Pyrolysis of binary fuel mixtures at supercritical condit study

Fuel 235, 194-207 DOI: 10.1016/j.fuel.2018.07.077

Citation Report

#	Article	IF	CITATIONS
1	Structural evolutions of small aromatic mixtures under extreme temperature conditions: Insights from ReaxFF molecular dynamics investigations. Carbon, 2019, 155, 309-319.	10.3	10
2	Multiply accelerated ReaxFF molecular dynamics: coupling parallel replica dynamics with collective variable hyper dynamics. Molecular Simulation, 2019, 45, 1265-1272.	2.0	11
3	Multi-scale modeling of gas-phase reactions in metal-organic chemical vapor deposition growth of WSe2. Journal of Crystal Growth, 2019, 527, 125247.	1.5	59
4	Reaction Mechanisms in Pyrolysis of Hardwood, Softwood, and Kraft Lignin Revealed by ReaxFF MD Simulations. Energy & Fuels, 2019, 33, 11210-11225.	5.1	36
5	ReaxFF molecular dynamics study on the pyrolysis process of cyclohexanone. Journal of Analytical and Applied Pyrolysis, 2019, 141, 104620.	5.5	41
6	Atomistic Scale Analysis of the Carbonization Process for C/H/O/N-Based Polymers with the ReaxFF Reactive Force Field. Journal of Physical Chemistry B, 2019, 123, 5357-5367.	2.6	123
7	Diagnosing the Impact of External Electric Fields Chemical Kinetics: Application to Toluene Oxidation and Pyrolysis. Journal of Physical Chemistry A, 2019, 123, 3080-3089.	2.5	14
8	Thermal Hydrogenation and Degradation of Quinoline from Reactive Force Field Simulations. ChemistrySelect, 2019, 4, 12996-13005.	1.5	4
9	Multiscale Simulation on Product Distribution from Pyrolysis of Styrene-Butadiene Rubber. Polymers, 2019, 11, 1967.	4.5	13
10	Pyrolysis mechanism of HFO-1234yf with R32 by ReaxFF MD and DFT method. International Journal of Refrigeration, 2020, 109, 82-91.	3.4	33
11	Reactive molecular dynamics simulation on thermal decomposition of n-heptane and methylcyclohexane initiated by nitroethane. Fuel, 2020, 261, 116447.	6.4	22
12	Converting PBO fibers into carbon fibers by ultrafast carbonization. Carbon, 2020, 159, 432-442.	10.3	25
13	Numerical simulations of yield-based sooting tendencies of aromatic fuels using ReaxFF molecular dynamics. Fuel, 2020, 262, 116545.	6.4	37
14	Predicting cost-effective carbon fiber precursors: Unraveling the functionalities of oxygen and nitrogen-containing groups during carbonization from ReaxFF simulations. Carbon, 2020, 159, 25-36.	10.3	59
15	ReaxFF-based molecular dynamics study of bio-derived polycyclic alkanes as potential alternative jet fuels. Fuel, 2020, 279, 118548.	6.4	35
16	ReaxFF Reactive Molecular Dynamics Simulations of Mechano-Chemical Decomposition of Perfluoropolyether Lubricants in Heat-Assisted Magnetic Recording. Journal of Physical Chemistry C, 2020, 124, 22496-22505.	3.1	17
17	Molecular dynamics simulation of soot formation during diesel combustion with oxygenated fuel addition. Physical Chemistry Chemical Physics, 2020, 22, 20829-20836.	2.8	23
18	Reactive Molecular Dynamics Simulations and Quantum Chemistry Calculations To Investigate Soot-Relevant Reaction Pathways for Hexylamine Isomers. Journal of Physical Chemistry A, 2020, 124,	2.5	11

CITATION REPORT

#	Article	IF	CITATIONS
19	ReaxFF Study of Ethanol Oxidation in O ₂ /N ₂ and O ₂ /CO ₂ Environments at High Temperatures. Journal of Chemical Information and Modeling, 2020, 60, 700-713.	5.4	22
20	Microscopic reaction mechanism of the production of methanol during the thermal aging of cellulosic insulating paper. Cellulose, 2020, 27, 2455-2467.	4.9	30
21	Soot precursors in farnesane and n-dodecane decomposition: A computational approach. Fuel, 2020, 268, 117334.	6.4	5
22	Simulation methods of cotton pyrolysis based on ReaxFF and the influence of volatile removal ratio on volatile evolution and char formation. Chemical Engineering Journal, 2021, 405, 126633.	12.7	37
23	Investigation on Formation Mechanisms of Methanol During Cellulose Insulation Aging Based on Molecular Dynamics Simulation. IEEE Access, 2021, 9, 6890-6898.	4.2	6
24	Insight into plasma degradation of paracetamol in water using a reactive molecular dynamics approach. Journal of Applied Physics, 2021, 129, .	2.5	6
25	High-temperature pyrolysis of isoprenoid hydrocarbon p-menthane using ReaxFF molecular dynamics simulation. Journal of Analytical and Applied Pyrolysis, 2021, 155, 105045.	5.5	25
26	Multi-scale modeling and control of chemical looping gasification coupled coal pyrolysis system for cleaner production of synthesis gas. Journal of Cleaner Production, 2021, 299, 126903.	9.3	12
27	Exploration of the Influences of the PODE ₃ Additive on the Initial Pyrolysis of Diesel by ReaxFF Molecular Dynamics Simulations. Energy & Fuels, 2021, 35, 9825-9835.	5.1	6
28	ReaxFF Molecular Dynamics Simulations of Thermal Reactivity of Various Fuels in Pyrolysis and Combustion. Energy & Fuels, 2021, 35, 11707-11739.	5.1	56
29	Experimental and <scp>ReaxFF</scp> â€based molecular dynamics studies of the reaction of oxygen with <scp>DR</scp> â€2 as a low global warming potential working fluid. International Journal of Quantum Chemistry, 2021, 121, e26806.	2.0	1
30	ReaxFF molecular dynamics study on pyrolysis of bicyclic compounds for aviation fuel. Fuel, 2021, 297, 120724.	6.4	36
31	Synergistic effect of supercritical water and nano-catalyst on lignin gasification. International Journal of Hydrogen Energy, 2021, 46, 34626-34637.	7.1	15
32	Pyrolysis of bio-derived dioxolane fuels: A ReaxFF molecular dynamics study. Fuel, 2021, 306, 121616.	6.4	19
33	ReaxFF molecular dynamics simulations of n-eicosane reaction mechanisms during pyrolysis and combustion. International Journal of Hydrogen Energy, 2021, 46, 38854-38870.	7.1	21
34	Reactive molecular dynamics of pyrolysis and combustion of alternative jet fuels: A ReaxFF study. Fuel, 2022, 310, 122157.	6.4	19
35	Overall mechanism of JP-10 pyrolysis unraveled by large-scale reactive molecular dynamics simulation. Combustion and Flame, 2022, 237, 111865.	5.2	24
36	Simulation of Softwood Lignin Gasification in Supercritical Carbon Dioxide. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
37	Thermal decomposition and fireâ€extinguishing mechanism of N(<scp> CF ₂ CF ₃) Tj functional theory calculation. International Journal of Quantum Chemistry, 0, , .</scp>	ETQq0 0 (2.0) rgBT /Overlc 0
38	Effect of isomer and defect structure on the thermal stability of polyvinyl chloride: An experiment and molecular dynamics simulation. Polymer Degradation and Stability, 2022, 198, 109894.	5.8	5
39	Simulation of softwood lignin gasification in supercritical carbon dioxide. Journal of CO2 Utilization, 2022, 59, 101959.	6.8	6
40	Simulations on pressurized oxy-coal combustion and gasification by molecular dynamics method with ReaxFF. Advanced Powder Technology, 2022, 33, 103557.	4.1	6
41	Assessing pyrolysis behavior of silicon-containing arylacetylene resin via experiments and ReaxFF MD simulations. Journal of Analytical and Applied Pyrolysis, 2022, 164, 105528.	5.5	23
42	High-temperature thermal decomposition of iso-octane based on reactive molecular dynamics simulations. Journal of Molecular Modeling, 2022, 28, 124.	1.8	1
43	Modelling co-gasification of plastic waste and lignin in supercritical water using reactive molecular dynamics simulations. International Journal of Hydrogen Energy, 2022, 47, 21060-21066.	7.1	13
44	Insights into the thermal stability and conversion of carbon-based materials by using ReaxFF reactive force field: Recent advances and future directions. Carbon, 2022, 196, 840-866.	10.3	32
45	Mechanistic study of chemical looping reactions between solid carbon fuels and CuO. Combustion and Flame, 2022, 244, 112216.	5.2	4
46	Insight into the pyrolysis of R32 and R32/CO2 as working fluid for organic Rankine cycle. Journal of Analytical and Applied Pyrolysis, 2022, 167, 105672.	5.5	4
47	Insights into carbon monoxide oxidation in supercritical H2O/CO2 mixtures using reactive molecular dynamics simulations. Journal of Supercritical Fluids, 2022, , 105727.	3.2	1
48	Mineralization mechanism of carbon dioxide with illite interlayer cations using molecular dynamics simulation and experiments. Journal of CO2 Utilization, 2022, 64, 102161.	6.8	4
49	Molecular-scale elucidating of lignocellulose biomass char steam gasification for ultimately converting to syngas. Fuel Processing Technology, 2022, 236, 107430.	7.2	11
50	ReaxFF simulations on the combustion of Al and n-butanol nanofluid. Fuel, 2022, 330, 125465.	6.4	12
51	Molecular dynamics simulation of glass transition and thermal stability of novel silicone elastomer and its nanocomposites. Materials Today Communications, 2022, 33, 104517.	1.9	3
52	Insight into the pyrolysis of 3,7-dinitro-1,3,5,7-tetraazabicyclo [3,3,1] nonan (DPT) based on ReaxFF MD simulations and TG-FTIR-MS techniques. Fuel, 2023, 331, 125860.	6.4	5
53	Inhomogeneity Effects on Reactions in Supercritical Fluids: A Computational Study on the Pyrolysis of <i>n</i> -Decane. Jacs Au, 2022, 2, 2081-2088.	7.9	2
54	Recent ReaxFF MD studies on pyrolysis and combustion mechanisms of aviation/aerospace fuels and energetic additives. Energy Advances, 2023, 2, 54-72.	3.3	4

#	Article	IF	CITATIONS
55	Inhibition of electric field on inception soot formation: A ReaxFF MD and DFT study. International Journal of Hydrogen Energy, 2023, 48, 15695-15708.	7.1	6
56	Reactive molecular dynamics study on catalytic pyrolysis and steam reforming of hydrocarbon fuel. Journal of Analytical and Applied Pyrolysis, 2023, 169, 105875.	5.5	1
57	Molecular dynamics data-driven study of leidenfrost phenomena in context to liquid thin film phase transformation. International Journal of Heat and Mass Transfer, 2023, 209, 124107.	4.8	1
58	Classical and reactive molecular dynamics: Principles and applications in combustion and energy systems. Progress in Energy and Combustion Science, 2023, 97, 101084.	31.2	19
59	Modeling and simulations for 2D materials: a ReaxFF perspective. 2D Materials, 2023, 10, 032002.	4.4	6
60	Effect of water on mechano-chemical reactions of perfluoropolyether lubricant films in heat-assisted magnetic recording: A reactive molecular dynamics study. Tribology International, 2023, 187, 108674.	5.9	0
61	ReaxFF Molecular Dynamics Simulations on Supercritical Pyrolysis of JP-10 with the Suspension of Nanoengineered Fuel Additives. , 2023, , .		0
62	A molecular investigation on the mechanism of co-pyrolysis of ammonia and biodiesel surrogates. Energy Conversion and Management, 2023, 289, 117164.	9.2	2
63	Reactive Force Field Molecular Dynamics Study of the Effects of Gaseous Species on the Composition and Crystallinity of Silicon–Germanium Thin Films. Crystal Growth and Design, 2023, 23, 4990-5000.	3.0	0
64	Reactive molecular dynamics simulations of multicomponent models for RP-3 jet fuel in combustion at supercritical conditions: A comprehensive mechanism study. Chemical Physics, 2023, 573, 112008.	1.9	0
65	New insights into the carbon chain structure of alcohol on the combustion of diesel surrogates using ReaxFF molecular dynamics simulations. Chemical Physics, 2023, 574, 112035.	1.9	1
66	Methanol oxy-combustion and supercritical water oxidation: A ReaxFF molecular dynamics study. Energy, 2023, 283, 129104.	8.8	2
68	ReaxFF based molecular dynamics simulation of ethyl butyrate in pyrolysis and combustion. Chemical Engineering Science, 2024, 284, 119528.	3.8	1
69	Microscopic mechanism for CO2-assisted co-gasification of polyethylene and softwood lignin: A reactive force field molecular dynamics study. Energy, 2024, 289, 130066.	8.8	0
70	Pyrolysis and combustion reaction mechanisms of methyl palmitate with ReaxFF-MD method. Computational and Theoretical Chemistry, 2024, 1231, 114446.	2.5	0
71	Molecular revelation of the effects of methanol additive for coke inhibition during the pyrolysis of endothermic hydrocarbon fuels. Fuel, 2024, 363, 130958.	6.4	0
72	Formation Mechanisms of Polycyclic Aromatic Hydrocarbons in exo-THDCPD Pyrolysis by Atomistic Simulations. , 2024, , .		0
73	Detailed mechanism study of volatile organic compound decomposition and oxidation removal based on a ReaxFF MD method. RSC Advances, 2024, 14, 5863-5874.	3.6	0

#	Article	IF	CITATIONS
74	Formation mechanism of polycyclic aromatic hydrocarbons during mineral oil pyrolysis: A ReaxFF molecular dynamics study. Fuel, 2024, 365, 131175.	6.4	0
75	Modeling kerogen decomposition with sodium oxychlorine oxidizers. Fuel, 2024, 366, 131296.	6.4	Ο

CITATION REPORT