A synaptic threshold mechanism for computing escape

Nature 558, 590-594 DOI: 10.1038/s41586-018-0244-6

Citation Report

#	Article	IF	CITATIONS
1	Gentle Handling Attenuates Innate Defensive Responses to Visual Threats. Frontiers in Behavioral Neuroscience, 2018, 12, 239.	1.0	9
2	Perceptual Decision-Making: A Field in the Midst of a Transformation. Neuron, 2018, 100, 453-462.	3.8	28
3	Connecting Circuits for Supraspinal Control of Locomotion. Neuron, 2018, 100, 361-374.	3.8	97
4	Éloge de la Fuite: Neural Circuits for Avoiding Dangerous Situations. Trends in Neurosciences, 2019, 42, 657-659.	4.2	0
5	The Cognitive Ecology of Stimulus Ambiguity: A Predator–Prey Perspective. Trends in Ecology and Evolution, 2019, 34, 1048-1060.	4.2	30
6	Measuring vision using innate behaviours in mice with intact and impaired retina function. Scientific Reports, 2019, 9, 10396.	1.6	17
7	Imaging and analysis of genetically encoded calcium indicators linking neural circuits and behaviors. Korean Journal of Physiology and Pharmacology, 2019, 23, 237.	0.6	35
8	Brainstem Circuits Controlling Action Diversification. Annual Review of Neuroscience, 2019, 42, 485-504.	5.0	55
10	Foraging as an evidence accumulation process. PLoS Computational Biology, 2019, 15, e1007060.	1.5	50
11	The translational neural circuitry of anxiety. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, jnnp-2019-321400.	0.9	74
12	Learning from Action: Reconsidering Movement Signaling in Midbrain Dopamine Neuron Activity. Neuron, 2019, 104, 63-77.	3.8	97
13	Looming Danger: Unraveling the Circuitry for Predator Threats. Trends in Neurosciences, 2019, 42, 841-842.	4.2	9
14	Dynamic remodeling of a basolateral-to-central amygdala glutamatergic circuit across fear states. Nature Neuroscience, 2019, 22, 2000-2012.	7.1	45
15	Harnessing behavioral diversity to understand neural computations for cognition. Current Opinion in Neurobiology, 2019, 58, 229-238.	2.0	40
16	Striga. Current Biology, 2019, 29, R1064-R1065.	1.8	2
17	What is an emotion?. Current Biology, 2019, 29, R1060-R1064.	1.8	54
18	Disentangling Hippocampal and Amygdala Contribution to Human Anxiety-Like Behavior. Journal of Neuroscience, 2019, 39, 8517-8526.	1.7	27
19	Optical Quantal Analysis Using Ca2+ Indicators: A Robust Method for Assessing Transmitter Release Probability at Excitatory Synapses by Imaging Single Glutamate Release Events. Frontiers in Synaptic Neuroscience, 2019, 11, 5.	1.3	8

#	Article	IF	CITATIONS
20	Direct auditory cortical input to the lateral periaqueductal gray controls sound-driven defensive behavior. PLoS Biology, 2019, 17, e3000417.	2.6	26
21	Genetically Defined Functional Modules for Spatial Orienting in the Mouse Superior Colliculus. Current Biology, 2019, 29, 2892-2904.e8.	1.8	72
22	Urban Architecture: A Cognitive Neuroscience Perspective. Design Journal, 2019, 22, 853-872.	0.5	12
23	Fight or flee? Lessons from insects on aggression. Neuroforum, 2019, 25, 3-13.	0.2	17
24	A subcortical excitatory circuit for sensory-triggered predatory hunting in mice. Nature Neuroscience, 2019, 22, 909-920.	7.1	115
25	Circuit asymmetries underlie functional lateralization in the mouse auditory cortex. Nature Communications, 2019, 10, 2783.	5.8	39
26	Recent Advancements Surrounding the Role of the Periaqueductal Gray in Predators and Prey. Frontiers in Behavioral Neuroscience, 2019, 13, 60.	1.0	14
27	Modulation of Ion Channels in the Axon: Mechanisms and Function. Frontiers in Cellular Neuroscience, 2019, 13, 221.	1.8	45
28	A VTA GABAergic Neural Circuit Mediates Visually Evoked Innate Defensive Responses. Neuron, 2019, 103, 473-488.e6.	3.8	135
29	A Specialized Neural Circuit Gates Social Vocalizations in the Mouse. Neuron, 2019, 103, 459-472.e4.	3.8	122
31	Cognitive Control of Escape Behaviour. Trends in Cognitive Sciences, 2019, 23, 334-348.	4.0	128
32	A Shift in the Activation of Serotonergic and Non-serotonergic Neurons in the Dorsal Raphe Lateral Wings Subnucleus Underlies the Panicolytic-Like Effect of Fluoxetine in Rats. Molecular Neurobiology, 2019, 56, 6487-6500.	1.9	10
33	The Role of the Amygdala and the Ventromedial Prefrontal Cortex in Emotional Regulation: Implications for Post-traumatic Stress Disorder. Neuropsychology Review, 2019, 29, 220-243.	2.5	66
34	Periaqueductal Gray Sheds Light on Dark Areas of Psychopathology. Trends in Neurosciences, 2019, 42, 349-360.	4.2	71
35	Are periaqueductal gray and dorsal raphe the foundation of appetitive and aversive control? A comprehensive review. Progress in Neurobiology, 2019, 177, 33-72.	2.8	90
36	Mechanisms of Sensory Discrimination: Insights from Drosophila Olfaction. Annual Review of Biophysics, 2019, 48, 209-229.	4.5	24
37	Neural circuits underlying a psychotherapeutic regimen for fear disorders. Nature, 2019, 566, 339-343.	13.7	91
38	A cortical-brainstem circuit predicts and governs compulsive alcohol drinking. Science, 2019, 366, 1008-1012.	6.0	147

#	Article	IF	CITATIONS
39	Trade-off between motor performance and behavioural flexibility in the action selection of cricket escape behaviour. Scientific Reports, 2019, 9, 18112.	1.6	10
40	Sound check, stage design and screen plot – how to increase the comparability of fear conditioning and fear extinction experiments. Psychopharmacology, 2019, 236, 33-48.	1.5	27
41	Dopamine tunes prefrontal outputs to orchestrate aversive processing. Brain Research, 2019, 1713, 16-31.	1.1	53
42	The amygdala differentially regulates defensive behaviors evoked by CO2. Behavioural Brain Research, 2020, 377, 112236.	1.2	10
43	Threshold Switching in Single Metalâ€Oxide Nanobelt Devices Emulating an Artificial Nociceptor. Advanced Electronic Materials, 2020, 6, 1900595.	2.6	35
44	An innate brainstem self-other system involving orienting, affective responding, and polyvalent relational seeking: Some clinical implications for a "Deep Brain Reorienting―trauma psychotherapy approach. Medical Hypotheses, 2020, 136, 109502.	0.8	8
45	Choosing to urinate. Circuits and mechanisms underlying voluntary urination. Current Opinion in Neurobiology, 2020, 60, 129-135.	2.0	7
46	The role of the periaqueductal gray in escape behavior. Current Opinion in Neurobiology, 2020, 60, 115-121.	2.0	48
47	Neural circuits for evidence accumulation and decision making in larval zebrafish. Nature Neuroscience, 2020, 23, 94-102.	7.1	91
48	Anatomically segregated basal ganglia pathways allow parallel behavioral modulation. Nature Neuroscience, 2020, 23, 1388-1398.	7.1	104
49	Brain-wide, scale-wide physiology underlying behavioral flexibility in zebrafish. Current Opinion in Neurobiology, 2020, 64, 151-160.	2.0	14
50	A High-Dimensional Quantification of Mouse Defensive Behaviors Reveals Enhanced Diversity and Stimulus Specificity. Current Biology, 2020, 30, 4619-4630.e5.	1.8	20
51	Distributed and retinotopically asymmetric processing of coherent motion in mouse visual cortex. Nature Communications, 2020, 11, 3565.	5.8	40
52	Dendritic and parallel processing of visual threats in the retina control defensive responses. Science Advances, 2020, 6, .	4.7	30
53	Stimulation of Posterior Thalamic Nuclei Induces Photophobic Behavior in Mice. Headache, 2020, 60, 1961-1981.	1.8	13
54	A simple threat-detection strategy in mice. BMC Biology, 2020, 18, 93.	1.7	20
55	Differential Encoding of Predator Fear in the Ventromedial Hypothalamus and Periaqueductal Grey. Journal of Neuroscience, 2020, 40, 9283-9292.	1.7	29
56	Using mouse genetics to investigate supraspinal pathways of the brain important to locomotion. , 2020, , 269-313.		4

#	Article	IF	CITATIONS
57	A Neural Basis for Categorizing Sensory Stimuli to Enhance Decision Accuracy. Current Biology, 2020, 30, 4896-4909.e6.	1.8	18
58	A specialized reciprocal connectivity suggests a link between the mechanisms by which the superior colliculus and parabigeminal nucleus produce defensive behaviors in rodents. Scientific Reports, 2020, 10, 16220.	1.6	18
59	Anatomical and electrophysiological analysis of cholinergic inputs from the parabigeminal nucleus to the superficial superior colliculus. Journal of Neurophysiology, 2020, 124, 1968-1985.	0.9	15
60	Retinal ganglion cell defects cause decision shifts in visually evoked defense responses. Journal of Neurophysiology, 2020, 124, 1530-1549.	0.9	4
61	Brainstem neurons that command mammalian locomotor asymmetries. Nature Neuroscience, 2020, 23, 730-740.	7.1	103
62	An Algorithmic Approach to Natural Behavior. Current Biology, 2020, 30, R663-R675.	1.8	35
63	Heterogeneous Habenular Neuronal Ensembles during Selection of Defensive Behaviors. Cell Reports, 2020, 31, 107752.	2.9	35
64	A mobile approach-avoidance task. Behavior Research Methods, 2020, 52, 2085-2097.	2.3	29
65	Hierarchical Representations of Aggression in a Hypothalamic-Midbrain Circuit. Neuron, 2020, 106, 637-648.e6.	3.8	76
66	Interactive virtual objects attract attention and induce exploratory behaviours in rats. Behavioural Brain Research, 2020, 392, 112737.	1.2	3
67	A Neural Representation of Naturalistic Motion-Guided Behavior in the Zebrafish Brain. Current Biology, 2020, 30, 2321-2333.e6.	1.8	20
68	Paraventricular nucleus CRH neurons encode stress controllability and regulate defensive behavior selection. Nature Neuroscience, 2020, 23, 398-410.	7.1	106
69	A disinhibitory nigra-parafascicular pathway amplifies seizure in temporal lobe epilepsy. Nature Communications, 2020, 11, 923.	5.8	67
70	The neurobiology of innate and learned vocalizations in rodents and songbirds. Current Opinion in Neurobiology, 2020, 64, 24-31.	2.0	32
71	Monosynaptic inputs to specific cell types of the intermediate and deep layers of the superior colliculus. Journal of Comparative Neurology, 2020, 528, 2254-2268.	0.9	27
72	Space, Time, and Fear: Survival Computations along Defensive Circuits. Trends in Cognitive Sciences, 2020, 24, 228-241.	4.0	138
73	Neural plasticity of the amygdala. Handbook of Behavioral Neuroscience, 2020, , 115-126.	0.7	1
74	The influence of subcortical shortcuts on disordered sensory and cognitive processing. Nature Reviews Neuroscience, 2020, 21, 264-276.	4.9	59

		CITATION REPORT		
#	Article		IF	CITATIONS
75	Basal Ganglia Circuits for Action Specification. Annual Review of Neuroscience, 2020,	43, 485-507.	5.0	55
76	The Neural Basis of Escape Behavior in Vertebrates. Annual Review of Neuroscience, 20	020, 43, 417-439.	5.0	64
77	A Causal Role for Mouse Superior Colliculus in Visual Perceptual Decision-Making. Jour Neuroscience, 2020, 40, 3768-3782.	nal of	1.7	49
78	Identification of retinal ganglion cell types and brain nuclei expressing the transcriptio Brn3c/Pou4f3 using a Cre recombinase knockâ€in allele. Journal of Comparative Neurc 1926-1953.	n factor ology, 2021, 529,	0.9	9
82	Corticostriatal control of defense behavior in mice induced by auditory looming cues. Communications, 2021, 12, 1040.	Nature	5.8	40
83	Neural network involving medial orbitofrontal cortex and dorsal periaqueductal gray re human alcohol abuse. Science Advances, 2021, 7, .	gulation in	4.7	15
85	Unraveling circuits of visual perception and cognition through the superior colliculus. 1 2021, 109, 918-937.	Neuron,	3.8	94
86	Subcellular Dissection of a Simple Neural Circuit: Functional Domains of the Mauthner Habituation. Frontiers in Neural Circuits, 2021, 15, 648487.	-Cell During	1.4	5
87	Multiple decisions about one object involve parallel sensory acquisition but time-multi evidence incorporation. ELife, 2021, 10, .	plexed	2.8	26
88	Visual stimulus-specific habituation of innate defensive behaviour in mice. Journal of Ex Biology, 2021, 224, .	kperimental	0.8	4
89	An Infrared Touch System for Automatic Behavior Monitoring. Neuroscience Bulletin, 2	2021, 37, 815-830.	1.5	5
90	Should I Stay or Should I Go? CRHPVN Neurons Gate State Transitions in Stress-Relate Endocrinology, 2021, 162, .	d Behaviors.	1.4	6
93	Shared Dorsal Periaqueductal Gray Activation Patterns during Exposure to Innate and Threats. Journal of Neuroscience, 2021, 41, 5399-5420.	Conditioned	1.7	13
94	Behavioral and brain mechanisms mediating conditioned flight behavior in rats. Scient 2021, 11, 8215.	ific Reports,	1.6	30
95	Engram cell connectivity: an evolving substrate for information storage. Current Opini Neurobiology, 2021, 67, 215-225.	on in	2.0	17
96	Neuropixels 2.0: A miniaturized high-density probe for stable, long-term brain recording 2021, 372, .	gs. Science,	6.0	467
98	Efficient optogenetic silencing of neurotransmitter release with a mosquito rhodopsin 109, 1621-1635.e8.	. Neuron, 2021,	3.8	81
101	Dorsal periaqueductal gray ensembles represent approach and avoidance states. ELife,	2021, 10, .	2.8	26

#	Article	IF	CITATIONS
103	Optogenetic fUSI for brain-wide mapping of neural activity mediating collicular-dependent behaviors. Neuron, 2021, 109, 1888-1905.e10.	3.8	39
104	Distinct circuits in rat central amygdala for defensive behaviors evoked by socially signaled imminent versus remote danger. Current Biology, 2021, 31, 2347-2358.e6.	1.8	28
105	Inhibitory neurons in the superior colliculus mediate selection of spatially-directed movements. Communications Biology, 2021, 4, 719.	2.0	23
106	Coordination of escape and spatial navigation circuits orchestrates versatile flight from threats. Neuron, 2021, 109, 1848-1860.e8.	3.8	47
107	Transcriptomic encoding of sensorimotor transformation in the midbrain. ELife, 2021, 10, .	2.8	27
109	Central amygdala circuits in valence and salience processing. Behavioural Brain Research, 2021, 410, 113355.	1.2	31
111	Informational constraints on predator–prey interactions. Oikos, 2022, 2022, .	1.2	6
113	An Inhibitory Medial Preoptic Circuit Mediates Innate Exploration. Frontiers in Neuroscience, 2021, 15, 716147.	1.4	4
114	Motor behavior: A feedforward circuit for zebrafish escape. Current Biology, 2021, 31, R965-R967.	1.8	0
115	Functional organization of the midbrain periaqueductal gray for regulating aversive memory formation. Molecular Brain, 2021, 14, 136.	1.3	13
116	Action-based organization of a cerebellar module specialized for predictive control of multiple body parts. Neuron, 2021, 109, 2981-2994.e5.	3.8	17
117	Dorsal premammillary projection to periaqueductal gray controls escape vigor from innate and conditioned threats. ELife, 2021, 10, .	2.8	22
120	The neurobiology of human fear generalization: meta-analysis and working neural model. Neuroscience and Biobehavioral Reviews, 2021, 128, 421-436.	2.9	26
122	Neural Circuits Underlying Innate Fear. Advances in Experimental Medicine and Biology, 2020, 1284, 1-7.	0.8	13
123	VTA Glutamatergic Neurons Mediate Innate Defensive Behaviors. Neuron, 2020, 107, 368-382.e8.	3.8	81
138	Dissecting the Tectal Output Channels for Orienting and Defense Responses. ENeuro, 2020, 7, ENEURO.0271-20.2020.	0.9	33
139	Visual-looming Shadow Task with in-vivo Calcium Activity Monitoring to Assess Defensive Behaviors in Mice. Bio-protocol, 2020, 10, e3826.	0.2	2
140	Sparse recurrent excitatory connectivity in the microcircuit of the adult mouse and human cortex. ELife, 2018, 7, .	2.8	142

		CITATION RE	PORT	
#	Article		IF	CITATIONS
141	Thalamocortical synapses in the cat visual system in vivo are weak and unreliable. ELife,	2019, 8, .	2.8	7
142	Chronically implanted Neuropixels probes enable high-yield recordings in freely moving 2019, 8, .	mice. ELife,	2.8	124
143	The sifting of visual information in the superior colliculus. ELife, 2020, 9, .		2.8	77
144	A projection specific logic to sampling visual inputs in mouse superior colliculus. ELife, 2	2019, 8, .	2.8	53
145	Stimulus salience determines defensive behaviors elicited by aversively conditioned seri auditory stimuli. ELife, 2020, 9, .	al compound	2.8	28
146	Differentiating between integration and non-integration strategies in perceptual decision ELife, 2020, 9, .	on making.	2.8	58
147	Learning speed and detection sensitivity controlled by distinct cortico-fugal neurons in cortex. ELife, 2020, 9, .	visual	2.8	18
148	Circuit and synaptic organization of forebrain-to-midbrain pathways that promote and s vocalization. ELife, 2020, 9, .	uppress	2.8	57
149	Flexible inhibitory control of visually evoked defensive behavior by the ventral lateral ge nucleus. Neuron, 2021, 109, 3810-3822.e9.	niculate	3.8	39
150	Oestrogen engages brain MC4R signalling to drive physical activity in female mice. Natu 131-135.	ıre, 2021, 599,	13.7	59
151	Accurate Localization of Linear Probe Electrode Arrays across Multiple Brains. ENeuro, 2 ENEURO.0241-21.2021.	021, 8,	0.9	16
152	Divergent outputs of the ventral lateral geniculate nucleus mediate visually evoked defe behaviors. Cell Reports, 2021, 37, 109792.	ensive	2.9	32
161	Charting a Path toward Aggression. Neuron, 2020, 106, 556-558.		3.8	2
169	Collicular Anatomy and Function. , 2020, , 549-566.			0
172	Circuits for State-Dependent Modulation of Locomotion. Frontiers in Human Neuroscie 745689.	nce, 2021, 15,	1.0	10
173	Role of Anterior Cingulate Cortex Inputs to Periaqueductal Gray for Pain Avoidance. SSI Journal, 0, , .	N Electronic	0.4	0
174	Audiovisual integration in the Mauthner cell enhances escape probability and reduces re latency. Scientific Reports, 2022, 12, 1097.	esponse	1.6	2
175	Amygdala Underlies the Environment Dependency of Defense Responses Induced via Su Colliculus. Frontiers in Neural Circuits, 2021, 15, 768647.	perior	1.4	3

#	Article	IF	CITATIONS
176	Reward and aversion encoding in the lateral habenula for innate and learned behaviours. Translational Psychiatry, 2022, 12, 3.	2.4	19
177	Brainstem Circuits for Locomotion. Annual Review of Neuroscience, 2022, 45, 63-85.	5.0	49
178	Mechanically evoked defensive attack is controlled by GABAergic neurons in the anterior hypothalamic nucleus. Nature Neuroscience, 2022, 25, 72-85.	7.1	23
179	Action selection based on multiple-stimulus aspects in wind-elicited escape behavior of crickets. Heliyon, 2022, 8, e08800.	1.4	5
181	Neuroscience in the 21st century: circuits, computation, and behaviour. Lancet Neurology, The, 2022, 21, 19-21.	4.9	4
182	A dual-channel optogenetic stimulator selectively modulates distinct defensive behaviors. IScience, 2022, 25, 103681.	1.9	13
183	Superior Colliculus to VTA pathway controls orienting response and influences social interaction in mice. Nature Communications, 2022, 13, 817.	5.8	19
184	Neural and Genetic Basis of Evasion, Approach and Predation. Molecules and Cells, 2022, 45, 93-97.	1.0	5
186	A Theoretical Framework for Human and Nonhuman Vocal Interaction. Annual Review of Neuroscience, 2022, 45, 295-316.	5.0	6
187	Development and experience-dependent modulation of the defensive behaviors of mice to visual threats. Journal of Physiological Sciences, 2022, 72, 5.	0.9	3
190	Neural mechanisms of persistent aggression. Current Opinion in Neurobiology, 2022, 73, 102526.	2.0	9
191	Feature Detection by Retinal Ganglion Cells. Annual Review of Vision Science, 2022, 8, 135-169.	2.3	32
194	Improving the Communication and Computation Efficiency of Split Learning for IoT Applications. , 2021,		12
195	Hippocampal-hypothalamic circuit controls context-dependent innate defensive responses. ELife, 2022, 11, .	2.8	12
196	Unrelenting Fear Under Stress: Neural Circuits and Mechanisms for the Immediate Extinction Deficit. Frontiers in Systems Neuroscience, 2022, 16, 888461.	1.2	15
198	Functional Organisation of the Mouse Superior Colliculus. Frontiers in Neural Circuits, 2022, 16, .	1.4	16
199	Dopamine modulates visual threat processing in the superior colliculus via D2 receptors. IScience, 2022, 25, 104388.	1.9	4
201	Tangential high-density electrode insertions allow to simultaneously measure neuronal activity across an extended region of the visual field in mouse superior colliculus. Journal of Neuroscience Methods, 2022, 376, 109622.	1.3	9

#	ARTICLE	IF	CITATIONS
202	The Superior Colliculus: Cell Types, Connectivity, and Behavior. Neuroscience Bulletin, 2022, 38, 1519-1540.	1.5	24
203	Innate heuristics and fast learning support escape route selection in mice. Current Biology, 2022, 32, 2980-2987.e5.	1.8	2
204	Role of anterior cingulate cortex inputs to periaqueductal gray for pain avoidance. Current Biology, 2022, 32, 2834-2847.e5.	1.8	22
205	The "Primitive Brain Dysfunction―Theory of Autism: The Superior Colliculus Role. Frontiers in Integrative Neuroscience, 2022, 16, .	1.0	5
207	Proposing a neural framework for the evolution of elaborate courtship displays. ELife, 0, 11, .	2.8	11
208	Threat history controls flexible escape behavior in mice. Current Biology, 2022, 32, 2972-2979.e3.	1.8	12
212	Post-trauma behavioral phenotype predicts the degree of vulnerability to fear relapse after extinction in male rats. Current Biology, 2022, 32, 3180-3188.e4.	1.8	5
213	Social Cues of Safety Can Override Differences in Threat Level. Frontiers in Ecology and Evolution, 0, 10, .	1.1	0
215	Sparse genetically defined neurons refine the canonical role of periaqueductal gray columnar organization. ELife, 0, 11, .	2.8	9
217	Freezing revisited: coordinated autonomic and central optimization of threat coping. Nature Reviews Neuroscience, 2022, 23, 568-580.	4.9	42
219	Imbalance of flight–freeze responses and their cellular correlates in the Nlgn3â^'/y rat model of autism. Molecular Autism, 2022, 13, .	2.6	5
220	Cell-type specific changes in PKC-delta neurons of the central amygdala during alcohol withdrawal. Translational Psychiatry, 2022, 12, .	2.4	17
222	Preparation of acute midbrain slices containing the superior colliculus and periaqueductal Gray for patch-clamp recordings. PLoS ONE, 2022, 17, e0271832.	1.1	1
223	The central nucleus of the amygdala and the construction of defensive modes across the threat-imminence continuum. Nature Neuroscience, 2022, 25, 999-1008.	7.1	37
224	Prefrontal and hippocampal theta rhythm show anxiolyticâ€like changes during periaqueductalâ€elicited "panic―in rats. Hippocampus, 2022, 32, 679-694.	0.9	3
226	Refinements to rodent head fixation and fluid/food control for neuroscience. Journal of Neuroscience Methods, 2022, 381, 109705.	1.3	6
227	The central extended amygdala guides survival-relevant tradeoffs: Implications for understanding common psychiatric disorders. Neuroscience and Biobehavioral Reviews, 2022, 142, 104879.	2.9	12
228	Efficient and Private ECG Classification on the Edge Using a Modified Split Learning Mechanism. , 2022,		5

#	Article	IF	CITATIONS
229	Tonic activity in lateral habenula neurons acts as a neutral valence brake on reward-seeking behavior. Current Biology, 2022, 32, 4325-4336.e5.	1.8	3
230	Sensory-thresholded switch of neural firing states in a computational model of the ventromedial hypothalamus. Frontiers in Computational Neuroscience, 0, 16, .	1.2	0
231	A Midbrain Inspired Recurrent Neural Network Model for Robust Change Detection. Journal of Neuroscience, 0, , JN-RM-0164-22.	1.7	1
232	The caudal prethalamus: Inhibitory switchboard for behavioral control?. Neuron, 2022, 110, 2728-2742.	3.8	13
235	Phylogenetic view of the compensatory mechanisms in motor and sensory systems after neuronal injury. Current Research in Neurobiology, 2022, 3, 100058.	1.1	1
236	Lateral septum modulates cortical state to tune responsivity to threat stimuli. Cell Reports, 2022, 41, 111521.	2.9	5
238	Habit Formation and the Effect of Repeated Stress Exposures on Cognitive Flexibility Learning in Horses. Animals, 2022, 12, 2818.	1.0	2
239	Different coding characteristics between flight and freezing in dorsal periaqueductal gray of mice during exposure to innate threats. Animal Models and Experimental Medicine, 2022, 5, 491-501.	1.3	3
242	A cortico-collicular circuit for orienting to shelter during escape. Nature, 2023, 613, 111-119.	13.7	18
243	Impact of the glutamatergic neurotransmission within the A5 region on the cardiorespiratory response evoked from the midbrain dlPAG. Pflugers Archiv European Journal of Physiology, 2023, 475, 505-516.	1.3	4
245	Homeostatic regulation through strengthening of neuronal network-correlated synaptic inputs. ELife, 0, 11, .	2.8	3
246	Male and female mice display consistent lifelong ability to address potential life-threatening cues using different post-threat coping strategies. BMC Biology, 2022, 20, .	1.7	3
247	Positioning the brainstem within the neural network of threat prediction. Trends in Neurosciences, 2022, , .	4.2	0
248	Neuronal structures controlling locomotor behavior during active and inactive motor states. Neuroscience Research, 2023, 189, 83-93.	1.0	3
249	Anatomical and functional study of the cuneiform nucleus: A critical site to organize innate defensive behaviors. Annals of the New York Academy of Sciences, 2023, 1521, 79-95.	1.8	4
250	Targeted sensors for glutamatergic neurotransmission. ELife, 0, 12, .	2.8	6
252	An approximate line attractor in the hypothalamus encodes an aggressive state. Cell, 2023, 186, 178-193.e15.	13.5	21
254	A synaptic filtering mechanism in visual threat identification in mouse. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	2

#	Article	IF	CITATIONS
255	Parabrachial-to-parasubthalamic nucleus pathway mediates fear-induced suppression of feeding in male mice. Nature Communications, 2022, 13, .	5.8	9
256	Acoustic and structural differences between musically portrayed subtypes of fear. Journal of the Acoustical Society of America, 2023, 153, 384-399.	0.5	2
258	Neural Circuit Mechanisms Involved in Animals' Detection of and Response to Visual Threats. Neuroscience Bulletin, 2023, 39, 994-1008.	1.5	1
259	"Self-inactivating―rabies viruses are susceptible to loss of their intended attenuating modification. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	9
260	Orchestration of innate and conditioned defensive actions by the periaqueductal gray. Neuropharmacology, 2023, 228, 109458.	2.0	6
261	Mice and primates use distinct strategies for visual segmentation. ELife, 0, 12, .	2.8	6
262	Induction of flight via midbrain projections to the cuneiform nucleus. PLoS ONE, 2023, 18, e0281464.	1.1	5
264	Subcortical contributions to salience network functioning during negative emotional processing. NeuroImage, 2023, 270, 119964.	2.1	4
265	A parabrachial to hypothalamic pathway mediates defensive behavior. ELife, 0, 12, .	2.8	1
266	M2 cortex circuitry and sensory-induced behavioral alterations in Huntington's Disease: role of superior colliculus. Journal of Neuroscience, 0, , JN-RM-1172-22.	1.7	0
268	What Are the Functions of the Superior Colliculus and Its Involvement in Neurologic Disorders?. Neurology, 2023, 100, 784-790.	1.5	1
269	Ventral striatum dopamine release encodes unique properties of visual stimuli in mice. ELife, 0, 12, .	2.8	2
287	Brain Mechanisms Underlying Panic Attack and Panic Disorder. Neuroscience Bulletin, 0, , .	1.5	0
296	Defensive responses: behaviour, the brain and the body. Nature Reviews Neuroscience, 2023, 24, 655-671.	4.9	4
312	Multimodal Nature of the Single-cell Primate Brain Atlas: Morphology, Transcriptome, Electrophysiology, and Connectivity. Neuroscience Bulletin, 2024, 40, 517-532.	1.5	0