Spatio-temporal variation of nitrate sources to Lake Wi

Science of the Total Environment 647, 486-493 DOI: 10.1016/j.scitotenv.2018.07.346

Citation Report

#	Article	IF	CITATIONS
1	Response of nitrogen pollution in surface water to land use and social-economic factors in the Weihe River watershed, northwest China. Sustainable Cities and Society, 2019, 50, 101658.	10.4	61
2	An automated, laserâ€based measurement system for nitrous oxide isotope and isotopomer ratios at nanomolar levels. Rapid Communications in Mass Spectrometry, 2019, 33, 1553-1564.	1.5	7
3	Distinguishing point and non-point sources of dissolved nutrients, metals, and legacy contaminants in the Detroit River. Science of the Total Environment, 2019, 681, 1-8.	8.0	11
4	Application of Nitrogen and Oxygen Isotopes for Source and Fate Identification of Nitrate Pollution in Surface Water: A Review. Applied Sciences (Switzerland), 2019, 9, 18.	2.5	65
5	Occurrence of contaminants in drinking water sources and the potential of biochar for water quality improvement: A review. Critical Reviews in Environmental Science and Technology, 2020, 50, 549-611.	12.8	143
6	Stable Isotopes of Water and Nitrate for the Identification of Groundwater Flowpaths: A Review. Water (Switzerland), 2020, 12, 138.	2.7	34
7	Production of the neurotoxin beta-N-methylamino-l-alanine may be triggered by agricultural nutrients: An emerging public health issue. Water Research, 2020, 170, 115335.	11.3	14
8	Combined use of stable nitrogen and oxygen isotopes to constrain the nitrate sources in a karst lake. Agriculture, Ecosystems and Environment, 2020, 303, 107089.	5.3	25
9	Unraveling groundwater functioning and nitrate attenuation in evaporitic karst systems from southern Spain: An isotopic approach. Applied Geochemistry, 2020, 123, 104820.	3.0	9
10	Fate of bioavailable nutrients released to a stream during episodic effluent releases from a municipal wastewater treatment lagoon. Environmental Sciences: Processes and Impacts, 2020, 22, 2374-2387.	3.5	3
11	Water quality assessment and pollution source apportionment in a highly regulated river of Northeast China. Environmental Monitoring and Assessment, 2020, 192, 446.	2.7	23
12	Agricultural and urban delivered nitrate pollution input to Mediterranean temporary freshwaters. Agriculture, Ecosystems and Environment, 2020, 294, 106859.	5.3	53
13	Using stable isotopes to identify nitrogen transformations and estimate denitrification in a semi-constructed wetland. Science of the Total Environment, 2020, 720, 137628.	8.0	16
14	A biological and nitrate isotopic assessment framework to understand eutrophication in aquatic ecosystems. Science of the Total Environment, 2020, 715, 136909.	8.0	82
15	Sources and transformations of nitrate constrained by nitrate isotopes and Bayesian model in karst surface water, Guilin, Southwest China. Environmental Science and Pollution Research, 2020, 27, 21299-21310.	5.3	20
16	An ecological causal assessment of tributaries draining the Red River Valley, Manitoba. Journal of Great Lakes Research, 2021, 47, 773-787.	1.9	7
17	Sources of nitrogen to stream food webs in tributaries of the Red River Valley, Manitoba. Journal of Great Lakes Research, 2021, 47, 751-760.	1.9	4
18	Contribution of nitrogen sources to streams in mixed-use catchments varies seasonally in a cold temperate region. Science of the Total Environment, 2021, 764, 142824.	8.0	2

#	Article	IF	CITATIONS
19	Coupled carbon-nitrogen cycling controls the transformation of dissolved inorganic carbon into dissolved organic carbon in karst aquatic systems. Journal of Hydrology, 2021, 592, 125764.	5.4	11
20	Evaluation of stable isotope ratios (δ15N and δ18O) of nitrate in advanced sewage treatment processes: Isotopic signature in four process types. Science of the Total Environment, 2021, 762, 144120.	8.0	7
21	Impact of land uses, drought, flood, wildfire, and cascading events on water quality and microbial communities: A review and analysis. Journal of Hydrology, 2021, 596, 125707.	5.4	70
22	Isotopic niche provides an insight into the ecology of a symbiont during its geographic expansion. Environmental Epigenetics, 2022, 68, 185-197.	1.8	6
23	Global patterns of nitrate isotope composition in rivers and adjacent aquifers reveal reactive nitrogen cascading. Communications Earth & Environment, 2021, 2, .	6.8	56
24	Fertilizers and nitrate pollution of surface and ground water: an increasingly pervasive global problem. SN Applied Sciences, 2021, 3, 1.	2.9	154
25	Determining the origin and fate of nitrate in the Nanyang Basin, Central China, using environmental isotopes and the Bayesian mixing model. Environmental Science and Pollution Research, 2021, 28, 48343-48361.	5.3	15
26	Contemporary systematics of vadose zone nitrate capture by speleothem carbonate. Chemical Geology, 2021, 571, 120172.	3.3	2
27	Seasonal variations in stable nitrate isotopes combined with stable water isotopes in a wastewater treatment plant: Implications for nitrogen sources and transformation. Journal of Hydrology, 2021, 599, 126488.	5.4	13
28	Nitrogen removal performance of sulfur autotrophic denitrification under different S2O32â ^{-*} additions using isotopic fractionation of nitrogen and oxygen. Science of the Total Environment, 2021, 794, 148794.	8.0	1
29	Tracing nitrate sources with dual isotopes and hydrochemical characteristics during wet season in Lake Caohai, Guizhou Province. Hupo Kexue/Journal of Lake Sciences, 2020, 32, 989-998.	0.8	2
30	Determining Nitrate Pollution Sources in the Kabul Plain Aquifer (Afghanistan) Using Stable Isotopes and Bayesian Stable Isotope Mixing Model. SSRN Electronic Journal, 0, , .	0.4	0
31	Determining nitrate pollution sources in the Kabul Plain aquifer (Afghanistan) using stable isotopes and Bayesian stable isotope mixing model. Science of the Total Environment, 2022, 823, 153749.	8.0	32
32	Isotopic source identification of nitrogen pollution in the Pi River in Chengdu. Integrated Environmental Assessment and Management, 2022, 18, 1609-1620.	2.9	3
33	Migration, transformation and nitrate source in the Lihu Underground River based on dual stable isotopes of δ15N-NO3â^' and δ18O-NO3â^'. Environmental Science and Pollution Research, 2022, , 1.	5.3	0
34	Responses of Net Anthropogenic N Inputs and Export Fluxes in the Megacity of Chengdu, China. Water (Switzerland), 2021, 13, 3543.	2.7	2
35	Sources and transformations of nitrogen in an agricultural watershed on the Jianghan Plain, China: an integration of Î′15N–NH4+, Î′15N–NO3-, I′18O–NO3- and a Bayesian isotope mixing model. Applied Geochemistry, 2022, 142, 105329.	3.0	14
36	Effect of rainfall-runoff process on sources and transformations of nitrate using a combined approach of dual isotopes, hydrochemical and Bayesian model in the Dagang River basin. Science of the Total Environment, 2022, 837, 155674.	8.0	14

CITATION REPORT

#	Article	IF	CITATIONS
37	Influence of algal organic matter on metal accumulation in adjacent sediments of aquaculture from a tropical coast region. Environmental Science and Pollution Research, 2022, 29, 69717-69730.	5.3	1
38	Nitrate pollution source apportionment, uncertainty and sensitivity analysis across a rural-urban river network based on δ15N/δ18O-NO3â´` isotopes and SIAR modeling. Journal of Hazardous Materials, 2022, 438, 129480.	12.4	36
39	Sources and health risks of nitrate pollution in surface water in the Weihe River watershed, China. Journal of Mountain Science, 2022, 19, 2226-2240.	2.0	3
41	Identification of nitrogen pollution sources and transport transformation processes in groundwater of different landforms using C, H, N, and O isotope techniques: an example from the lower Weihe River. Environmental Science and Pollution Research, 2023, 30, 29442-29457.	5.3	1
42	Determination of nitrate sources in a karst plateau reservoir based on nitrogen and oxygen isotopes. Isotopes in Environmental and Health Studies, 0, , 1-19.	1.0	0
43	National-scale investigation of dual nitrate isotopes and chloride ion in South Korea: Nitrate source apportionment for stream water. Environmental Research, 2023, 228, 115873.	7.5	2
44	Identifying nitrate sources and transformations in an agricultural watershed in Northeast China: Insights from multiple isotopes. Journal of Environmental Management, 2023, 340, 118023.	7.8	5
45	Using dual stable isotopes method for nitrate sources identification in Cao-E River Basin, Eastern China. Frontiers in Environmental Science, 0, 11, .	3.3	0
46	Spatio-temporal analysis of the sources and transformations of anthropogenic nitrogen in a highly degraded coastal basin in Southeast China. Environmental Science and Pollution Research, 2023, 30, 86202-86217.	5.3	0
47	Catchment concentration–discharge relationships across temporal scales: A review. Wiley Interdisciplinary Reviews: Water, 0, , .	6.5	0
48	Impacts of a century of landâ€use change on the eutrophication of large, shallow, prairie Lake Manitoba in relation to adjacent Lake Winnipeg (Manitoba, Canada). Freshwater Biology, 2024, 69, 47-63.	2.4	0
49	Quantifying and assessing nitrogen sources and transport in a megacity water supply watershed: Insights for effective non-point source pollution management with mixSIAR and SWAT models. Agricultural Water Management, 2024, 291, 108621.	5.6	0
50	Effect of rainfall–runoff process on sources and transformation of nitrate at the urban catchment scale. Urban Climate, 2024, 53, 101805.	5.7	0
51	Carbon sequestration and decreased CO2 emission caused by biological carbon pump effect: Insights from diel hydrochemical variations in subtropical karst reservoirs. Journal of Hydrology, 2024, 632, 130909.	5.4	0
52	Isotopes Reveal the Moderating Role of Ammonium on Global Riverine Water Nitrogen Cycling. ACS ES&T Water, 2024, 4, 1451-1459.	4.6	0
53	Identification of groundwater nitrate sources in an urban aquifer (Alborz Province, Iran) using a multi-parameter approach. Environmental Geochemistry and Health, 2024, 46, .	3.4	0
54	Sources and transformations of riverine nitrogen across a coastal-plain river network of eastern China: New insights from multiple stable isotopes. Science of the Total Environment, 2024, 924, 171671.	8.0	0

CITATION REPORT