Legume nodulation: The host controls the party

Plant, Cell and Environment 42, 41-51 DOI: 10.1111/pce.13348

Citation Report

#	Article	IF	CITATIONS
1	Callose-Regulated Symplastic Communication Coordinates Symbiotic Root Nodule Development. Current Biology, 2018, 28, 3562-3577.e6.	1.8	41
2	Phosphate Deficiency Negatively Affects Early Steps of the Symbiosis between Common Bean and Rhizobia. Genes, 2018, 9, 498.	1.0	25
3	Local and Systemic Effect of Cytokinins on Soybean Nodulation and Regulation of Their Isopentenyl Transferase (IPT) Biosynthesis Genes Following Rhizobia Inoculation. Frontiers in Plant Science, 2018, 9, 1150.	1.7	41
4	Expression of the <i>Arabidopsis thaliana</i> immune receptor <i><scp>EFR</scp></i> in <i>Medicago truncatula</i> reduces infection by a root pathogenic bacterium, but not nitrogenâ€fixing rhizobial symbiosis. Plant Biotechnology Journal, 2019, 17, 569-579.	4.1	42
5	Rhizobial tRNA-derived small RNAs are signal molecules regulating plant nodulation. Science, 2019, 365, 919-922.	6.0	223
6	Editorial: Metabolic Adjustments and Gene Expression Reprogramming for Symbiotic Nitrogen Fixation in Legume Nodules. Frontiers in Plant Science, 2019, 10, 898.	1.7	6
7	Root traits benefitting crop production in environments with limited water and nutrient availability. Annals of Botany, 2019, 124, 883-890.	1.4	30
8	Allelic Variants for Candidate Nitrogen Fixation Genes Revealed by Sequencing in Red Clover (Trifolium pratense L.). International Journal of Molecular Sciences, 2019, 20, 5470.	1.8	8
9	Mitigation of Nitrous Oxide Emissions during Nitrification and Denitrification Processes in Agricultural Soils Using Enhanced Efficiency Fertilizers. , 0, , .		2
10	Autoregulation of Legume Nodulation by Sophisticated Transcriptional Regulatory Networks. Molecular Plant, 2019, 12, 1179-1181.	3.9	12
11	Argonaute Proteins: Why Are They So Important for the Legume–Rhizobia Symbiosis?. Frontiers in Plant Science, 2019, 10, 1177.	1.7	2
12	Regulation of Symbiotic Nitrogen Fixation in Legume Root Nodules. Plants, 2019, 8, 333.	1.6	57
13	Identification of Long Non-Coding RNAs and the Regulatory Network Responsive to Arbuscular Mycorrhizal Fungi Colonization in Maize Roots. International Journal of Molecular Sciences, 2019, 20, 4491.	1.8	22
14	Symbiotic incompatibility between soybean and Bradyrhizobium arises from one amino acid determinant in soybean Rj2 protein. PLoS ONE, 2019, 14, e0222469.	1.1	10
15	Differential tetraspanin genes expression and subcellular localization during mutualistic interactions in Phaseolus vulgaris. PLoS ONE, 2019, 14, e0219765.	1.1	13
16	How Do Strigolactones Ameliorate Nutrient Deficiencies in Plants?. Cold Spring Harbor Perspectives in Biology, 2019, 11, a034686.	2.3	19
17	GmYUC2a mediates auxin biosynthesis during root development and nodulation in soybean. Journal of Experimental Botany, 2019, 70, 3165-3176.	2.4	49
18	Hypernodulating soybean mutant line nod4 lacking â€~Autoregulation of Nodulation' (AON) has limited root-to-shoot water transport capacity. Annals of Botany, 2019, 124, 979-991.	1.4	6

#	Article	IF	CITATIONS
19	Redox Systemic Signaling and Induced Tolerance Responses During Soybean–Bradyrhizobium japonicum Interaction: Involvement of Nod Factor Receptor and Autoregulation of Nodulation. Frontiers in Plant Science, 2019, 10, 141.	1.7	25
20	Identifying Temporally Regulated Root Nodulation Biomarkers Using Time Series Gene Co-Expression Network Analysis. Frontiers in Plant Science, 2019, 10, 1409.	1.7	7
21	Glycerol-3-phosphate mediates rhizobia-induced systemic signaling in soybean. Nature Communications, 2019, 10, 5303.	5.8	31
22	Formulation of a Highly Effective Inoculant for Common Bean Based on an Autochthonous Elite Strain of Rhizobium leguminosarum bv. phaseoli, and Cenomic-Based Insights Into Its Agronomic Performance. Frontiers in Microbiology, 2019, 10, 2724.	1.5	36
23	Legumes—The art and science of environmentally sustainable agriculture. Plant, Cell and Environment, 2019, 42, 1-5.	2.8	28
24	Distribution of antibiotic resistance genes in soils and crops. A field study in legume plants (Vicia faba) Tj ETQq1 1	0.784314 3.7	l rgBT /Over
25	A Resurrected Scenario: Single Gain and Massive Loss of Nitrogen-Fixing Nodulation. Trends in Plant Science, 2019, 24, 49-57.	4.3	80
26	Triarabinosylation is required for nodulationâ€suppressive CLE peptides to systemically inhibit nodulation in Pisum sativum. Plant, Cell and Environment, 2019, 42, 188-197.	2.8	29
27	Nitrate inhibits primary root growth by reducing accumulation of reactive oxygen species in the root tip in Medicago truncatula. Plant Physiology and Biochemistry, 2020, 146, 363-373.	2.8	17
28	Celebrating 20 Years of Genetic Discoveries in Legume Nodulation and Symbiotic Nitrogen Fixation. Plant Cell, 2020, 32, 15-41.	3.1	416
29	Induced systemic resistance -like responses elicited by rhizobia. Plant and Soil, 2020, 448, 1-14.	1.8	24
30	Novel rhizobia exhibit superior nodulation and biological nitrogen fixation even under high nitrate concentrations. FEMS Microbiology Ecology, 2020, 96, .	1.3	18
31	CLE-HAR1 Systemic Signaling and NIN-Mediated Local Signaling Suppress the Increased Rhizobial Infection in the daphne Mutant of Lotus japonicus. Molecular Plant-Microbe Interactions, 2020, 33, 320-327.	1.4	8
32	No Home without Hormones: How Plant Hormones Control Legume Nodule Organogenesis. Plant Communications, 2020, 1, 100104.	3.6	58
33	The Impacts of Domestication and Breeding on Nitrogen Fixation Symbiosis in Legumes. Frontiers in Genetics, 2020, 11, 00973.	1.1	30
34	Rhizobium etli CE3-DsRed pMP604: a useful biological tool to study initial infection steps in Phaseolus vulgaris nodulation. Planta, 2020, 252, 69.	1.6	2
35	Which Agronomic Practices Increase the Yield and Quality of Common Bean (Phaseolus vulgaris L.)? A Systematic Review Protocol. Agronomy, 2020, 10, 1008.	1.3	4
36	Evaluation of beneficial and inhibitory effects of nitrate on nodulation and nitrogen fixation in common bean (Phaseolus vulgaris) $2020.2 e45$		15

#	Article	IF	CITATIONS
37	Genome-Wide Identification of the CrRLK1L Subfamily and Comparative Analysis of Its Role in the Legume-Rhizobia Symbiosis. Genes, 2020, 11, 793.	1.0	16
38	A Powerful LAMP Weapon against the Threat of the Quarantine Plant Pathogen Curtobacterium flaccumfaciens pv. flaccumfaciens. Microorganisms, 2020, 8, 1705.	1.6	11
39	Shoot Extracts from Two Low Nodulation Mutants Significantly Reduce Nodule Number in Pea. Plants, 2020, 9, 1505.	1.6	2
40	How Does Proline Treatment Promote Salt Stress Tolerance During Crop Plant Development?. Frontiers in Plant Science, 2020, 11, 1127.	1.7	211
41	Infection of Medicago truncatula by the Root-Knot Nematode Meloidogyne javanica Does Not Require Early Nodulation Genes. Frontiers in Plant Science, 2020, 11, 1050.	1.7	8
42	Pathogen resistance may be the principal evolutionary advantage provided by the microbiome. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190592.	1.8	62
44	The Evolution of Mutualistic Dependence. Annual Review of Ecology, Evolution, and Systematics, 2020, 51, 409-432.	3.8	78
45	Exploiting Biological Nitrogen Fixation: A Route Towards a Sustainable Agriculture. Plants, 2020, 9, 1011.	1.6	151
46	Whole-Genome Sequencing of Bradyrhizobium diazoefficiens 113-2 and Comparative Genomic Analysis Provide Molecular Insights Into Species Specificity and Host Specificity. Frontiers in Microbiology, 2020, 11, 576800.	1.5	14
47	GmPAP12 Is Required for Nodule Development and Nitrogen Fixation Under Phosphorus Starvation in Soybean. Frontiers in Plant Science, 2020, 11, 450.	1.7	39
48	Editorial: Importance of Root Symbiomes for Plant Nutrition: New Insights, Perspectives and Future Challenges. Frontiers in Plant Science, 2020, 11, 594.	1.7	4
49	Responses of mature symbiotic nodules to the whole-plant systemic nitrogen signaling. Journal of Experimental Botany, 2020, 71, 5039-5052.	2.4	22
50	Quantifying tradeoffs in nodulation and plant productivity with nitrogen in guar. Industrial Crops and Products, 2020, 153, 112617.	2.5	12
51	To keep or not to keep: mRNA stability and translatability in root nodule symbiosis. Current Opinion in Plant Biology, 2020, 56, 109-117.	3.5	8
52	Transfer cells mediate nitrate uptake to control root nodule symbiosis. Nature Plants, 2020, 6, 800-808.	4.7	34
53	Is the Application of Plant Probiotic Bacterial Consortia Always Beneficial for Plants? Exploring Synergies between Rhizobial and Non-Rhizobial Bacteria and Their Effects on Agro-Economically Valuable Crops. Life, 2020, 10, 24.	1.1	33
54	Riboregulation in Nitrogen-Fixing Endosymbiotic Bacteria. Microorganisms, 2020, 8, 384.	1.6	12
55	The role of microRNAs in the legume–Rhizobium nitrogen-fixing symbiosis. Journal of Experimental Botany, 2020, 71, 1668-1680.	2.4	18

#	Article	IF	CITATIONS
56	Plant microbiota modified by plant domestication. Systematic and Applied Microbiology, 2020, 43, 126106.	1.2	47
57	Acacia longifolia: A Host of Many Guests Even after Fire. Diversity, 2020, 12, 250.	0.7	5
58	Autoregulation of nodulation pathway is dispensable for nitrate-induced control of rhizobial infection. Plant Signaling and Behavior, 2020, 15, 1733814.	1.2	10
59	Nodule Inception Is Not Required for Arbuscular Mycorrhizal Colonization of Medicago truncatula. Plants, 2020, 9, 71.	1.6	8
60	A method for functional testing constitutive and ligand-induced interactions of lysin motif receptor proteins. Plant Methods, 2020, 16, 3.	1.9	6
61	The impact of the rhizobia–legume symbiosis on host root system architecture. Journal of Experimental Botany, 2020, 71, 3902-3921.	2.4	36
62	Inhibition of legume nodulation by Pi deficiency is dependent on the autoregulation of nodulation (AON) pathway. Plant Journal, 2020, 103, 1125-1139.	2.8	33
63	Partner preference in the legume-rhizobia symbiosis and impact on legume inoculation strategies. Advances in Botanical Research, 2020, 94, 323-348.	0.5	10
64	Bacterial dispersal and biogeography as underappreciated influences on phytobiomes. Current Opinion in Plant Biology, 2020, 56, 37-46.	3.5	5
65	The promiscuity of Phaseolus vulgaris L. (common bean) for nodulation with rhizobia: a review. World Journal of Microbiology and Biotechnology, 2020, 36, 63.	1.7	35
66	Multilegume biofertilizer: a dream. , 2020, , 35-45.		0
67	Excess nitrate induces nodule greening and reduces transcript and protein expression levels of soybean leghaemoglobins. Annals of Botany, 2020, 126, 61-72.	1.4	19
68	NopD of Bradyrhizobium sp. XS1150 Possesses SUMO Protease Activity. Frontiers in Microbiology, 2020, 11, 386.	1.5	17
69	Nitrogen rhizodeposition by legumes and its fate in agroecosystems: A field study and literature review. Land Degradation and Development, 2021, 32, 410-419.	1.8	38
70	Seed treatment with cold plasma and electromagnetic field induces changes in red clover root growth dynamics, flavonoid exudation, and activates nodulation. Plasma Processes and Polymers, 2021, 18, .	1.6	17
71	Characterisation of <i>Medicago truncatula</i> CLE34 and CLE35 in nitrate and rhizobia regulation of nodulation. New Phytologist, 2021, 229, 2525-2534.	3.5	39
72	Dynamics of <scp>miRNA</scp> mediated regulation of legume symbiosis. Plant, Cell and Environment, 2021, 44, 1279-1291.	2.8	18
73	Nitrogen Systemic Signaling: From Symbiotic Nodulation to Root Acquisition. Trends in Plant Science, 2021, 26, 392-406.	4.3	39

	Сітатіо	n Report	
#	Article	IF	CITATIONS
74	Rhizobium: Eco-friendly microbes for global food security. , 2021, , 221-233.		0
75	Role of long noncoding RNAs during stress in cereal crops. , 2021, , 107-131.		1
76	Plant Growth Promoting Rhizobacteria (PGPR) as Green Bioinoculants: Recent Developments, Constraints, and Prospects. Sustainability, 2021, 13, 1140.	1.6	410
77	The Phosphate Starvation Response System: Its Role in the Regulation of Plant–Microbe Interactions. Plant and Cell Physiology, 2021, 62, 392-400.	1.5	21
78	Multiple sensors provide spatiotemporal oxygen regulation of gene expression in a Rhizobium-legume symbiosis. PLoS Genetics, 2021, 17, e1009099.	1.5	21
79	Effects of long-term organic amendment on the fertility of soil, nodulation, yield, and seed quality of soybean in a soybean-wheat rotation system. Journal of Soils and Sediments, 2021, 21, 1385-1394.	1.5	5
80	Shootâ€derived <scp>miR2111</scp> controls legume root and nodule development. Plant, Cell and Environment, 2021, 44, 1627-1641.	2.8	24
81	Evolution and biogeography of actinorhizal plants and legumes: A comparison. Journal of Ecology, 2021, 109, 1098-1121.	1.9	39
82	Improvement of Medicago sativa Crops Productivity by the Co-inoculation of Sinorhizobium meliloti–Actinobacteria Under Salt Stress. Current Microbiology, 2021, 78, 1344-1357.	1.0	27
83	Optimizing the growth of forage and grain legumes on low pH soils through the application of superior <i>Rhizobium leguminosarum</i> biovar <i>viciae</i> strains. Grass and Forage Science, 2021, 76, 44-56.	1.2	7
84	Plant stem cell research is uncovering the secrets of longevity and persistent growth. Plant Journal, 2021, 106, 326-335.	2.8	19
85	A Stringent-Response-Defective Bradyrhizobium diazoefficiens Strain Does Not Activate the Type 3 Secretion System, Elicits an Early Plant Defense Response, and Circumvents NH 4 NO 3 -Induced Inhibition of Nodulation. Applied and Environmental Microbiology, 2021, 87, .	1.4	3
86	Potential of indigenous crop microbiomes for sustainable agriculture. Nature Food, 2021, 2, 233-240.	6.2	51
87	Different DNA-binding specificities of NLP and NIN transcription factors underlie nitrate-induced control of root nodulation. Plant Cell, 2021, 33, 2340-2359.	3.1	52
89	Sweet Modifications Modulate Plant Development. Biomolecules, 2021, 11, 756.	1.8	14
90	Split-root assays for studying legume–rhizobia symbioses, rhizodeposition, and belowground nitrogen transfer in legumes. Journal of Experimental Botany, 2021, 72, 5285-5299. 	2.4	8
91	Herbivory enhances legume-rhizobia symbioses function, increasing aboveground allocation of biologically fixed nitrogen, but only in soils without additional nitrate. Plant and Soil, 2021, 465, 301-316.	1.8	2
92	Arabinogalactan Proteins in Plant Roots – An Update on Possible Functions. Frontiers in Plant Science, 2021, 12, 674010.	1.7	30

#	Article	IF	Citations
93	Interaction of Symbiotic Rhizobia and Parasitic Root-Knot Nematodes in Legume Roots: From Molecular Regulation to Field Application. Molecular Plant-Microbe Interactions, 2021, 34, 470-490.	1.4	17
94	Control of the Rhizobia Nitrogen-Fixing Symbiosis by Common Bean MADS-Domain/AGL Transcription Factors. Frontiers in Plant Science, 2021, 12, 679463.	1.7	7
95	Rhizobial–Host Interactions and Symbiotic Nitrogen Fixation in Legume Crops Toward Agriculture Sustainability. Frontiers in Microbiology, 2021, 12, 669404.	1.5	40
96	The Effect of Exogenous Nitrate on LCO Signalling, Cytokinin Accumulation, and Nodule Initiation in Medicago truncatula. Genes, 2021, 12, 988.	1.0	13
97	Not Just a Simple Sugar: Arabinose Metabolism and Function in Plants. Plant and Cell Physiology, 2021, 62, 1791-1812.	1.5	12
98	Differential responses of the <i>sunn4</i> and <i>rdn1-1</i> super-nodulation mutants of <i>Medicago truncatula</i> to elevated atmospheric CO2. Annals of Botany, 2021, 128, 441-452.	1.4	3
99	Systemic Optimization of Legume Nodulation: A Shoot-Derived Regulator, miR2111. Frontiers in Plant Science, 2021, 12, 682486.	1.7	11
100	Nodulation of the neotropical genus Calliandra by alpha or betaproteobacterial symbionts depends on the biogeographical origins of the host species. Brazilian Journal of Microbiology, 2021, 52, 2153-2168.	0.8	4
101	Chickpea shows genotype-specific nodulation responses across soil nitrogen environment and root disease resistance categories. BMC Plant Biology, 2021, 21, 310.	1.6	11
102	<i>Sinorhizobium medicae</i> WSM419 Genes That Improve Symbiosis between <i>Sinorhizobium meliloti</i> Rm1021 and <i>Medicago truncatula</i> Jemalong A17 and in Other Symbiosis Systems. Applied and Environmental Microbiology, 2021, 87, e0300420.	1.4	12
103	Nod factor receptor complex phosphorylates GmGEF2 to stimulate ROP signaling during nodulation. Current Biology, 2021, 31, 3538-3550.e5.	1.8	22
104	Progress in soybean functional genomics over the past decade. Plant Biotechnology Journal, 2022, 20, 256-282.	4.1	76
105	Phosphate starvation responsive GmSPX5 mediates nodule growth through interaction with GmNF‥C4 in soybean (<i>Glycine max</i>). Plant Journal, 2021, 108, 1422-1438.	2.8	20
107	The Biology of Legumes and Their Agronomic, Economic, and Social Impact. , 2020, , 3-25.		11
111	Determination of the Optimum Rate of N Fertilizers with Addition of Goat Manure for Production of Cowpea (Vigna unguiculata [L.] Walp). Journal of Tropical Crop Science, 2019, 6, 121-128.	0.1	0
113	Arbuscular mycorrhizal associations and the major regulators. Frontiers of Agricultural Science and Engineering, 2020, 7, 296.	0.9	6
114	Assessment of Genetic Diversity and Symbiotic Efficiency of Selected Rhizobia Strains Nodulating Lentil (Lens culinaris Medik.). Plants, 2021, 10, 15.	1.6	12
115	Optimizing Rhizobium-Legume Symbiosis in Smallholder Agroecosystems. Sustainable Agriculture Reviews, 2020, , 159-177.	0.6	1

#	Article	IF	CITATIONS
116	Early Molecular Dialogue Between Legumes and Rhizobia: Why Are They So Important?. Results and Problems in Cell Differentiation, 2020, 69, 409-419.	0.2	0
118	Genome-wide identification and characterization of legume T2 Ribonuclease gene family and analysis of GmaRNS9, a soybean T2 Ribonuclease gene, function in nodulation. 3 Biotech, 2021, 11, 495.	1.1	3
119	Nitrate restricts nodule organogenesis through inhibition of cytokinin biosynthesis in Lotus japonicus. Nature Communications, 2021, 12, 6544.	5.8	28
120	Variability in symbiotic efficiency with respect to the growth of pea and lentil inoculated with various rhizobial genotypes originating from sub-humid and semi-arid regions of eastern Algeria. Symbiosis, 0, , 1.	1.2	2
121	Split down the middle: studying arbuscular mycorrhizal and ectomycorrhizal symbioses using split-root assays. Journal of Experimental Botany, 2022, 73, 1288-1300.	2.4	9
122	Inorganic Nitrogen Transport and Assimilation in Pea (Pisum sativum). Genes, 2022, 13, 158.	1.0	9
123	<scp>SymRK</scp> â€dependent phosphorylation of Gα protein and its role in signaling during soybean (<i>Glycine max</i>) nodulation. Plant Journal, 2022, 110, 277-291.	2.8	7
124	Carbon metabolic adjustment in soybean nodules in response to phosphate limitation: A metabolite perspective. Environmental and Experimental Botany, 2022, 196, 104810.	2.0	10
125	Soybean CLE peptides and their CLAVATA-like signaling pathways. Advances in Botanical Research, 2022, ,	0.5	0
126	Salicylic Acid in Root Growth and Development. International Journal of Molecular Sciences, 2022, 23, 2228.	1.8	30
127	Small signaling peptides mediate plant adaptions to abiotic environmental stress. Planta, 2022, 255, 72.	1.6	14
128	White lupin (Lupinus albus L.) exposed to elevated atmospheric CO2 requires additional phosphorus for N2 fixation. Plant and Soil, 0, , .	1.8	4
129	A Nodule-Localized Small Heat Shock Protein GmHSP17.1 Confers Nodule Development and Nitrogen Fixation in Soybean. Frontiers in Plant Science, 2022, 13, 838718.	1.7	3
130	Biochemical and Physiological Plant Processes Affected by Seed Treatment with Non-Thermal Plasma. Plants, 2022, 11, 856.	1.6	32
131	Lotus japonicus HAR1 regulates root morphology locally and systemically under a moderate nitrate condition in the absence of rhizobia. Planta, 2022, 255, 95.	1.6	3
132	GmSPX8, a nodule-localized regulator confers nodule development and nitrogen fixation under phosphorus starvation in soybean. BMC Plant Biology, 2022, 22, 161.	1.6	6
133	The miR156bâ€GmSPL9d module modulates nodulation by targeting multiple core nodulation genes in soybean. New Phytologist, 2022, 233, 1881-1899.	3.5	23
134	Mechanisms underlying legume–rhizobium symbioses. Journal of Integrative Plant Biology, 2022, 64, 244-267.	4.1	92

#	Article	IF	CITATIONS
135	Soil nitrogen regulates symbiotic nitrogen fixation in a legume shrub but does not accumulate under it. Ecosphere, 2021, 12, .	1.0	4
136	Legume Genetic Resource Security as Main Requirement for Future Challenges. , 0, , .		0
137	Right time, right place: The dynamic role of hormones in rhizobial infection and nodulation of legumes. Plant Communications, 2022, 3, 100327.	3.6	19
173	Transcription Factors Controlling the Rhizobium–Legume Symbiosis: Integrating Infection, Organogenesis and the Abiotic Environment. Plant and Cell Physiology, 2022, 63, 1326-1343.	1.5	11
174	Phylogenetic and symbiotic diversity of Lupinus albus and L. angustifolius microsymbionts in the Maamora forest, Morocco. Systematic and Applied Microbiology, 2022, 45, 126338.	1.2	4
175	Clade-dependent effects of drought on nitrogen fixation and its components – Number, size, and activity of nodules in legumes. Field Crops Research, 2022, 284, 108586.	2.3	0
176	Variation in soybean root-associated microbiome between lateral roots with and without nodules. Plant and Soil, 2022, 479, 481-494.	1.8	4
178	Nitrate signaling and use efficiency in crops. Plant Communications, 2022, 3, 100353.	3.6	12
179	Temporal variation in distribution pattern of nitrogen in Albizia chinensis (Osb.) Merr. as a function of nitrate reductase and nitrogenase activity. Plant Physiology Reports, 0, , .	0.7	0
180	Impact of Sinorhizobium meliloti strains and plant population on regrowth and nodule regeneration of alfalfa after a freezing event. Plant and Soil, 0, , .	1.8	5
181	Are legumes different? Origins and consequences of evolving nitrogen fixing symbioses. Journal of Plant Physiology, 2022, 276, 153765.	1.6	35
182	Characteristics and influencing factors of chemical fertilizer and pesticide applications by farmers in hilly and mountainous areas of Southwest, China. Ecological Indicators, 2022, 143, 109346.	2.6	19
183	Legumes Cropping and Nitrogen Fixation under Mediterranean Climate: The Case of Montado/Dehesa System. , 0, , .		1
184	Cold stress reduces nodulation and symbiotic nitrogen fixation in winter annual legume cover crops. Plant and Soil, 2022, 481, 661-676.	1.8	3
186	Root osmotic sensing from local perception to systemic responses. Stress Biology, 2022, 2, .	1.5	8
187	Complete Genome Sequence of Mesorhizobium ciceri Strain R30, a Rhizobium Used as a Commercial Inoculant for Chickpea in Argentina. Microbiology Resource Announcements, 2022, 11, .	0.3	2
188	Rhizobium etli CFN42 proteomes showed isoenzymes in free-living and symbiosis with a different transcriptional regulation inferred from a transcriptional regulatory network. Frontiers in Microbiology, 0, 13, .	1.5	2
189	Using machine learning enabled phenotyping to characterize nodulation in three early vegetative stages in soybean. Crop Science, 0, , .	0.8	0

#	Article	IF	CITATIONS
190	Roles of non-coding RNAs in the hormonal and nutritional regulation in nodulation and nitrogen fixation. Frontiers in Plant Science, 0, 13, .	1.7	3
191	Role of phytohormones in legumes infected intercellularly by rhizobia without infection threads formation. Rhizosphere, 2022, 24, 100622.	1.4	1
192	Lotus japonicus regulates root nodulation and nitrogen fixation dependent on the molecular form of nitrogen fertilizer. Plant and Soil, 2023, 483, 533-545.	1.8	2
193	Discovering the genetic modules controlling root nodule symbiosis under abiotic stresses: salinity as a case study. New Phytologist, 2023, 237, 1082-1085.	3.5	2
194	The small peptide CEP1 and the NIN-like protein NLP1 regulate <i>NRT2.1</i> to mediate root nodule formation across nitrate concentrations. Plant Cell, 2023, 35, 776-794.	3.1	16
195	Macrophage migration inhibitory factor MtMIF3 prevents the premature aging of <i>Medicago truncatula</i> nodules. Plant, Cell and Environment, 2023, 46, 1004-1017.	2.8	0
196	A novel secreted protein, NISP1, is phosphorylated by soybean Nodulation Receptor Kinase to promote nodule symbiosis. Journal of Integrative Plant Biology, 2023, 65, 1297-1311.	4.1	2
198	Editorial: Metabolic adjustments and gene expression reprogramming for symbiotic nitrogen fixation in legume nodules, volume II. Frontiers in Plant Science, 0, 14, .	1.7	0
199	The multifaceted roles of Arbuscular Mycorrhizal Fungi in peanut responses to salt, drought, and cold stress. BMC Plant Biology, 2023, 23, .	1.6	12
200	The Medicago SymCEP7 hormone increases nodule number via shoots without compromising lateral root number. Plant Physiology, 2023, 191, 2012-2026.	2.3	7
201	Photosynthetic Gains in Super-Nodulating Mutants of Medicago truncatula under Elevated Atmospheric CO2 Conditions. Plants, 2023, 12, 441.	1.6	1
202	Compartmentalisation: A strategy for optimising symbiosis and tradeoff management. Plant, Cell and Environment, 2023, 46, 2998-3011.	2.8	5
203	Different species of <i>Bradyrhizobium</i> from symbiovars genistearum and retamae nodulate the endemic <i>Retama dasycarpa</i> in the High Atlas Mountains. FEMS Microbiology Ecology, 2023, 99, .	1.3	4
204	It takes three to tango: citizen, fundamental and applied science. Trends in Plant Science, 2023, 28, 491-494.	4.3	1
205	Legumes Regulate Symbiosis with Rhizobia via Their Innate Immune System. International Journal of Molecular Sciences, 2023, 24, 2800.	1.8	8
206	Chlamydomonas reinhardtii, a Reference Organism to Study Algal–Microbial Interactions: Why Can't They Be Friends?. Plants, 2023, 12, 788.	1.6	2
207	Organic nitrogen improves the water use of tropical tree seedlings cultivated for restoration plantings. Plants People Planet, 0, , .	1.6	0
208	Rapid Changes to Endomembrane System of Infected Root Nodule Cells to Adapt to Unusual Lifestyle. International Journal of Molecular Sciences, 2023, 24, 4647.	1.8	3

CITA	TION	DEDODT
CITA	I I U N	REPORT

#	Article	IF	CITATIONS
209	The Phaseolus vulgaris Receptor-Like Kinase PvFER1 and the Small Peptides PvRALF1 and PvRALF6 Regulate Nodule Number as a Function of Nitrate Availability. International Journal of Molecular Sciences, 2023, 24, 5230.	1.8	4
210	Control of the rhizobium–legume symbiosis by the plant nitrogen demand is tightly integrated at the whole plant level and requires inter-organ systemic signaling. Frontiers in Plant Science, 0, 14, .	1.7	11
211	A highâ€resolution transcriptomic atlas depicting nitrogen fixation and nodule development in soybean. Journal of Integrative Plant Biology, 2023, 65, 1536-1552.	4.1	4
212	Medicago truncatula-Sinorhizobium meliloti-Fusarium oxysporum Tripartite Interaction Alters Nodulation and Nitrogen Fixation. Journal of Plant Growth Regulation, 2023, 42, 7151-7163.	2.8	0
213	Factors affecting Chinese farmers' environment-friendly pesticide application behavior: A meta-analysis. Journal of Cleaner Production, 2023, 409, 137277.	4.6	5
248	Nutrient limitation in global forests: current status and future trends. , 2024, , 65-74.		0