors for Digital Transformation: A Framework for Innovations in Industrial Engineering Education. Springer Proceedings in Mathematics and Statistics, 2023,, 289-301. Modeling of Barriers to the Adoption of Autonomous Vehicles: DEMATEL Method., 0,,. Users' Perception of Data Privacy in Self-Driving Vehicles in Dubai., 0,,. Relevance of ISO/SAE 21434 in Vehicular Architecture Development., 2023, .	0.1	0 0 0 0