Physicochemical properties and phenolic content of hor and from rural versus urban landscapes

Food Chemistry 272, 66-75 DOI: 10.1016/j.foodchem.2018.08.035

Citation Report

#	Article	IF	CITATIONS
1	Comparison of Physicochemical, Microbiological Properties and Bioactive Compounds Content of Grassland Honey and other Floral Origin Honeys. Molecules, 2019, 24, 2932.	1.7	23
2	Effects of acid treatment in jaggery making. Food Chemistry, 2019, 299, 125094.	4.2	14
3	Evaluation of cellular antioxidant components of honeys using UPLC-MS/MS and HPLC-FLD based on the quantitative composition-activity relationship. Food Chemistry, 2019, 293, 169-177.	4.2	36
4	Antioxidant Activity and Phenolic Profile of Selected Organic and Conventional Honeys from Poland. Antioxidants, 2020, 9, 44.	2.2	47
5	Influence of altitudinal variation on the total phenolic and flavonoid content of <i>Acacia</i> and <i>Ziziphus</i> honey. International Journal of Food Properties, 2020, 23, 2077-2086.	1.3	6
6	Antibiofilm Activity of Heather and Manuka Honeys and Antivirulence Potential of Some of Their Constituents on the DsbA1 Enzyme of Pseudomonas aeruginosa. Antibiotics, 2020, 9, 911.	1.5	13
7	The Effect of Enriching Honey with Propolis on the Antioxidant Activity, Sensory Characteristics, and Quality Parameters. Molecules, 2020, 25, 1176.	1.7	29
9	Set of stress biomarkers as a practical tool in the assessment of multistress effect using honeybees from urban and rural areas as a model organism: a pilot study. Environmental Science and Pollution Research, 2021, 28, 9084-9096.	2.7	10
10	Physico-Chemical Profile of Four Types of Honey from the South of the Republic of Moldova. Food and Nutrition Sciences (Print), 2021, 12, 874-888.	0.2	7
11	Sheka forest biosphere reserve beekeeping practices and characteristics of Schefflera abyssinica honey, Ethiopia. Environment, Development and Sustainability, 2021, 23, 11818-11836.	2.7	2
12	The bioactive, antioxidant, antibacterial, and physicochemical properties of a range of commercially available Australian honeys. Current Research in Food Science, 2021, 4, 532-542.	2.7	16
13	Physicochemical Properties and Effects of Honeys on Key Biomarkers of Oxidative Stress and Cholesterol Homeostasis in HepG2 Cells. Nutrients, 2021, 13, 151.	1.7	6
14	Rheological and thermal properties of honey produced in Algeria and Ethiopia: a review. International Journal of Food Properties, 2021, 24, 1117-1131.	1.3	2
15	Neonicotinoid residues in honey from urban and rural environments. Environmental Science and Pollution Research, 2021, 28, 28179-28190.	2.7	25
16	Molecular Mechanism of Mature Honey Formation by GC-MS- and LC-MS-Based Metabolomics. Journal of Agricultural and Food Chemistry, 2021, 69, 3362-3370.	2.4	13
17	Physicochemical characteristics and mineral status of honey from different agro-climatic zones of Himachal Pradesh, India. British Food Journal, 2021, 123, 3789-3804.	1.6	2
18	The Influence of Chemical Contaminants on the Physicochemical Properties of Unifloral and Multifloral Honey from the North-East Region of Romania. Foods, 2021, 10, 1039.	1.9	24
19	Towards a Better Understanding of Nutritional and Therapeutic Effects of Honey and Their Applications in Apitherapy. Applied Sciences (Switzerland), 2021, 11, 4190.	1.3	13

CITATION REPORT

#	Article	IF	CITATIONS
20	Antioxidant capacity of honey from the urban apiary: a comparison with honey from the rural apiary. Scientific Reports, 2021, 11, 9695.	1.6	17
21	The Rediscovery of Honey for Skin Repair: Recent Advances in Mechanisms for Honey-Mediated Wound Healing and Scaffolded Application Techniques. Applied Sciences (Switzerland), 2021, 11, 5192.	1.3	12
22	Polyfloral honey from urban beekeeping: two-year case study of polyphenols profile and antioxidant activity. British Food Journal, 2021, 123, 4224-4239.	1.6	3
23	Antibacterial activity and mechanism of action of some Iranian honeys compared to manuka honey against multidrug-resistant respiratory and urinary infections. Food Bioscience, 2021, 41, 101003.	2.0	6
24	The super-food Manuka honey, a comprehensive review of its analysis and authenticity approaches. Journal of Food Science and Technology, 2022, 59, 2527-2534.	1.4	9
26	Comparison of Volatiles and Chemical Composition of Traditional and Non-Traditional Honey Available on the Polish Market. Applied Sciences (Switzerland), 2021, 11, 6371.	1.3	3
27	Bioactive Molecules for Discriminating Robinia and Helianthus Honey: High-Performance Liquid Chromatography–Electron Spray Ionization–Mass Spectrometry Polyphenolic Profile and Physicochemical Determinations. Molecules, 2021, 26, 4433.	1.7	10
28	Polyphenols Content and In Vitro α-Clycosidase Activity of Different Italian Monofloral Honeys, and Their Effect on Selected Pathogenic and Probiotic Bacteria. Microorganisms, 2021, 9, 1694.	1.6	14
29	ICP-MS-based ionomics method for discriminating the geographical origin of honey of Apis cerana Fabricius. Food Chemistry, 2021, 354, 129568.	4.2	11
30	Polyphaenolic profiling, antioxidant properties, and inhibition of α-glucosidase of Mesona chinensis benth from Southern China. Microchemical Journal, 2021, 168, 106399.	2.3	6
31	Addition of Bee Products in Diverse Food Sources: Functional and Physicochemical Properties. Applied Sciences (Switzerland), 2021, 11, 8156.	1.3	11
32	Colour of honey: can we trust the Pfund scale? $\hat{a} \in$ An alternative graphical tool covering the whole visible spectra. LWT - Food Science and Technology, 2021, 149, 111859.	2.5	12
33	Meliponinae and Apis mellifera honey in southern Brazil: Physicochemical characterization and determination of pesticides. Food Chemistry, 2021, 363, 130175.	4.2	12
34	Detection of adulterations in a valuable Brazilian honey by using spectrofluorimetry and multiway classification. Food Chemistry, 2022, 370, 131064.	4.2	18
35	Türkiye'nin Ordu iline ait Bazı Balların Palinolojik Karakterizasyonu ve Toplam Fenol-Flavonoid İçeriğinin Değerlendirilmesi. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2019, 12, 1275-128	2. ^{0.1}	4
36	Phenolic Compounds in Honey and Their Relationship with Antioxidant Activity, Botanical Origin, and Color. Antioxidants, 2021, 10, 1700.	2.2	55
37	Spectrofluorimetric Determination of Phenylalanine in Honey by the Combination of Standard Addition Method and Second-Order Advantage. Food Analytical Methods, 2022, 15, 728-738.	1.3	3
38	Validation of analytical method for (E)-2-decenedioic acid quantification in honey samples. Journal of Asia-Pacific Entomology, 2021, 24, 1153-1157.	0.4	3

CITATION REPORT

#	Article	IF	CITATIONS
39	Bee-Derived Products: Chemical Composition and Applications in Skin Tissue Engineering. Pharmaceutics, 2022, 14, 750.	2.0	19
40	A Comprehensive Survey of Phenolic Constituents Reported in Monofloral Honeys around the Globe. Foods, 2022, 11, 1152.	1.9	13
41	Physicochemical parameters, multi-elemental composition and antiradical activity of multifloral honeys from Apis cerana cerana in Hainan province, China. Food Science and Technology, 0, 42, .	0.8	2
43	Effect of avocado honey on anthropometric and biochemical parameters in healthy subjects: a pilot randomised controlled trial. CYTA - Journal of Food, 2022, 20, 78-85.	0.9	0
44	Kaempferol-3-O-galactoside as a marker for authenticating Lespedeza bicolor Turcz. monofloral honey. Food Research International, 2022, 160, 111667.	2.9	4
45	Metabolomics-based screening and chemically identifying abundant stachydrine as quality characteristic of rare Leucosceptrum canum Smith honey. Journal of Food Composition and Analysis, 2022, 114, 104759.	1.9	7
46	Honeys as Possible Sources of Cholinesterase Inhibitors. Nutrients, 2022, 14, 2969.	1.7	7
47	Highlighting the Potential of Attenuated Total Reflectance – Fourier Transform Infrared (ATR-FTIR) Spectroscopy to Characterize Honey Samples with Principal Component Analysis (PCA). Analytical Letters, 2023, 56, 789-806.	1.0	6
48	Calluna vulgaris as a Valuable Source of Bioactive Compounds: Exploring Its Phytochemical Profile, Biological Activities and Apitherapeutic Potential. Plants, 2022, 11, 1993.	1.6	9
49	Role of Honey in Prevention and Management of Cancer. , 2022, , 365-385.		0
50	Identification of characteristic markers for monofloral honey of Astragalus membranaceus var. mongholicus Hsiao: A combined untargeted and targeted MS-based study. Food Chemistry, 2023, 404, 134312.	4.2	7
51	Phenolic and Total Flavonoid Contents and Physicochemical Traits of Romanian Monofloral Honeys. Agriculture (Switzerland), 2022, 12, 1378.	1.4	5
52	Physicochemical Properties of Honey from Contract Beekeepers, Street Vendors and Branded Honey in Sabah, Malaysia. Tropical Life Sciences Research, 2022, 33, 61-83.	0.5	2
53	Honey Traceability and Authenticity. Review of Current Methods Most Used to Face this Problem. Journal of Apicultural Science, 2022, 66, 101-119.	0.1	1
54	Quality Profile of Several Monofloral Romanian Honeys. Agriculture (Switzerland), 2023, 13, 75.	1.4	4
55	Evaluation of physicochemical properties of honey powder using rice and pea proteins as carriers. Food Research International, 2023, 167, 112692.	2.9	2
56	Urban Honey: A Review of Its Physical, Chemical, and Biological Parameters That Connect It to the Environment. Sustainability, 2023, 15, 2764.	1.6	2
57	Evaluation of the Antioxidant Activities and Phenolic Profile of Shennongjia Apis cerana Honey through a Comparison with Apis mellifera Honey in China. Molecules, 2023, 28, 3270.	1.7	1

ARTICLE

IF CITATIONS