Deep Generative Adversarial Neural Networks for Comp

IEEE Transactions on Medical Imaging 38, 167-179

DOI: 10.1109/tmi.2018.2858752

Citation Report

#	Article	IF	Citations
1	MRI Gibbsâ€ringing artifact reduction by means of machine learning using convolutional neural networks. Magnetic Resonance in Medicine, 2019, 82, 2133-2145.	1.9	26
2	Applications of Deep Learning to Neuro-Imaging Techniques. Frontiers in Neurology, 2019, 10, 869.	1.1	97
3	Undersampled MR image reconstruction using an enhanced recursive residual network. Journal of Magnetic Resonance, 2019, 305, 232-246.	1.2	27
4	A Very Deep Densely Connected Network for Compressed Sensing MRI. IEEE Access, 2019, 7, 85430-85439.	2.6	22
5	Next generation research applications for hybrid PET/MR and PET/CT imaging using deep learning. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46, 2700-2707.	3.3	44
6	Deep learning application engine (DLAE): Development and integration of deep learning algorithms in medical imaging. SoftwareX, 2019, 10, 100347.	1.2	5
7	Deep Generative Adversarial Networks for Thin-Section Infant MR Image Reconstruction. IEEE Access, 2019, 7, 68290-68304.	2.6	17
8	Parallel imaging and convolutional neural network combined fast MR image reconstruction: Applications in lowâ€latency accelerated realâ€time imaging. Medical Physics, 2019, 46, 3399-3413.	1.6	25
9	Learning the invisible: a hybrid deep learning-shearlet framework for limited angle computed tomography. Inverse Problems, 2019, 35, 064002.	1.0	111
10	SANTIS: Samplingâ€Augmented Neural neTwork with Incoherent Structure for MR image reconstruction. Magnetic Resonance in Medicine, 2019, 82, 1890-1904.	1.9	70
11	Deep residual network for offâ€resonance artifact correction with application to pediatric body MRA with 3D cones. Magnetic Resonance in Medicine, 2019, 82, 1398-1411.	1.9	16
12	MANTIS: Modelâ€Augmented Neural neTwork with Incoherent <i>k</i> â€space Sampling for efficient MR parameter mapping. Magnetic Resonance in Medicine, 2019, 82, 174-188.	1.9	77
13	Image Synthesis in Multi-Contrast MRI With Conditional Generative Adversarial Networks. IEEE Transactions on Medical Imaging, 2019, 38, 2375-2388.	5.4	320
14	Gray Scale Medical Image Compression using LM Algorithm. , 2019, , .		O
15	GAN-Based Projector for Faster Recovery With Convergence Guarantees in Linear Inverse Problems. , 2019, , .		28
16	Computer-aided diagnosis and decision-making system for medical data analysis: A case study on prostate MR images. Journal of Management Science and Engineering, 2019, 4, 266-278.	1.9	11
17	Minimal Linear Networks for Magnetic Resonance Image Reconstruction. Scientific Reports, 2019, 9, 19527.	1.6	8
18	Deep Learning in MR Image Processing. Investigative Magnetic Resonance Imaging, 2019, 23, 81.	0.2	36

#	ARTICLE	IF	Citations
19	Artificial intelligence in pediatric and adult congenital cardiac MRI: an unmet clinical need. Cardiovascular Diagnosis and Therapy, 2019, 9, S310-S325.	0.7	31
20	Deep Learning in Musculoskeletal Imaging. Advances in Clinical Radiology, 2019, 1, 83-94.	0.1	9
21	Optimized fast GPU implementation of robust artificial-neural-networks for k-space interpolation (RAKI) reconstruction. PLoS ONE, 2019, 14, e0223315.	1.1	6
22	Super-Resolution Model for High-Precision In Vivo Proton Range Verification Using a Stereo Gamma Camera: A Feasibility Study. Journal of the Korean Physical Society, 2019, 75, 617-627.	0.3	1
23	ADMM-CSNet: A Deep Learning Approach for Image Compressive Sensing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42, 521-538.	9.7	439
25	CT Super-Resolution GAN Constrained by the Identical, Residual, and Cycle Learning Ensemble (GAN-CIRCLE). IEEE Transactions on Medical Imaging, 2020, 39, 188-203.	5.4	289
26	Utility of deep learning superâ€resolution in the context of osteoarthritis MRI biomarkers. Journal of Magnetic Resonance Imaging, 2020, 51, 768-779.	1.9	44
27	Machine learning for image reconstruction. , 2020, , 25-64.		20
28	Rapid Knee MRI Acquisition and Analysis Techniques for Imaging Osteoarthritis. Journal of Magnetic Resonance Imaging, 2020, 52, 1321-1339.	1.9	38
29	Accelerated dynamic contrast enhanced MRI based on region of interest compressed sensing. Magnetic Resonance Imaging, 2020, 67, 18-23.	1.0	15
30	QSMGAN: Improved Quantitative Susceptibility Mapping using 3D Generative Adversarial Networks with increased receptive field. NeuroImage, 2020, 207, 116389.	2.1	43
31	A Transferâ€Learning Approach for Accelerated MRI Using Deep Neural Networks. Magnetic Resonance in Medicine, 2020, 84, 663-685.	1.9	106
32	An Iterative Method With Enhanced Laplacian- Scaled Thresholding for Noise-Robust Compressive Sensing Magnetic Resonance Image Reconstruction. IEEE Access, 2020, 8, 177021-177040.	2.6	3
33	Detection for Multisatellite Downlink Signal Based on Generative Adversarial Neural Network. Mathematical Problems in Engineering, 2020, 2020, 1-14.	0.6	0
34	Multi-Layer Basis Pursuit for Compressed Sensing MR Image Reconstruction. IEEE Access, 2020, 8, 186222-186232.	2.6	13
35	A multi-scale residual network for accelerated radial MR parameter mapping. Magnetic Resonance Imaging, 2020, 73, 152-162.	1.0	11
36	High-performance rapid MR parameter mapping using model-based deep adversarial learning. Magnetic Resonance Imaging, 2020, 74, 152-160.	1.0	19
37	Accelerating quantitative MR imaging with the incorporation of B1 compensation using deep learning. Magnetic Resonance Imaging, 2020, 72, 78-86.	1.0	15

#	Article	IF	CITATIONS
38	Neural Architecture Search for compressed sensing Magnetic Resonance image reconstruction. Computerized Medical Imaging and Graphics, 2020, 85, 101784.	3.5	17
39	Rotated spiral RARE for high spatial and temporal resolution volumetric arterial spin labeling acquisition. Neurolmage, 2020, 223, 117371.	2.1	8
40	Sparse Range-Doppler Image Construction with Neural Networks. , 2020, , .		3
41	J-MoDL: Joint Model-Based Deep Learning for Optimized Sampling and Reconstruction. IEEE Journal on Selected Topics in Signal Processing, 2020, 14, 1151-1162.	7.3	53
42	An Efficacious MRI Sparse Recovery Method Based on Differential Under-Sampling and k-Space Interpolation. , 2020, , .		1
43	Parallel imaging with a combination of sensitivity encoding and generative adversarial networks. Quantitative Imaging in Medicine and Surgery, 2020, 10, 2260-2273.	1.1	8
44	Structure Preserving Compressive Sensing MRI Reconstruction using Generative Adversarial Networks. , 2020, , .		20
45	Momentum-Net: Fast and Convergent Iterative Neural Network for Inverse Problems. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45, 4915-4931.	9.7	52
46	Relevant Applications of Generative Adversarial Networks in Drug Design and Discovery: Molecular De Novo Design, Dimensionality Reduction, and De Novo Peptide and Protein Design. Molecules, 2020, 25, 3250.	1.7	51
47	Potential of generative adversarial net algorithms in image and video processing applications– a survey. Multimedia Tools and Applications, 2020, 79, 27407-27437.	2.6	7
48	Reconstructing multi-echo magnetic resonance images via structured deep dictionary learning. Neurocomputing, 2020, 408, 135-143.	3.5	6
49	DuDoRNet: Learning a Dual-Domain Recurrent Network for Fast MRI Reconstruction With Deep T1 Prior. , 2020, , .		65
50	CINENet: deep learning-based 3D cardiac CINE MRI reconstruction with multi-coil complex-valued 4D spatio-temporal convolutions. Scientific Reports, 2020, 10, 13710.	1.6	122
51	Multiple Slice k-space Deep Learning for Magnetic Resonance Imaging Reconstruction., 2020, 2020, 1564-1567.		11
52	Prior-Guided Image Reconstruction for Accelerated Multi-Contrast MRI via Generative Adversarial Networks. IEEE Journal on Selected Topics in Signal Processing, 2020, 14, 1072-1087.	7.3	78
53	Pattern Classification Approaches for Breast Cancer Identification via MRI: State-Of-The-Art and Vision for the Future. Applied Sciences (Switzerland), 2020, 10, 7201.	1.3	4
54	Generating Images in Compressed Domain Using Generative Adversarial Networks. IEEE Access, 2020, 8, 180977-180991.	2.6	4
55	Deep Learning for Block-Level Compressive Video Sensing. , 2020, , .		5

#	Article	IF	CITATIONS
56	Fast Multi-Focus Ultrasound Image Recovery Using Generative Adversarial Networks. IEEE Transactions on Computational Imaging, 2020, 6, 1272-1284.	2.6	19
57	Prospective Deployment of Deep Learning in <scp>MRI</scp> : A Framework for Important Considerations, Challenges, and Recommendations for Best Practices. Journal of Magnetic Resonance Imaging, 2021, 54, 357-371.	1.9	44
58	Using Deep Learning to Accelerate Knee MRI at 3 T: Results of an Interchangeability Study. American Journal of Roentgenology, 2020, 215, 1421-1429.	1.0	95
59	A Deep Framework Assembling Principled Modules for CS-MRI: Unrolling Perspective, Convergence Behaviors, and Practical Modeling. IEEE Transactions on Medical Imaging, 2020, 39, 4150-4163.	5.4	17
60	An Adaptive Intelligence Algorithm for Undersampled Knee MRI Reconstruction. IEEE Access, 2020, 8, 204825-204838.	2.6	59
61	Construction of Value Chain E-Commerce Model Based on Stationary Wavelet Domain Deep Residual Convolutional Neural Network. Complexity, 2020, 2020, 1-15.	0.9	0
62	A deep unrolling network inspired by total variation for compressed sensing MRI., 2020, 107, 102856.		19
63	Generative adversarial network based regularized image reconstruction for PET. Physics in Medicine and Biology, 2020, 65, 125016.	1.6	27
64	Improved Low-Count Quantitative PET Reconstruction With an Iterative Neural Network. IEEE Transactions on Medical Imaging, 2020, 39, 3512-3522.	5.4	43
65	Deep learning for fabrication and maturation of 3D bioprinted tissues and organs. Virtual and Physical Prototyping, 2020, 15, 340-358.	5.3	79
66	MedSRGAN: medical images super-resolution using generative adversarial networks. Multimedia Tools and Applications, 2020, 79, 21815-21840.	2.6	44
67	Self-Supervised Physics-Based Deep Learning MRI Reconstruction Without Fully-Sampled Data. , 2020, , .		39
68	Subsampled brain MRI reconstruction by generative adversarial neural networks. Medical Image Analysis, 2020, 65, 101747.	7.0	52
69	Local and nonlocal constraints for compressed sensing video and multi-view image recovery. Neurocomputing, 2020, 406, 34-48.	3.5	28
70	Diagnostic Image Quality Assessment and Classification in Medical Imaging: Opportunities and Challenges., 2020, 2020, 337-340.		15
71	FastSurfer - A fast and accurate deep learning based neuroimaging pipeline. NeuroImage, 2020, 219, 117012.	2.1	229
72	Dual-domain cascade of U-nets for multi-channel magnetic resonance image reconstruction. Magnetic Resonance Imaging, 2020, 71, 140-153.	1.0	28
73	A deep error correction network for compressed sensing MRI. BMC Biomedical Engineering, 2020, 2, 4.	1.7	11

#	Article	IF	Citations
74	Joint multiâ€contrast variational network reconstruction (jVN) with application to rapid 2D and 3D imaging. Magnetic Resonance in Medicine, 2020, 84, 1456-1469.	1.9	28
75	Selfâ€supervised learning of physicsâ€guided reconstruction neural networks without fully sampled reference data. Magnetic Resonance in Medicine, 2020, 84, 3172-3191.	1.9	133
76	Enhanced Deep-Learning-Based Magnetic Resonance Image Reconstruction by Leveraging Prior Subject-Specific Brain Imaging: Proof-of-Concept Using a Cohort of Presumed Normal Subjects. IEEE Journal on Selected Topics in Signal Processing, 2020, 14, 1126-1136.	7.3	12
77	DeepcomplexMRI: Exploiting deep residual network for fast parallel MR imaging with complex convolution. Magnetic Resonance Imaging, 2020, 68, 136-147.	1.0	120
78	A deep adversarial variational autoencoder model for dimensionality reduction in single-cell RNA sequencing analysis. BMC Bioinformatics, 2020, 21, 64.	1.2	62
79	Deep Magnetic Resonance Image Reconstruction: Inverse Problems Meet Neural Networks. IEEE Signal Processing Magazine, 2020, 37, 141-151.	4.6	218
80	Compressive Sensing Spectroscopy Using a Residual Convolutional Neural Network. Sensors, 2020, 20, 594.	2.1	21
81	Compressed Sensing: From Research to Clinical Practice With Deep Neural Networks: Shortening Scan Times for Magnetic Resonance Imaging. IEEE Signal Processing Magazine, 2020, 37, 117-127.	4.6	121
82	Fidelity imposed network edit (FINE) for solving ill-posed image reconstruction. NeuroImage, 2020, 211, 116579.	2.1	31
83	A multi-scale variational neural network for accelerating motion-compensated whole-heart 3D coronary MR angiography. Magnetic Resonance Imaging, 2020, 70, 155-167.	1.0	32
84	Deep complex convolutional network for fast reconstruction of 3D late gadolinium enhancement cardiac MRI. NMR in Biomedicine, 2020, 33, e4312.	1.6	30
85	MRI reconstruction using deep Bayesian estimation. Magnetic Resonance in Medicine, 2020, 84, 2246-2261.	1.9	35
86	Deep variational network for rapid 4D flow MRI reconstruction. Nature Machine Intelligence, 2020, 2, 228-235.	8.3	43
87	Synergizing medical imaging and radiotherapy with deep learning. Machine Learning: Science and Technology, 2020, 1, 021001.	2.4	24
88	Deep Learning for Ultrasound Localization Microscopy. IEEE Transactions on Medical Imaging, 2020, 39, 3064-3078.	5.4	72
89	MD-Recon-Net: A Parallel Dual-Domain Convolutional Neural Network for Compressed Sensing MRI. IEEE Transactions on Radiation and Plasma Medical Sciences, 2021, 5, 120-135.	2.7	41
90	Deep Learning for Multigrade Brain Tumor Classification in Smart Healthcare Systems: A Prospective Survey. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32, 507-522.	7.2	203
92	Quality assessment of compressed and resized medical images based on pattern recognition using a convolutional neural network. Communications in Nonlinear Science and Numerical Simulation, 2021, 95, 105582.	1.7	14

#	Article	IF	Citations
93	Multi-scale generative adversarial network for improved evaluation of cell–cell interactions observed in organ-on-chip experiments. Neural Computing and Applications, 2021, 33, 3671-3689.	3.2	13
94	Accelerating cardiac cine MRI using a deep learningâ€based ESPIRiT reconstruction. Magnetic Resonance in Medicine, 2021, 85, 152-167.	1.9	80
95	Retrospective respiratory motion correction in cardiac cine MRI reconstruction using adversarial autoencoder and unsupervised learning. NMR in Biomedicine, 2021, 34, e4433.	1.6	17
96	A review on medical imaging synthesis using deep learning and its clinical applications. Journal of Applied Clinical Medical Physics, 2021, 22, 11-36.	0.8	139
97	Outlook of the future landscape of artificial intelligence in medicine and new challenges. , 2021, , 503-526.		1
98	Uncertainty Quantification in Deep MRI Reconstruction. IEEE Transactions on Medical Imaging, 2021, 40, 239-250.	5.4	54
99	Wind Turbine Planetary Gearbox Condition Monitoring Method Based on Wireless Sensor and Deep Learning Approach. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-16.	2.4	14
100	Automated age estimation of young individuals based on 3D knee MRI using deep learning. International Journal of Legal Medicine, 2021, 135, 649-663.	1.2	38
101	Potentials and caveats of Al in hybrid imaging. Methods, 2021, 188, 4-19.	1.9	12
102	Rapid reconstruction of highly undersampled, nonâ€Cartesian realâ€time cine <i>k</i> â€space data using a perceptual complex neural network (PCNN). NMR in Biomedicine, 2021, 34, e4405.	1.6	16
103	Wasserstein GANs for MR Imaging: From Paired to Unpaired Training. IEEE Transactions on Medical Imaging, 2021, 40, 105-115.	5.4	36
104	Time-Dependent Deep Image Prior for Dynamic MRI. IEEE Transactions on Medical Imaging, 2021, 40, 3337-3348.	5.4	51
105	Intelligent Pneumonia Identification From Chest X-Rays: A Systematic Literature Review. IEEE Access, 2021, 9, 51747-51771.	2.6	30
106	Super-Resolution Time-of-Arrival Estimation using Neural Networks. , 2021, , .		5
107	Learning Data Consistency and its Application to Dynamic MR Imaging. IEEE Transactions on Medical Imaging, 2021, 40, 3140-3153.	5.4	20
108	Fast Diffusion Kurtosis Mapping of Human Brain at 7 Tesla With Hybrid Principal Component Analyses. IEEE Access, 2021, 9, 107965-107975.	2.6	2
109	Blind Primed Supervised (BLIPS) Learning for MR Image Reconstruction. IEEE Transactions on Medical Imaging, 2021, 40, 3113-3124.	5.4	2
110	Deep Convolutional Neural Network With Adversarial Training for Denoising Digital Breast Tomosynthesis Images. IEEE Transactions on Medical Imaging, 2021, 40, 1805-1816.	5. 4	19

#	Article	IF	CITATIONS
111	A Wide Multimodal Dense U-Net for Fast Magnetic Resonance Imaging. , 2021, , .		1
112	Total Variant Based Average Sparsity Model With Reweighted Analysis for Compressive Sensing of Computed Tomography. IEEE Access, 2021, 9, 119158-119170.	2.6	8
113	Self-supervised Learning for MRI Reconstruction with a Parallel Network Training Framework. Lecture Notes in Computer Science, 2021, , 382-391.	1.0	8
114	Image Processing Analytics: Enhancements and Segmentation. , 2021, , 1727-1745.		0
115	Deep MRI Reconstruction with Generative Vision Transformers. Lecture Notes in Computer Science, 2021, , 54-64.	1.0	5
116	MR Image Reconstruction Based on Densely Connected Residual Generative Adversarial Network–DCR-GAN. Communications in Computer and Information Science, 2021, , 679-689.	0.4	1
117	Exploiting prior knowledge about biological macromolecules in cryo-EM structure determination. IUCrJ, 2021, 8, 60-75.	1.0	14
118	Using 5D flow MRI to decode the effects of rhythm on left atrial 3D flow dynamics in patients with atrial fibrillation. Magnetic Resonance in Medicine, 2021, 85, 3125-3139.	1.9	14
119	A Modified Generative Adversarial Network Using Spatial and Channel-Wise Attention for CS-MRI Reconstruction. IEEE Access, 2021, 9, 83185-83198.	2.6	14
120	Improved simultaneous multislice cardiac MRI using readout concatenated kâ€space SPIRiT (ROCKâ€SPIRiT). Magnetic Resonance in Medicine, 2021, 85, 3036-3048.	1.9	10
121	Calibration-Less Multi-Coil Compressed Sensing Magnetic Resonance Image Reconstruction Based on OSCAR Regularization. Journal of Imaging, 2021, 7, 58.	1.7	4
122	Analysis of deep complexâ€valued convolutional neural networks for MRI reconstruction and phaseâ€focused applications. Magnetic Resonance in Medicine, 2021, 86, 1093-1109.	1.9	58
123	A Provably Convergent Scheme for Compressive Sensing Under Random Generative Priors. Journal of Fourier Analysis and Applications, 2021, 27, 1.	0.5	9
124	Various Generative Adversarial Networks Model for Synthetic Prohibitory Sign Image Generation. Applied Sciences (Switzerland), 2021, 11, 2913.	1.3	27
126	Deep Neural Network for Compressive Sensing and Application to Massive MIMO Channel Estimation. Circuits, Systems, and Signal Processing, 2021, 40, 4474-4489.	1.2	9
127	Machine learning in Magnetic Resonance Imaging: Image reconstruction. Physica Medica, 2021, 83, 79-87.	0.4	29
128	Herniated Lumbar Disc Generation and Classification Using Cycle Generative Adversarial Networks on Axial View MRI. Electronics (Switzerland), 2021, 10, 982.	1.8	1
129	High quality and fast compressed sensing MRI reconstruction via edge-enhanced dual discriminator generative adversarial network. Magnetic Resonance Imaging, 2021, 77, 124-136.	1.0	13

#	Article	IF	CITATIONS
130	Cloud Classroom Design for English Education Based on Internet of Things and Data Mining. Mobile Information Systems, 2021, 2021, 1-8.	0.4	4
131	An optimized stacked diagnosis structure for fault diagnosis of wind turbine planetary gearbox. Measurement Science and Technology, 2021, 32, 075102.	1.4	14
132	Ground-Truth Free Multi-Mask Self-Supervised Physics-Guided Deep Learning in Highly Accelerated MRI. , 2021, , .		8
133	Deep Generative Adversarial Networks: Applications in Musculoskeletal Imaging. Radiology: Artificial Intelligence, 2021, 3, e200157.	3.0	16
134	Adversarial Data Augmentation on Breast MRI Segmentation. Applied Sciences (Switzerland), 2021, 11, 4554.	1.3	4
135	Class-Specific Neural Network for Video Compressed Sensing. , 2021, , .		2
136	Adaptive Gradient Balancing for Undersampled MRI Reconstruction and Image-to-Image Translation. , 2021, , .		0
137	Which GAN? A comparative study of generative adversarial network-based fast MRI reconstruction. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200203.	1.6	17
138	Narrative review of generative adversarial networks in medical and molecular imaging. Annals of Translational Medicine, 2021, 9, 821-821.	0.7	19
139	Systematic evaluation of iterative deep neural networks for fast parallel MRI reconstruction with sensitivityâ€weighted coil combination. Magnetic Resonance in Medicine, 2021, 86, 1859-1872.	1.9	39
140	Compressed medical imaging based on average sparsity model and reweighted analysis of multiple basis pursuit. Computerized Medical Imaging and Graphics, 2021, 90, 101927.	3.5	15
141	Improved Supervised Training of Physics-Guided Deep Learning Image Reconstruction with Multi-Masking. , 2021, , .		2
142	Complementary timeâ€frequency domain networks for dynamic parallel MR image reconstruction. Magnetic Resonance in Medicine, 2021, 86, 3274-3291.	1.9	21
143	Deep learning for fast MR imaging: A review for learning reconstruction from incomplete k-space data. Biomedical Signal Processing and Control, 2021, 68, 102579.	3.5	43
144	Temporally aware volumetric generative adversarial networkâ€based MR image reconstruction with simultaneous respiratory motion compensation: Initial feasibility in 3D dynamic cine cardiac MRI. Magnetic Resonance in Medicine, 2021, 86, 2666-2683.	1.9	9
145	Deep learning in magnetic resonance image reconstruction. Journal of Medical Imaging and Radiation Oncology, 2021, 65, 564-577.	0.9	22
146	Transfer learning enhanced generative adversarial networks for multi-channel MRI reconstruction. Computers in Biology and Medicine, 2021, 134, 104504.	3.9	42
147	Improvement of megavoltage computed tomography image quality for adaptive helical tomotherapy using cycleGANâ€based image synthesis with small datasets. Medical Physics, 2021, 48, 5593-5610.	1.6	5

#	Article	IF	CITATIONS
148	A Survey of Soft Computing Approaches in Biomedical Imaging. Journal of Healthcare Engineering, 2021, 2021, 1-15.	1.1	9
149	Feasibility and Implementation of a Deep Learning MR Reconstruction for TSE Sequences in Musculoskeletal Imaging. Diagnostics, $2021, 11, 1484$.	1.3	36
150	Efficient Computer-Aided Design of Dental Inlay Restoration: A Deep Adversarial Framework. IEEE Transactions on Medical Imaging, 2021, 40, 2415-2427.	5.4	22
151	Convolutional Neural Network Optimization Algorithm-Based Magnetic Resonance Imaging in Analysis of Chronic Pain Caused by the Myofascial Trigger Point. Scientific Programming, 2021, 2021, 1-10.	0.5	0
152	Free-breathing Accelerated Cardiac MRI Using Deep Learning: Validation in Children and Young Adults. Radiology, 2021, 300, 539-548.	3.6	22
153	Generative Adversarial Network Enabled Sparse Signal Compression and Recovery for Internet of Medical Things. , 2021, , .		1
154	Accurate and robust sparseâ€view angle CT image reconstruction using deep learning and prior image constrained compressed sensing (DLâ€PICCS). Medical Physics, 2021, 48, 5765-5781.	1.6	15
155	A deep framework for enhancement of diagnostic information in CSMRI reconstruction. Biomedical Signal Processing and Control, 2022, 71, 103117.	3.5	5
156	Deep Learning With Adaptive Hyper-Parameters for Low-Dose CT Image Reconstruction. IEEE Transactions on Computational Imaging, 2021, 7, 648-660.	2.6	15
157	Medical Image Generation Using Generative Adversarial Networks: A Review. Studies in Computational Intelligence, 2021, , 77-96.	0.7	59
158	Magnetic resonance parameter mapping using modelâ€guided selfâ€supervised deep learning. Magnetic Resonance in Medicine, 2021, 85, 3211-3226.	1.9	41
159	Learned Iterative Reconstruction. , 2021, , 1-22.		1
160	Kernel Bi-Linear Modeling for Reconstructing Data on Manifolds: The Dynamic-MRI Case., 2021,,.		1
161	A Tour of Unsupervised Deep Learning for Medical Image Analysis. Current Medical Imaging, 2021, 17, 1059-1077.	0.4	48
162	Task Transformer Network for Joint MRI Reconstruction and Super-Resolution. Lecture Notes in Computer Science, 2021, , 307-317.	1.0	57
163	High-Resolution Pelvic MRI Reconstruction Using a Generative Adversarial Network With Attention and Cyclic Loss. IEEE Access, 2021, 9, 105951-105964.	2.6	18
164	Artificial intelligence in image-guided radiotherapy: a review of treatment target localization. Quantitative Imaging in Medicine and Surgery, 2021, 11, 4881-4894.	1.1	13
165	Artificial Intelligence for MR Image Reconstruction: An Overview for Clinicians. Journal of Magnetic Resonance Imaging, 2021, 53, 1015-1028.	1.9	150

#	Article	IF	Citations
166	Reconstruction of undersampled 3D nonâ€Cartesian imageâ€based navigators for coronary MRA using an unrolled deep learning model. Magnetic Resonance in Medicine, 2020, 84, 800-812.	1.9	30
167	Sensor-Based Human Activity Recognition for Smart Healthcare: A Semi-supervised Machine Learning. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2019, , 450-472.	0.2	19
168	VS-Net: Variable Splitting Network for Accelerated Parallel MRI Reconstruction. Lecture Notes in Computer Science, 2019, , 713-722.	1.0	42
169	Recon-GLGAN: A Global-Local Context Based Generative Adversarial Network for MRI Reconstruction. Lecture Notes in Computer Science, 2019, , 3-15.	1.0	12
170	Accelerated MRI Reconstruction with Dual-Domain Generative Adversarial Network. Lecture Notes in Computer Science, 2019, , 47-57.	1.0	5
171	A Structural Oriented Training Method for GAN Based Fast Compressed SensingÂMRI. Lecture Notes in Computer Science, 2019, , 483-494.	1.0	2
172	Deep Decomposition Learning for Inverse Imaging Problems. Lecture Notes in Computer Science, 2020, , 510-526.	1.0	15
173	Deep Attentive Wasserstein Generative Adversarial Networks for MRI Reconstruction with Recurrent Context-Awareness. Lecture Notes in Computer Science, 2020, , 167-177.	1.0	12
174	Skin lesion segmentation via generative adversarial networks with dual discriminators. Medical Image Analysis, 2020, 64, 101716.	7.0	156
176	Inverse GANs for accelerated MRI reconstruction. , 2019, , .		21
177	Online MR image reconstruction for compressed sensing acquisition in T2* imaging. , 2019, , .		3
178	fastMRI: A Publicly Available Raw k-Space and DICOM Dataset of Knee Images for Accelerated MR Image Reconstruction Using Machine Learning. Radiology: Artificial Intelligence, 2020, 2, e190007.	3.0	152
179	A Comparative Study of Unsupervised Deep Learning Methods for MRI Reconstruction. Investigative Magnetic Resonance Imaging, 2020, 24, 179.	0.2	3
180	Artificial Intelligence in Neuroradiology: Current Status and Future Directions. American Journal of Neuroradiology, 2020, 41, E52-E59.	1.2	14
181	Upstream Machine Learning in Radiology. Radiologic Clinics of North America, 2021, 59, 967-985.	0.9	9
182	Task-GAN: Improving Generative Adversarial Network for Image Reconstruction. Lecture Notes in Computer Science, 2019, , 193-204.	1.0	2
183	Vessel Wall Imaging in the Era of Artificial Intelligence. , 2020, , 283-294.		0
184	Medical CT Image Super-Resolution via Cyclic Feature Concentration Network. Lecture Notes in Computer Science, 2020, , 3-13.	1.0	2

#	Article	IF	Citations
185	Rising role of artificial intelligence in image reconstruction for biomedical imaging. Artificial Intelligence in Medical Imaging, 2020, 1, 1-5.	0.3	2
187	qULM-DL: Quantitative Ultrasound Localization Microscopy via Deep Learning. , 2020, , .		2
188	Deep Convolutional Neural Network for Compressive Sensing of Magnetic Resonance Images. International Journal of Pattern Recognition and Artificial Intelligence, 0, , .	0.7	0
189	Enhancement-constrained acceleration: A robust reconstruction framework in breast DCE-MRI. PLoS ONE, 2021, 16, e0258621.	1.1	2
190	Robust brain MR image compressive sensing via re-weighted total variation and sparse regression. Magnetic Resonance Imaging, 2022, 85, 271-286.	1.0	5
191	Vessel Wall MR Imaging in the Pediatric Head and Neck. Magnetic Resonance Imaging Clinics of North America, 2021, 29, 595-604.	0.6	3
192	Application Status and Development Prospect of Artificial Intelligence in Clinical Medicine. Advances in Intelligent Systems and Computing, 2020, , 129-134.	0.5	0
193	Data-Consistency in Latent Space and Online Update Strategy to Guide GAN for Fast MRI Reconstruction. Lecture Notes in Computer Science, 2020, , 82-90.	1.0	4
194	Deep Parallel MRI Reconstruction Network Without Coil Sensitivities. Lecture Notes in Computer Science, 2020, , 17-26.	1.0	2
195	RGB-Based Compressed Medical Imaging Using Sparsity Averaging Reweighted Analysis for Wireless Capsule Endoscopy Images. IEEE Access, 2021, 9, 147091-147101.	2.6	5
196	Learned Proximal Networks for Quantitative Susceptibility Mapping. Lecture Notes in Computer Science, 2020, 12262, 125-135.	1.0	14
197	Analysis of MRI Image Compression Using Compressive Sensing. Advances in Intelligent Systems and Computing, 2021, , 361-368.	0.5	0
198	MRI Measurement Matrix Learning via Correlation Reweighting. , 2020, , .		2
199	Unpaired PET/CT image synthesis of liver region using CycleGAN. , 2020, , .		2
200	Compressed Sensing via Measurement-Conditional Generative Models. IEEE Access, 2021, 9, 155335-155352.	2.6	1
201	Object Recognition Using Learning-based Compressive Sensing. , 2021, , .		0
202	K-space refinement in deep learning MR reconstruction via regularizing scan specific SPIRiT-based self consistency. , 2021 , , .		2
203	Fast Unsupervised MRI Reconstruction Without Fully-Sampled Ground Truth Data Using Generative Adversarial Networks., 2021,,.		5

#	Article	IF	CITATIONS
204	The Use of Dual Modality PET/MRI in Population Studies: Considerations on Exposures, Economics, Strengths, and Limitations. , 2022, , 35-44.		O
205	DeepSENSE: Learning coil sensitivity functions for SENSE reconstruction using deep learning. Magnetic Resonance in Medicine, 2022, 87, 1894-1902.	1.9	10
206	Anisotropic neural deblurring for MRI acceleration. International Journal of Computer Assisted Radiology and Surgery, 2022, 17, 315-327.	1.7	3
207	A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications. IEEE Transactions on Knowledge and Data Engineering, 2023, 35, 3313-3332.	4.0	227
208	A simultaneous multiâ€slice T ₂ mapping framework based on overlappingâ€echo detachment planar imaging and deep learning reconstruction. Magnetic Resonance in Medicine, 2022, 87, 2239-2253.	1.9	13
209	Evaluation on the generalization of a learned convolutional neural network for MRI reconstruction. Magnetic Resonance Imaging, 2022, 87, 38-46.	1.0	10
210	2D probabilistic undersampling pattern optimization for MR image reconstruction. Medical Image Analysis, 2022, 77, 102346.	7.0	2
212	DEMO: Deep MR Parametric Mapping with Unsupervised Multi-Tasking Framework. Investigative Magnetic Resonance Imaging, 2021, 25, 300.	0.2	3
213	Clinical Assessment of Deep Learning–based Super-Resolution for 3D Volumetric Brain MRI. Radiology: Artificial Intelligence, 2022, 4, e210059.	3.0	19
214	Unsupervised MRI Reconstruction via Zero-Shot Learned Adversarial Transformers. IEEE Transactions on Medical Imaging, 2022, 41, 1747-1763.	5.4	88
215	Undersampled Multi-Contrast MRI Reconstruction Based on Double-Domain Generative Adversarial Network. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 4371-4377.	3.9	9
216	Novel-view X-ray projection synthesis through geometry-integrated deep learning. Medical Image Analysis, 2022, 77, 102372.	7.0	3
217	Highâ€fidelity fast volumetric brain MRI using synergistic waveâ€controlled aliasing in parallel imaging and a hybrid denoising generative adversarial network (HDnGAN). Medical Physics, 2022, 49, 1000-1014.	1.6	9
218	Inpainted Image Reconstruction Using an Extended Hopfield Neural Network Based Machine Learning System. Sensors, 2022, 22, 813.	2.1	7
219	Basis Pursuit With Sparsity Averaging for Compressive Sampling of Iris Images. IEEE Access, 2022, 10, 13728-13737.	2.6	3
220	An optimal control framework for joint-channel parallel MRI reconstruction without coil sensitivities. Magnetic Resonance Imaging, 2022, , .	1.0	1
221	Generative Adversarial Network Powered Fast Magnetic Resonance Imagingâ€"Comparative Study and New Perspectives. Intelligent Systems Reference Library, 2022, , 305-339.	1.0	5
222	ISAR Imaging of Target Exhibiting Micro-Motion With Sparse Aperture via Model-Driven Deep Network. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-12.	2.7	13

#	ARTICLE	IF	CITATIONS
223	DeepUCT: Complex cascaded deep learning network for improved ultrasound tomography. Physics in Medicine and Biology, 2022, 67, 065008.	1.6	12
224	De Novo Peptide and Protein Design Using Generative Adversarial Networks: An Update. Journal of Chemical Information and Modeling, 2022, 62, 761-774.	2.5	12
225	Al-Based Reconstruction for Fast MRI—A Systematic Review and Meta-Analysis. Proceedings of the IEEE, 2022, 110, 224-245.	16.4	57
226	Reading the Mind of a Machine: Hopes and Hypes of Artificial Intelligence for Clinical Oncology Imaging. Clinical Oncology, 2022, 34, e130-e134.	0.6	1
227	B-Spline Parameterized Joint Optimization of Reconstruction and K-Space Trajectories (BJORK) for Accelerated 2D MRI. IEEE Transactions on Medical Imaging, 2022, 41, 2318-2330.	5.4	27
228	Pyramid Convolutional RNN for MRI Image Reconstruction. IEEE Transactions on Medical Imaging, 2022, 41, 2033-2047.	5.4	19
229	Compressed Sensing MRI Reconstruction with Co-VeGAN: Complex-Valued Generative Adversarial Network., 2022,,.		11
230	RNS-Based FPGA Accelerators for High-Quality 3D Medical Image Wavelet Processing Using Scaled Filter Coefficients. IEEE Access, 2022, 10, 19215-19231.	2.6	5
231	Accelerating susceptibility-weighted imaging with deep learning by complex-valued convolutional neural network (ComplexNet): validation in clinical brain imaging. European Radiology, 2022, 32, 5679-5687.	2.3	6
232	A Review of Deep Learning Methods for Compressed Sensing Image Reconstruction and Its Medical Applications. Electronics (Switzerland), 2022, 11, 586.	1.8	13
233	Deep learning autofluorescence-harmonic microscopy. Light: Science and Applications, 2022, 11, 76.	7.7	27
234	High fidelity deep learningâ€based MRI reconstruction with instanceâ€wise discriminative feature matching loss. Magnetic Resonance in Medicine, 2022, 88, 476-491.	1.9	8
235	Progressively volumetrized deep generative models for data-efficient contextual learning of MR image recovery. Medical Image Analysis, 2022, 78, 102429.	7.0	9
236	Feasibility of Brain Imaging Using a Digital Surround Technology Body Coil: A Study Based on SRGAN-VGG Convolutional Neural Networks [*] ., 2021, 2021, 3734-3737.		0
237	Compressed Sensing MRI with â, " ₁ -Wavelet Reconstruction Revisited Using Modern Data Science Tools., 2021, 2021, 3596-3600.		2
238	Review and Prospect: Artificial Intelligence in Advanced Medical Imaging. Frontiers in Radiology, 2021, $1,\ldots$	1.2	37
239	Compressed Sensing in Sodium Magnetic Resonance Imaging: Techniques, Applications, and Future Prospects. Journal of Magnetic Resonance Imaging, 2022, 55, 1340-1356.	1.9	7
240	Design of â,,"1 New Suboptimal Fractional Delays Controller for Discrete Non-Minimum Phase System under Unknown-but-Bounded Disturbance. Mathematics, 2022, 10, 69.	1.1	1

#	Article	IF	CITATIONS
241	Single-Pass Object-Adaptive Data Undersampling and Reconstruction for MRI. IEEE Transactions on Computational Imaging, 2022, 8, 333-345.	2.6	3
242	Neuroimaging in the Era of Artificial Intelligence: Current Applications. , 2022, , .		5
243	A Hemolysis Image Detection Method Based on GAN-CNN-ELM. Computational and Mathematical Methods in Medicine, 2022, 2022, 1-12.	0.7	3
245	High-Throughput Deep Unfolding Network for Compressive Sensing MRI. IEEE Journal on Selected Topics in Signal Processing, 2022, 16, 750-761.	7.3	12
246	MPTGAN: A Multimodal Prior-Based Triple-Branch Network for Fast Prostate Mri Reconstruction. , 2022, , .		0
247	Leveraging Multi-Visit Information for Magnetic Resonance Image Reconstruction: Pilot Study on a Cohort of Glioblastoma Subjects. , 2022, , .		0
248	Tree-based ensemble model prediction for hydrological drought in a tropical river basin of India. International Journal of Environmental Science and Technology, 2023, 20, 4973-4990.	1.8	8
249	Residual RAKI: A hybrid linear and non-linear approach for scan-specific k-space deep learning. Neurolmage, 2022, 256, 119248.	2.1	6
251	NeRP: Implicit Neural Representation Learning With Prior Embedding for Sparsely Sampled Image Reconstruction. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35, 770-782.	7.2	36
252	Deep Learning Based Single Pixel Imaging Using Coarse-to-fine Sampling. , 2022, , .		2
253	Multimodal Transformer for Accelerated MR Imaging. IEEE Transactions on Medical Imaging, 2023, 42, 2804-2816.	5.4	29
254	FlowRAU-Net: Accelerated 4D Flow MRI of Aortic Valvular Flows With a Deep 2D Residual Attention Network. IEEE Transactions on Biomedical Engineering, 2022, 69, 3812-3824.	2.5	4
255	Ultra high speed SPECT bone imaging enabled by a deep learning enhancement method: a proof of concept. EJNMMI Physics, 2022, 9, .	1.3	12
256	Real time volumetric MRI for 3D motion tracking via geometryâ€informed deep learning. Medical Physics, 2022, 49, 6110-6119.	1.6	6
257	A survey of deep learning techniques based Parkinson's disease recognition methods employing clinical data. Expert Systems With Applications, 2022, 208, 118045.	4.4	15
258	Synthesizing MR Image Contrast Enhancement Using 3D High-Resolution ConvNets. IEEE Transactions on Biomedical Engineering, 2023, 70, 401-412.	2.5	15
259	Histogram Compressive Sensing using Shuffled Cellular Automata: the TCSPC sensor use case. , 2022, , .		0
260	Multi-Coil MRI Reconstruction Challenge—Assessing Brain MRI Reconstruction Models and Their Generalizability to Varying Coil Configurations. Frontiers in Neuroscience, 0, 16, .	1.4	10

#	ARTICLE	IF	CITATIONS
262	<scp>Dualâ€domain /scp> reconstruction network with <scp>Vâ€Net</scp> and <scp>Kâ€Net</scp> for fast <scp>MRI</scp>. Magnetic Resonance in Medicine, 2022, 88, 2694-2708.</scp>	1.9	12
263	Deep convolutional generative adversarial network with semi-supervised learning enabled physics elucidation for extended gear fault diagnosis under data limitations. Mechanical Systems and Signal Processing, 2023, 185, 109772.	4.4	46
264	Regularization of Inverse Problems by Neural Networks. , 2022, , 1-29.		1
265	Rethinking theÂOptimization Process forÂSelf-supervised Model-Driven MRI Reconstruction. Lecture Notes in Computer Science, 2022, , 3-13.	1.0	2
266	MRI Reconstruction withÂConditional Adversarial Transformers. Lecture Notes in Computer Science, 2022, , 62-71.	1.0	0
267	High-Fidelity MRI Reconstruction withÂtheÂDensely Connected Network Cascade andÂFeature Residual Data Consistency Priors. Lecture Notes in Computer Science, 2022, , 34-43.	1.0	0
268	Learning Optimal K-space Acquisition and Reconstruction using Physics-Informed Neural Networks. , 2022, , .		4
269	SuperMAP: Deep ultrafast MR relaxometry with joint spatiotemporal undersampling. Magnetic Resonance in Medicine, 2023, 89, 64-76.	1.9	9
270	GAN-TL: Generative Adversarial Networks with Transfer Learning for MRI Reconstruction. Applied Sciences (Switzerland), 2022, 12, 8841.	1.3	9
271	Artificial Intelligence in Spinal Imaging: Current Status and Future Directions. International Journal of Environmental Research and Public Health, 2022, 19, 11708.	1.2	9
272	Accelerated twoâ€dimensional phaseâ€contrast for cardiovascular MRI using deep learningâ€based reconstruction with complex difference estimation. Magnetic Resonance in Medicine, 2023, 89, 356-369.	1.9	5
273	Deep learning for compressive sensing: a ubiquitous systems perspective. Artificial Intelligence Review, 2023, 56, 3619-3658.	9.7	11
274	Accelerated cardiac cine MRI using spatiotemporal correlation-based hybrid plug-and-play priors (SEABUS). Physics in Medicine and Biology, 2022, 67, 215008.	1.6	1
275	DIIK-Net: A full-resolution cross-domain deep interaction convolutional neural network for MR image reconstruction. Neurocomputing, 2023, 517, 213-222.	3.5	8
276	Deep unfolding architecture for MRI reconstruction enhanced by adaptive noise maps. Biomedical Signal Processing and Control, 2022, 78, 104016.	3.5	9
277	PARCEL: Physics-based Unsupervised Contrastive Representation Learning for Multi-coil MR Imaging. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022, , 1-12.	1.9	4
278	Cascade Multiscale Swin-Conv Network for Fast MRI Reconstruction. Lecture Notes in Computer Science, 2022, , 191-203.	1.0	2
279	Undersampling artifact reduction for free-breathing 3D stack-of-radial MRI based on a deep adversarial learning network. Magnetic Resonance Imaging, 2023, 95, 70-79.	1.0	1

#	Article	IF	CITATIONS
280	Fast Hierarchical Deep Unfolding Network for Image Compressed Sensing., 2022,,.		5
281	Recent advances and application of generative adversarial networks in drug discovery, development, and targeting. Artificial Intelligence in the Life Sciences, 2022, 2, 100045.	1.6	2
282	Transferring Deep Gaussian Denoiser for Compressed Sensing MRI Reconstruction. IEEE MultiMedia, 2022, 29, 5-13.	1.5	1
283	Machine Learning for MRI Reconstruction. Advances in Magnetic Resonance Technology and Applications, 2022, , 281-323.	0.0	0
284	Federated Learning of Generative Image Priors for MRI Reconstruction. IEEE Transactions on Medical Imaging, 2023, 42, 1996-2009.	5.4	35
285	A Coherence Parameter Characterizing Generative Compressed Sensing With Fourier Measurements. IEEE Journal on Selected Areas in Information Theory, 2022, 3, 502-512.	1.9	2
286	Sparsity-Free Compressed Sensing With Applications to Generative Priors. IEEE Journal on Selected Areas in Information Theory, 2022, 3, 493-501.	1.9	1
287	SelfCoLearn: Self-Supervised Collaborative Learning for Accelerating Dynamic MR Imaging. Bioengineering, 2022, 9, 650.	1.6	7
288	Emerging Technology in Musculoskeletal MRI and CT. Radiology, 2023, 306, 6-19.	3.6	26
289	Enhanced RGB-Based Basis Pursuit Sparsity Averaging Using Variable Density Sampling for Compressive Sensing of Eye Images. IEEE Access, 2022, 10, 133439-133450.	2.6	1
291	Deep MR parametric imaging with the learned $\langle i \rangle L \langle i \rangle + \langle i \rangle S \langle i \rangle$ model and attention mechanism. IET Image Processing, 2023, 17, 969-978.	1.4	2
292	Complex artefact suppression for sparse reconstruction based on compensation approach in Xâ€ray computed tomography. IET Image Processing, 0, , .	1.4	0
293	Artificial Intelligence in Congenital Heart Disease. , 2022, 1, 100153.		12
294	User Name-Based Compression and Encryption of Images Using Chaotic Compressive Sensing Theory. Computer Journal, 2024, 67, 304-322.	1.5	1
295	Physics-Driven Deep Learning for Computational Magnetic Resonance Imaging: Combining physics and machine learning for improved medical imaging. IEEE Signal Processing Magazine, 2023, 40, 98-114.	4.6	8
296	SwinGAN: A dual-domain Swin Transformer-based generative adversarial network for MRI reconstruction. Computers in Biology and Medicine, 2023, 153, 106513.	3.9	18
297	A Complex-Valued Dual-Domain Dilated Convolution Neural Network for Brain MRI Reconstruction. , 2022, , .		1
299	MEDLâ€Net: A modelâ€based neural network for MRI reconstruction with enhanced deep learned regularizers. Magnetic Resonance in Medicine, 0, , .	1.9	2

#	Article	IF	CITATIONS
300	Hierarchical Perception Adversarial Learning Framework for Compressed Sensing MRI. IEEE Transactions on Medical Imaging, 2023, 42, 1859-1874.	5.4	7
301	A Lightweight CNN Architecture for Chest X-ray Images Analysis to Facilitate Early Stage Detection of Lung Diseases. , 2022, , .		0
302	Coil-Agnostic Attention-Based Network forÂParallel MRI Reconstruction. Lecture Notes in Computer Science, 2023, , 168-184.	1.0	0
303	Recent advances in highly accelerated 3D MRI. Physics in Medicine and Biology, 0, , .	1.6	0
304	Efficient complex-valued image reconstruction for compressed sensing MRI using single real-valued convolutional neural network. Magnetic Resonance Imaging, 2023, 101, 13-24.	1.0	1
305	Exploring the Geometry of Generative Priors with Applications in Cellular MRI. , 2022, , .		0
306	Cartography of Genomic Interactions Enables Deep Analysis of Single-Cell Expression Data. Nature Communications, 2023, 14 , .	5.8	8
307	Learned Iterative Reconstruction. , 2023, , 751-771.		0
308	Regularization of Inverse Problems by Neural Networks. , 2023, , 1065-1093.		0
309	Calibrationless reconstruction of <scp>uniformlyâ€undersampled multiâ€channel MR</scp> data with deep learning estimated <scp>ESPIRiT</scp> maps. Magnetic Resonance in Medicine, 0, , .	1.9	0
310	Physics-Driven Deep Learning Methods for Fast Quantitative Magnetic Resonance Imaging: Performance improvements through integration with deep neural networks. IEEE Signal Processing Magazine, 2023, 40, 116-128.	4.6	2
311	Compressive Sensing of Medical Images Based on HSV Color Space. Sensors, 2023, 23, 2616.	2.1	1
312	ICRICS: iterative compensation recovery for image compressive sensing. Signal, Image and Video Processing, 2023, 17, 2953-2969.	1.7	1
313	Bayesian MRI reconstruction with joint uncertainty estimation using diffusion models. Magnetic Resonance in Medicine, 2023, 90, 295-311.	1.9	7
314	High-Fidelity MRI Reconstruction Using Adaptive Spatial Attention Selection and Deep Data Consistency Prior. IEEE Transactions on Computational Imaging, 2023, 9, 298-313.	2.6	3
315	Adaptive Coarse-to-Fine Single Pixel Imaging With Generative Adversarial Network Based Reconstruction. IEEE Access, 2023, 11, 31024-31035.	2.6	0
316	Capsule networks embedded with prior known support information for image reconstruction. High-Confidence Computing, 2023, 3, 100125.	2.2	1
317	Twinned Residual Auto-Encoder (TRAE)—A new DL architecture for denoising super-resolution and task-aware feature learning from COVID-19 CT images. Expert Systems With Applications, 2023, 225, 120104.	4.4	1

#	ARTICLE	IF	CITATIONS
318	A GAN-based method for 3D lung tumor reconstruction boosted by a knowledge transfer approach. Multimedia Tools and Applications, 2023, 82, 44359-44385.	2.6	2
329	Convolution Neural Networks for Clinical Image Segmentation with Evolutionary Compression. , 2023, , .		0
332	Artificial Intelligence Approaches to the Imaging of Neurodegenerative Diseases. , 2023, , 207-219.		0
333	Applications of Deep Learning to Magnetic Resonance Imaging (MRI)., 2023,,.		1
337	Acceleration methods for perfusion imaging. Advances in Magnetic Resonance Technology and Applications, 2023, , 253-289.	0.0	0
338	Optimal Design of Color Laparoscopic Super-Resolution Image Quality Based on Generative Adversarial Networks. , 2023, , .		0
342	Artificial intelligence in cardiac MRI., 2024, , 191-199.		1
347	Self-supervised MRI Reconstruction withÂUnrolled Diffusion Models. Lecture Notes in Computer Science, 2023, , 491-501.	1.0	2
349	Accelerated Unfolding Network forÂMedical Image Reconstruction withÂEfficient Information Flow. Lecture Notes in Computer Science, 2023, , 43-54.	1.0	0
351	Optimal Sparse Signals from CNC Machine Vibration. , 2023, , .		0
359	Exploiting Generative Adversarial Networks in Joint Sensitivity Encoding for Enhanced MRI Reconstruction. Lecture Notes in Computer Science, 2023, , 443-451.	1.0	0
362	G2-DUN: Gradient Guided Deep Unfolding Network for Image Compressive Sensing., 2023,,.		0
364	FedAutoMRI: Federated Neural Architecture Search forÂMR Image Reconstruction. Lecture Notes in Computer Science, 2023, , 347-356.	1.0	1
366	Deep learning for medical image reconstruction. , 2024, , 247-278.		0
370	Research on single-pixel imaging reconstruction algorithm based on residual attention channel network., 2023,,.		0