Integrating ridesourcing services with public transit: An combining revealed and stated preference data

Transportation Research Part C: Emerging Technologies 105, 683-696

DOI: 10.1016/j.trc.2018.07.029

Citation Report

#	Article	IF	CITATIONS
1	Transit-oriented autonomous vehicle operation with integrated demand-supply interaction. Transportation Research Part C: Emerging Technologies, 2018, 97, 216-234.	3.9	93
3	Effects of on-demand ridesourcing on vehicle ownership, fuel consumption, vehicle miles traveled, and emissions per capita in U.S. States. Transportation Research Part C: Emerging Technologies, 2019, 108, 289-301.	3.9	76
4	Service and capacity planning in crowd-sourced delivery. Transportation Research Part C: Emerging Technologies, 2019, 100, 177-199.	3.9	81
5	Obtaining transit information from users of a collaborative transit app: Platform-based and individual-related motivators. Transportation Research Part C: Emerging Technologies, 2019, 102, 173-188.	3.9	14
6	Real-time city-scale ridesharing via linear assignment problems. Transportation Research Part C: Emerging Technologies, 2019, 101, 208-232.	3.9	121
7	Characterization of ridesplitting based on observed data: A case study of Chengdu, China. Transportation Research Part C: Emerging Technologies, 2019, 100, 330-353.	3.9	138
8	Privacy-Aware Distributed Mobility Choice Modelling over Blockchain., 2019, , .		1
9	The effectiveness of parking policies to reduce parking demand pressure and car use. Transport Policy, 2019, 73, 41-50.	3.4	68
10	Do motorcycle-based ride-hailing apps threaten bus ridership? A hybrid choice modeling approach with latent variables. Public Transport, 2020, 12, 207-231.	1.7	31
11	Ridesourcing Behavior Analysis and Prediction: A Network Perspective. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 1274-1283.	4.7	5
12	Barriers and opportunities for paratransit users to adopt on-demand micro transit. Research in Transportation Economics, 2020, 84, 101001.	2.2	7
13	People or parking?. Habitat International, 2020, 106, 102289.	2.3	3
14	Transportation Network Companies (TNCs) and public transit: Examining relationships between TNCs, transit ridership, and neighborhood qualities in San Francisco. Case Studies on Transport Policy, 2020, 8, 1233-1246.	1.1	11
15	Role of Attitudes in Transit and Auto Users' Mode Choice of Ridesourcing. Transportation Research Record, 2020, 2674, 1-16.	1.0	23
16	Understanding Public Acceptability of Congestion Charging in Beijing. Journal of Transportation Engineering Part A: Systems, 2020, 146, .	0.8	6
17	Modeling demand for ridesourcing as feeder for high capacity mass transit systems with an application to the planned Beirut BRT. Transportation Research, Part A: Policy and Practice, 2020, 138, 70-91.	2.0	14
18	Spatial Characteristics of Transit-Integrated Ridesourcing Trips and Their Competitiveness with Transit and Walking Alternatives. Transportation Research Record, 2020, 2674, 329-340.	1.0	5
19	Prediction and behavioral analysis of travel mode choice: A comparison of machine learning and logit models. Travel Behaviour & Society, 2020, 20, 22-35.	2.4	176

#	Article	IF	CITATIONS
20	Mobility-on-demand: An empirical study of internet-based ride-hailing adoption factors, travel characteristics and mode substitution effects. Transportation Research Part C: Emerging Technologies, 2020, 115, 102638.	3.9	106
21	Multi-level analyses on the nearest-first matching policy of on-demand chauffeured ride-hailing service. International Journal of Sustainable Transportation, 2021, 15, 749-767.	2.1	4
22	The impact of Uber and Lyft on vehicle ownership, fuel economy, and transit across U.S. cities. IScience, 2021, 24, 101933.	1.9	25
23	A deeper investigation into the effect of the built environment on the use of ridehailing for non-work travel. Journal of Transport Geography, 2021, 91, 102952.	2.3	11
24	The Influence of Public Transport Delays on Mobility on Demand Services. Electronics (Switzerland), 2021, 10, 379.	1.8	5
25	Longitudinal Analysis of Transit-Integrated Ridesourcing Users and Their Trips. Transportation Research Record, 2021, 2675, 63-75.	1.0	1
26	Choosing between alternative accommodation, using a discrete choice experiment. Anatolia, 0, , 1-16.	1.3	1
27	User interest in on-demand, shared, and driverless mobility: Evidence from stated preference choice experiments in Southern Ontario. Travel Behaviour & Society, 2021, 23, 120-133.	2.4	22
28	Promoting Business Trip Ridesharing with Green Information Systems: A Blended Environment Perspective. Transportation Research, Part D: Transport and Environment, 2021, 94, 102795.	3.2	14
29	Preferences of urban rail users for first- and last-mile autonomous vehicles: Price and service elasticities of demand in a multimodal environment. Transportation Research Part C: Emerging Technologies, 2021, 126, 103105.	3.9	14
30	Mobility-on-demand versus fixed-route transit systems: An evaluation of traveler preferences in low-income communities. Transportation Research, Part A: Policy and Practice, 2021, 148, 481-495.	2.0	16
31	Mode choice behavior for access and egress connection to transit services. International Journal of Transportation Science and Technology, 2021, 10, 136-155.	2.0	13
32	A study of the scheduling effect on shared autonomous vehicles adoption. Transportation Research Interdisciplinary Perspectives, 2021, 10, 100394.	1.6	5
33	Ride-sourcing compared to its public-transit alternative using big trip data. Journal of Transport Geography, 2021, 95, 103135.	2.3	16
34	A Matching Model for Door-to-Door Multimodal Transit by Integrating Taxi-Sharing and Subways. ISPRS International Journal of Geo-Information, 2021, 10, 469.	1.4	5
35	Measuring the perceived need for motorcycle-based ride-hailing services on trip characteristics among university students in Yogyakarta, Indonesia. Travel Behaviour & Society, 2021, 24, 303-312.	2.4	17
36	A comparative analysis of the users of private cars and public transportation for intermodal options under Mobility-as-a-Service in Seoul. Travel Behaviour & Society, 2021, 24, 68-80.	2.4	32
37	Revisiting the Benefits of Combining Data of a Different Nature: Strategic Forecasting of New Mode Alternatives. Journal of Advanced Transportation, 2021, 2021, 1-15.	0.9	7

#	ARTICLE	IF	CITATIONS
38	Data-driven shuttle service design for sustainable last mile transportation. Advanced Engineering Informatics, 2021, 49, 101344.	4.0	10
39	The Social, Economic, and Environmental Impacts of Ridesourcing Services: A Literature Review. Future Transportation, 2021, 1, 268-289.	1.3	13
40	Proactive shuttle dispatching in large-scale dynamic dial-a-ride systems. Transportation Research Part B: Methodological, 2021, 150, 227-259.	2.8	12
41	The walking health: A route choice model to analyze the street factors enhancing active mobility. Journal of Transport and Health, 2021, 22, 101133.	1.1	14
42	Exploring the Factors of Intercity Ridesplitting Based on Observed and GIS Data: A Case Study in China. ISPRS International Journal of Geo-Information, 2021, 10, 622.	1.4	1
43	Minimum entropy rate-improved trip-chain method for origin–destination estimation using smart card data. Transportation Research Part C: Emerging Technologies, 2021, 130, 103307.	3.9	9
44	Methodological Proposal for Stated Preference Scenarios Regarding an Exploratory Evaluation of Ride-Hailing Implications on Transit: A Brazilian Context Analysis. Case Studies on Transport Policy, 2021, 9, 1727-1727.	1.1	5
45	Shared mobility adoption from 2016 to 2018 in the Greater Toronto and Hamilton Area: Demographic or geographic diffusion?. Journal of Transport Geography, 2021, 96, 103197.	2.3	4
46	Exploring partnership between transit agency and shared mobility company: an incentive program for app-based carpooling. Transportation, 2021, 48, 2585-2603.	2.1	10
47	Value of time and reliability for urban pooled on-demand services. Transportation Research Part C: Emerging Technologies, 2020, 115, 102621.	3.9	60
48	Decision-making on Public Transportation Services Based on the Socio-economic, Psychological, and Environmental Concern Factors. Open Transportation Journal, 2020, 14, 22-31.	0.4	5
49	Acceptability modeling of autonomous mobility on-demand services with on-board ride sharing using interpretable Machine Learning. International Journal of Transportation Science and Technology, 2022, 11, 752-766.	2.0	3
50	Interpretable data-driven demand modelling for on-demand transit services. Transportation Research, Part A: Policy and Practice, 2021, 154, 1-22.	2.0	8
51	Identifying latent shared mobility preference segments in low-income communities: Ride-hailing, fixed-route bus, and mobility-on-demand transit. Travel Behaviour & Society, 2022, 26, 134-142.	2.4	24
52	What drives the utility of shared transport services for urban travellers? A stated preference survey in German cities. Travel Behaviour & Society, 2022, 26, 206-220.	2.4	27
53	Projecting of Urban Transport Infrastructure Considering the Human Factor. Communications - Scientific Letters of the University of Zilina, 2020, 22, 84-94.	0.3	10
54	Improving the performance of first- and last-mile mobility services through transit coordination, real-time demand prediction, advanced reservations, and trip prioritization. Transportation Research Part C: Emerging Technologies, 2021, 133, 103430.	3.9	12
55	Assessing the role of shared mobility services in reducing travel-related greenhouse gases (GHGs) emissions: Focusing on America's young adults. Travel Behaviour & Society, 2022, 26, 301-311.	2.4	10

#	Article	IF	Citations
56	How does the suspension of ride-sourcing affect the transportation system and environment?. Transportation Research, Part D: Transport and Environment, 2022, 102, 103131.	3.2	29
57	Exploring Travel Mode Preference of External Trips for Smart City Transportation Planning: Sejong, Korea. Sustainability, 2022, 14, 630.	1.6	4
58	A Scientometric Review of Mobility-on-Demand Car-Sharing Systems. IEEE Intelligent Transportation Systems Magazine, 2023, 15, 212-229.	2.6	4
59	Acceptance of a Pay-How-You-Drive pricing scheme for city traffic: The case of Athens. Transportation Research, Part A: Policy and Practice, 2022, 156, 270-284.	2.0	11
60	Examining factors influencing the adoption of solo, pooling and autonomous ride-hailing services in Australia. Transportation Research Part C: Emerging Technologies, 2022, 136, 103524.	3.9	10
61	The Impact of In-Vehicle Crowding in Public Transit and Commuters' Demographic Characteristics on the Value of Time. SSRN Electronic Journal, 0, , .	0.4	0
62	First-Mile Transport Mode Study to Mass Rapid Transit (MRT) System in Klang Valley. KSCE Journal of Civil Engineering, 0 , , 1 .	0.9	0
63	Potential of on-demand services for urban travel. Transportation, 2023, 50, 1289-1321.	2.1	9
64	Mode Choice between Bus and Bike-Sharing for the Last-Mile Connection to Urban Rail Transit. Journal of Transportation Engineering Part A: Systems, 2022, 148, .	0.8	5
65	User Attitudes toward Incentive Strategies for Transportation Network Company Services: Share Trips, Extra Walk, and Request Rides in Advance. , 2021, , .		0
66	Why Do Students Choose Buses over Private Motorcycles and Motorcycle-Based Ride-Sourcing? A Hybrid Choice Approach. Sustainability, 2022, 14, 4959.	1.6	4
67	Analysis of integrated uses of dockless bike sharing and ridesourcing with metros: A case study of Shanghai, China. Sustainable Cities and Society, 2022, 82, 103918.	5.1	10
68	Adding Multi-Day Attributes for Ridesharing Simulations via Data Fusion. Transportation Research Record, 2023, 2677, 741-757.	1.0	0
69	Optimizing first- and last-mile public transit services leveraging transportation network companies (TNC). Transportation, 0, , .	2.1	1
70	Effects of autonomous first- and last mile transport in the transport chain. Transportation Research Interdisciplinary Perspectives, 2022, 15, 100623.	1.6	4
71	How My Current Travel Mode Affects My Valuation of Mobility-on-Demand Service?. SSRN Electronic Journal, 0, , .	0.4	0
72	How Determinants Affect Transfer Ridership between Metro and Bus Systems: A Multivariate Generalized Poisson Regression Analysis Method. Sustainability, 2022, 14, 9666.	1.6	5
73	Incorporating ride-sourcing services into paratransit for people with disabilities: Opportunities and barriers. Transport Policy, 2022, 126, 355-363.	3.4	0

#	ARTICLE	IF	CITATIONS
74	Revealing the determinants of the intermodal transfer ratio between metro and bus systems considering spatial variations. Journal of Transport Geography, 2022, 104, 103415.	2.3	8
75	Exploring the nonlinear effects of ridesharing on public transit usage: A case study of San Diego. Journal of Transport Geography, 2022, 104, 103449.	2.3	5
76	Demand management for smart transportation: A review. , 2022, 1, 100038.		21
77	Exploring Users' Preferences for Automated Minibuses and Their Service Type: A Stated Choice Experiment in the Netherlands. Journal of Advanced Transportation, 2022, 2022, 1-21.	0.9	1
79	Contested mobility interactions: Characterizing the influence of ride-sharing services on the adoption and use of public transit system. Case Studies on Transport Policy, 2022, 10, 2229-2243.	1.1	0
80	Preferences for first and last mile shared mobility between stops and activity locations: A case study of local public transport users in Utrecht, the Netherlands. Transportation Research, Part A: Policy and Practice, 2022, 166, 285-306.	2.0	8
81	Ridesourcing mode choice: A latent class choice model for UberX in Chile. Transportation Research Interdisciplinary Perspectives, 2022, 16, 100722.	1.6	1
82	Commuter preferences for a first-mile/last-mile microtransit service in the United States. Transportation Research, Part A: Policy and Practice, 2023, 167, 103549.	2.0	2
83	A latent class analysis to understand riders' adoption of on-demand mobility services as a complement to transit. Transportation, 0, , .	2.1	1
84	Modeling mode choice of customized bus services with loyalty subscription schemes in multi-modal transportation networks. Transportation Research Part C: Emerging Technologies, 2023, 147, 104012.	3.9	2
85	Longitudinal analysis of public transport usage by older people using a latent Markov model. Transportation Letters, 2024, 16, 157-165.	1.8	0
86	Microtransit deployment portfolio management using simulation-based scenario data upscaling. Transportation Research, Part A: Policy and Practice, 2023, 169, 103584.	2.0	4
87	Collective and individual spatial equity measure in public transit accessibility based on generalized travel cost. Research in Transportation Economics, 2023, 98, 101263.	2.2	3
88	Modelling the effects of metro and bike-sharing cooperation: Cost-sharing mode vs information-sharing mode. International Journal of Production Economics, 2023, , 108842.	5.1	4
89	Integrating shared autonomous vehicles in Last-Mile public transportation. Sustainable Energy Technologies and Assessments, 2023, 57, 103214.	1.7	1
91	Do Ridesharing Services Reduce Traffic Crashes and Injuries? A Case Study. , 2023, , .		0