Adsorption and Detection of Hazardous Trace Gases by

Advanced Materials 30, e1704679 DOI: 10.1002/adma.201704679

Citation Report

#	Article	IF	CITATIONS
1	Microporous metal–organic frameworks with open metal sites and π-Lewis acidic pore surfaces for recovering ethylene from polyethylene off-gas. Journal of Materials Chemistry A, 2018, 6, 20822-20828.	5.2	30
2	Advanced Materials for Nextâ€Generation Spacecraft. Advanced Materials, 2018, 30, e1802201.	11.1	92
3	Nanometer-scaled iridium particles gas-phase-loaded into the pores of the metal–organic framework MIL-101. Polyhedron, 2018, 155, 441-446.	1.0	7
4	Recent progress in biological and chemical sensing by luminescent metal-organic frameworks. Sensors and Actuators B: Chemical, 2018, 273, 1346-1370.	4.0	85
5	Study on Adsorption and Desorption Performances of Trace C4–C6 Alkane Mixture on MIL-101(Cr) and WS-480. Energy & Fuels, 2019, 33, 7587-7594.	2.5	3
6	Metal-Organic Framework Composites for Catalysis. Matter, 2019, 1, 57-89.	5.0	308
7	Fluorescence sensing of H2O in alcohols solvents based on instability of the by-product from synthesis of metal-organic framework. Microporous and Mesoporous Materials, 2019, 290, 109624.	2.2	5
8	Electrospun Ceramic Nanofibers and Hybrid-Nanofiber Composites for Gas Sensing. ACS Applied Nano Materials, 2019, 2, 4026-4042.	2.4	70
9	A FRET probe for the detection of alkylating agents. Chemical Communications, 2019, 55, 8655-8658.	2.2	16
10	Porous metal-organic frameworks for gas storage and separation: Status and challenges. EnergyChem, 2019, 1, 100006.	10.1	434
11	A Hydrogenâ€Bonded Organic Framework (HOF) with Typeâ€IV NH ₃ Adsorption Behavior. Angewandte Chemie - International Edition, 2019, 58, 16152-16155.	7.2	77
12	3Dâ€5uperstructured Networks Comprising Feâ€MILâ€88A Metalâ€Organic Frameworks Under Mechanochemical Conditions. European Journal of Inorganic Chemistry, 2019, 2019, 4597-4600.	1.0	18
13	Metal–Organic Framework and Hydrogel Based Strategy as a Universal First-Aid Treatment of Three Different Typical Snake Bites. ACS Biomaterials Science and Engineering, 2019, 5, 6265-6273.	2.6	2
14	Modular Synthesis of Highly Porous Zr-MOFs Assembled from Simple Building Blocks for Oxygen Storage. ACS Applied Materials & Interfaces, 2019, 11, 42179-42185.	4.0	17
15	Subppm Amine Detection via Absorption and Luminescence Turn-On Caused by Ligand Exchange in Metal Organic Frameworks. Analytical Chemistry, 2019, 91, 15853-15859.	3.2	37
16	On the Use of MOFs and ALD Layers as Nanomembranes for the Enhancement of Gas Sensors Selectivity. Nanomaterials, 2019, 9, 1552.	1.9	11
17	A Hydrogenâ€Bonded Organic Framework (HOF) with Typeâ€IV NH 3 Adsorption Behavior. Angewandte Chemie, 2019, 131, 16298-16301.	1.6	14
18	Compartmentalization within Nanofibers of Doubleâ€Decker Phthalocyanine Induces Highâ€Performance Sensing in both Aqueous Solution and the Gas Phase. Chemistry - A European Journal, 2019, 25, 16207-16213	1.7	7

#	Article	IF	CITATIONS
19	Kinetic stability of metal–organic frameworks for corrosive and coordinating gas capture. Nature Reviews Materials, 2019, 4, 708-725.	23.3	214
20	Quantitative Assessment of Vapor Molecule Adsorption to Solid Surfaces by Flow Rate Monitoring in Microfluidic Channels. Analytical Chemistry, 2019, 91, 12827-12834.	3.2	6
21	Ferroceneâ€Linkageâ€Facilitated Charge Separation in Conjugated Microporous Polymers. Angewandte Chemie - International Edition, 2019, 58, 4221-4226.	7.2	109
22	Ferroceneâ€Linkageâ€Facilitated Charge Separation in Conjugated Microporous Polymers. Angewandte Chemie, 2019, 131, 4265-4270.	1.6	11
23	Exploring the Role of Hexanuclear Clusters as Lewis Acidic Sites in Isostructural Metal–Organic Frameworks. Chemistry of Materials, 2019, 31, 4166-4172.	3.2	80
24	Water adsorption/desorption over metal-organic frameworks with ammonium group for possible application in adsorption heat transformation. Chemical Engineering Journal, 2019, 373, 1064-1071.	6.6	46
25	Nickel(II)-Based Two-Dimensional Coordination Polymer Displaying Superior Capabilities for Selective Sensing of Cr(VI) Ions in Water. Crystal Growth and Design, 2019, 19, 3518-3528.	1.4	54
26	Responsive Amorphous Photonic Structures of Spherical/Polyhedral Colloidal Metal–Organic Frameworks. Advanced Optical Materials, 2019, 7, 1900522.	3.6	27
27	Ultrasonic spray deposition as a new route to luminescent MOF film synthesis. Journal of Luminescence, 2019, 212, 322-327.	1.5	13
28	Effect of Counterions on the Formation and Structures of Ce(III) and Er(III) Chloranilate Frameworks. Crystal Growth and Design, 2019, 19, 3338-3347.	1.4	20
29	Sensing and Discrimination of Explosives at Variable Concentrations with a Large-Pore MOF as Part of a Luminescent Array. ACS Applied Materials & amp; Interfaces, 2019, 11, 11618-11626.	4.0	54
30	A functional FePt@MOFs (MIL-101(Fe)) nano-platform for high efficient colorimetric determination of H ₂ O ₂ . Analyst, The, 2019, 144, 2716-2724.	1.7	24
31	Connecting Wires: Photoinduced Electronic Structure Modulation in Metal–Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 5350-5358.	6.6	90
32	Selfâ€Assembly of Spherical Organic Molecules to Form Hollow Vesicular Structures in Water for Encapsulation of an Anticancer Drug and Its Release. Chemistry - an Asian Journal, 2019, 14, 1992-1999.	1.7	2
33	Metal–organic framework-based nanomaterials for adsorption and photocatalytic degradation of gaseous pollutants: recent progress and challenges. Environmental Science: Nano, 2019, 6, 1006-1025.	2.2	245
34	Determination of the optimum porosity for 2-CEES adsorption by activated carbon fiber from various precursors. Carbon Letters, 2019, 29, 649-654.	3.3	13
35	Two 2D Zinc(II) Coordination Polymers and Their Orange IV Composites: Preparation, Structures, and Photocurrent Responses. Crystal Growth and Design, 2019, 19, 211-218.	1.4	14
36	ZnO@ZIF-8 core-shell microspheres for improved ethanol gas sensing. Sensors and Actuators B: Chemical, 2019, 284, 421-427.	4.0	113

#	Article	IF	CITATIONS
37	Functionâ€Oriented: The Construction of Lanthanide MOF Luminescent Sensors Containing Dualâ€Function Urea Hydrogenâ€Bond Sites for Efficient Detection of Picric Acid. Chemistry - A European Journal, 2019, 25, 1090-1097.	1.7	64
38	Formation of CX Bonds in CO ₂ Chemical Fixation Catalyzed by Metalâ^'Organic Frameworks. Advanced Materials, 2020, 32, e1806163.	11.1	102
39	Recent Progress in the Removal of Heavy Metal Ions from Water Using Metalâ€Organic Frameworks. ChemistrySelect, 2020, 5, 124-146.	0.7	70
40	A Novel dâ€f Heterometallic Cd ^{II} â€Eu ^{III} Metalâ€organic Framework as a Sensitive Luminescent Sensor for the Dual Detection of Ronidazole and 4â€Nitrophenol. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2020, 646, 268-274.	0.6	21
41	Heterogeneous nucleation and synthesis of carbon dots hybrid Zr-based MOFs for simultaneous recognition and effective removal of tetracycline. Chemical Engineering Journal, 2020, 392, 123680.	6.6	67
42	The advanced sensing systems for NO based on metal-organic frameworks: Applications and future opportunities. TrAC - Trends in Analytical Chemistry, 2020, 122, 115730.	5.8	26
43	Bismuth-MOF based on tetraphenylethylene derivative as a luminescent sensor with turn-off/on for application of Fe3+ detection in serum and bioimaging, as well as emissive spectra analysis by TRES. Sensors and Actuators B: Chemical, 2020, 325, 128767.	4.0	55
44	Tellurene Nanoflake-Based NO ₂ Sensors with Superior Sensitivity and a Sub-Parts-per-Billion Detection Limit. ACS Applied Materials & Interfaces, 2020, 12, 47704-47713.	4.0	54
45	Pillar-Layered Metal–Organic Frameworks Based on a Hexaprismane [Co6(μ3-OH)6] Cluster: Structural Modulation and Catalytic Performance in Aerobic Oxidation Reaction. Inorganic Chemistry, 2020, 59, 11728-11735.	1.9	17
46	Rational Design of MoS ₂ /C ₃ N ₄ Hybrid Aerogel with Abundant Exposed Edges for Highly Sensitive NO ₂ Detection at Room Temperature. Chemistry of Materials, 2020, 32, 7215-7225.	3.2	43
47	A water-stable luminescent coordination polymer for sensitive detection of nitroaromatic compounds. Inorganic Chemistry Communication, 2020, 120, 108170.	1.8	8
48	Functional metal–organic frameworks as effective sensors of gases and volatile compounds. Chemical Society Reviews, 2020, 49, 6364-6401.	18.7	784
49	Recent Advances in Flexible Fieldâ€Effect Transistors toward Wearable Sensors. Advanced Intelligent Systems, 2020, 2, 2000113.	3.3	46
50	Aptamer-functionalized Fe3O4@MOF nanocarrier for targeted drug delivery and fluorescence imaging of the triple-negative MDA-MB-231 breast cancer cells. Journal of Solid State Chemistry, 2020, 292, 121680.	1.4	62
51	Emerging Porous Materials and Their Composites for NH ₃ Gas Removal. Advanced Science, 2020, 7, 2002142.	5.6	58
52	NO ₂ Removal under Ambient Conditions by Nanoporous Multivariate Zirconium-Based Metal–Organic Framework. ACS Applied Nano Materials, 2020, 3, 11442-11454.	2.4	20
53	Evaluating the Fitness of Combinations of Adsorbents for Quantitative Gas Sensor Arrays. ACS Sensors, 2020, 5, 4035-4047.	4.0	7
54	Designing and Engineering of Nanocarriers for Bioapplication in Cancer Immunotherapy. ACS Applied Bio Materials, 2020, 3, 8321-8337.	2.3	25

	CITATION	Report	
#	Article	IF	CITATIONS
55	Self-assembly of three-dimensional oxalate-bridged alkali(<scp>i</scp>)–lanthanide(<scp>iii</scp>) heterometal–organic frameworks. CrystEngComm, 2020, 22, 4833-4841.	1.3	6
56	A "Thermodynamically Stable―2D Nickel Metal–Organic Framework over a Wide pH Range with Scalable Preparation for Efficient C ₂ s over C ₁ Hydrocarbon Separations. Chemistry - A European Journal, 2020, 26, 12624-12631.	1.7	28
57	Recent advances in the shaping of metal–organic frameworks. Inorganic Chemistry Frontiers, 2020, 7, 2840-2866.	3.0	88
58	Highly efficient cataluminescence gas sensor for acetone vapor based on UIO-66 metal-organic frameworks as preconcentrator. Sensors and Actuators B: Chemical, 2020, 312, 127952.	4.0	37
59	Metal–Organic Frameworks against Toxic Chemicals. Chemical Reviews, 2020, 120, 8130-8160.	23.0	406
60	Thermogravimetric Analysis and Mass Spectrometry Allow for Determination of Chemisorbed Reaction Products on Metal Organic Frameworks. Langmuir, 2020, 36, 3903-3911.	1.6	6
61	Electron transfer in the confined environments of metal–organic coordination supramolecular systems. Chemical Society Reviews, 2020, 49, 5561-5600.	18.7	75
62	Quasi-MOF-immobilized metal nanoparticles for synergistic catalysis. Science China Chemistry, 2020, 63, 1601-1607.	4.2	29
63	Highly Adsorptive and Magneto-Inductive Guefoams (Multifunctional Guest-Containing Foams) For Enhanced Energy-Efficient Preconcentration and Management of VOCs. ACS Applied Materials & Interfaces, 2020, 12, 11702-11712.	4.0	6
64	Hydrophobic Metal–Organic Frameworks: Assessment, Construction, and Diverse Applications. Advanced Science, 2020, 7, 1901758.	5.6	136
65	Curating Metal–Organic Frameworks To Compose Robust Gas Sensor Arrays in Dilute Conditions. ACS Applied Materials & Interfaces, 2020, 12, 6546-6564.	4.0	25
66	Low‧pin‧tate Hematite with Superior Adsorption of Anionic Contaminations for Water Purification. Advanced Materials, 2020, 32, e1905988.	11.1	77
67	Direct observation of dimethyl sulfide trapped by MOF proving efficient removal of sulfur impurities. RSC Advances, 2020, 10, 4710-4714.	1.7	7
68	Functionalization effects on HKUST-1 and HKUST-1/graphene oxide hybrid adsorbents for hydrogen sulfide removal. Journal of Hazardous Materials, 2020, 394, 122565.	6.5	92
69	Realization of an Ultrasensitive and Highly Selective OFET NO ₂ Sensor: The Synergistic Combination of PDVT-10 Polymer and Porphyrin–MOF. ACS Applied Materials & Interfaces, 2020, 12, 18748-18760.	4.0	75
70	Bimetallic metal–organic frameworks and their derivatives. Chemical Science, 2020, 11, 5369-5403.	3.7	285
71	FePt Nanoparticles Embedded in Metal–Organic Framework Nanoparticles for Tumor Imaging and Eradication. ACS Applied Nano Materials, 2020, 3, 4494-4503.	2.4	28
72	Application and Properties of Microporous Carbons Activated by ZnCl ₂ : Adsorption Behavior and Activation Mechanism. ACS Omega, 2020, 5, 9398-9407.	1.6	46

# 73	ARTICLE Recent advances in VOC elimination by catalytic oxidation technology onto various nanoparticles catalysts: a critical review. Applied Catalysis B: Environmental, 2021, 281, 119447.	IF 10.8	CITATIONS
74	An inorganic-organic hydrogen cluster: Fluorescence response of the high efficient detection of Fe3+, OHâ~ and nitro explosives. Journal of Molecular Structure, 2021, 1225, 129115.	1.8	4
75	Metal-organic frameworks as burgeoning materials for the capture and sensing of indoor VOCs and radon gases. Coordination Chemistry Reviews, 2021, 427, 213565.	9.5	94
76	Covalent Grapheneâ€MOF Hybrids for Highâ€Performance Asymmetric Supercapacitors. Advanced Materials, 2021, 33, e2004560.	11.1	121
77	Tuning the Conduction Band Potential of Biâ€based Semiconductors Using a Combination of Organic Ligands. ChemSusChem, 2021, 14, 892-897.	3.6	7
78	Enhancing the adsorption property of macroporous XADâ€2 resin by nanosecondâ€pulsed discharge plasma modification. Plasma Processes and Polymers, 2021, 18, 2000117.	1.6	8
79	MOFs assembled from <i>C</i> ₃ symmetric ligands: structure, iodine capture and role as bifunctional catalysts towards the oxidation–Knoevenagel cascade reaction. Dalton Transactions, 2021, 50, 647-659.	1.6	12
80	Self-assembling TiO2 on aminated graphene based on adsorption and catalysis to treat organic dyes. Applied Surface Science, 2021, 539, 147889.	3.1	21
81	Probing adsorbent heterogeneity using Toth isotherms. Journal of Materials Chemistry A, 2021, 9, 944-962.	5.2	12
82	Monodentate AlEgen Anchored on Metalâ€Organic Framework for Fast Fluorescence Sensing of Phosphate. Chinese Journal of Chemistry, 2021, 39, 99-105.	2.6	21
83	A new zeolitic lithium aluminum imidazolate framework. Dalton Transactions, 2021, 50, 7933-7937.	1.6	2
84	2D hydrogen-bonded organic frameworks: in-site generation and subsequent exfoliation. Chemical Communications, 2021, 57, 5901-5904.	2.2	17
85	Breaking the upper bound of siloxane uptake: metal–organic frameworks as an adsorbent platform. Journal of Materials Chemistry A, 2021, 9, 12711-12720.	5.2	10
86	Fiber-Based Gas Filter Assembled via In Situ Synthesis of ZIF-8 Metal Organic Frameworks for an Optimal Adsorption of SO ₂ : Experimental and Theoretical Approaches. ACS Applied Materials & Interfaces, 2021, 13, 1620-1631.	4.0	18
87	Metal–organic frameworks for chemical sensing devices. Materials Horizons, 2021, 8, 2387-2419.	6.4	139
88	Gender-dependent reproductive toxicity of copper metal–organic frameworks and attenuation by surface modification. Nanoscale, 2021, 13, 7389-7402.	2.8	8
89	A Novel Multisensor Detection System Design for Low Concentrations of Volatile Organic Compounds. IEEE Transactions on Industrial Electronics, 2022, 69, 5314-5324.	5.2	15
90	Metal–organic architectures designed from a triphenyl-pentacarboxylate linker: hydrothermal assembly, structural multiplicity, and catalytic Knoevenagel condensation. Inorganic Chemistry Frontiers, 2021, 8, 4209-4221.	3.0	11

		CITATION RE	PORT	
#	Article		IF	CITATIONS
91	Metal-Organic Frameworks for Environmental Applications. Engineering Materials, 202	.1, , 1-39.	0.3	0
92	High-performance electrically transduced hazardous gas sensors based on low-dimension nanomaterials. Nanoscale Advances, 2021, 3, 6254-6270.	onal	2.2	14
93	Beyond structural motifs: the frontier of actinide-containing metal–organic framewo Science, 2021, 12, 7214-7230.	orks. Chemical	3.7	43
94	A Pre-Concentration System Design for Electronic Nose via Finite Element Method. IEE on Circuits and Systems II: Express Briefs, 2021, 68, 3592-3596.	E Transactions	2.2	5
95	Mechanistic Insight into Charge and Energy Transfers of Luminescent Metal–Organi Based Sensors for Toxic Chemicals. Advanced Sustainable Systems, 2021, 5, 2000293	c Frameworks	2.7	27
96	Emerging Porous Solid Electrolytes for Hydroxide Ion Transport. Advanced Functional I 2021, 31, 2100083.	Materials,	7.8	27
97	A Fluorescent Titaniumâ€based Metalâ€Organic Framework Sensor for Nitroâ€aromat Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 759-763.	ics Detection.	0.6	17
98	Molecularâ€Rotorâ€Driven Advanced Porous Materials. Angewandte Chemie - Internat 60, 16279-16292.	ional Edition, 2021,	7.2	35
99	Experimental strategies on enhancing toxic gases uptake of metal–organic framewo Chemistry Reviews, 2021, 430, 213738.	rks. Coordination	9.5	61
100	Molecularâ€Rotorâ€Đriven Advanced Porous Materials. Angewandte Chemie, 2021, 13	83, 16415-16428.	1.6	10
101	Tuning the gating energy barrier of metal-organic framework for molecular sieving. Che 1006-1019.	≥M, 2021, 7,	5.8	59
102	Degradation behavior of mixed and isolated aromatic ring containing VOCs: Langmuir- kinetics, photodegradation, in-situ FTIR and DFT studies. Journal of Environmental Cher Engineering, 2021, 9, 105069.	Hinshelwood mical	3.3	60
103	Porous boron nitride: A novel metal-free cataluminescence material for high performan sensing. Sensors and Actuators B: Chemical, 2021, 332, 129512.	ice H2S	4.0	18
104	SERS Approach to Probe the Adsorption Process of Trace Volatile Benzaldehyde on Lay Hydroxide Material. Analytical Chemistry, 2021, 93, 8228-8237.	ered Double	3.2	26
105	Fluoride ionâ€induced gas sensor based on the dipyrromethene boron difluoride deriva theoretical investigation. Journal of Physical Organic Chemistry, 2021, 34, e4265.	ative: A	0.9	2
106	Green Materials and Technologies for Sustainable Organic Transistors. Advanced Mate Technologies, 2022, 7, 2100445.	rials	3.0	31
107	An Overview of Metal–Organic Frameworks for Green Chemical Engineering. Engine 1115-1139.	ering, 2021, 7,	3.2	94
108	Chemically Stable Metal–Organic Frameworks: Rational Construction and Applicatio Accounts of Chemical Research, 2021, 54, 3083-3094.	n Expansion.	7.6	167

		CITATION REPORT		
#	Article		IF	CITATIONS
109	Rational Design and Growth of MOFâ€onâ€MOF Heterostructures. Small, 2021, 17, e2	2100607.	5.2	90
110	Neutral Nitrogen Donor Ligandâ€based MOFs for Sensing Applications. Chemistry - an 2021, 16, 2569-2587.	Asian Journal,	1.7	9
111	Novel Porous Carbon Material for the Detection of Traces of Volatile Organic Compour Air. ACS Applied Materials & Interfaces, 2021, 13, 40088-40097.	nds in Indoor	4.0	10
112	Conjugated polymer–zeolite hybrids for robust gas sensors: Effect of zeolite surface sensing ability. Chemical Engineering Journal, 2021, 420, 129588.	area on NO2	6.6	28
113	Highâ€Throughput Discovery of a Rhombohedral Twelveâ€Connected Zirconiumâ€Bas Framework with Ordered Terephthalate and Fumarate Linkers. Angewandte Chemie - Ir Edition, 2021, 60, 26939-26946.	ed Metalâ€Organic nternational	7.2	10
114	Highâ€ŧhroughput discovery of a rhombohedral twelveâ€connected zirconiumâ€basec framework with ordered terephthalate and fumarate linkers. Angewandte Chemie, 0, ,	l metalâ€organic	1.6	2
115	ZnO Nanoparticle-Decorated CeO ₂ Nanospheres for Cataluminescence S H ₂ S. ACS Applied Nano Materials, 2021, 4, 9557-9565.	ensing of	2.4	9
116	Utilizing Zirconium MOFâ€functionalized Fiber Substrates Prepared by Molecular Layer Toxic Gas Capture and Chemical Warfare Agent Degradation. Global Challenges, 2021,	r Deposition for , 5, 2100001.	1.8	10
117	Platinum deposited on 2D and 3D mesoporous silica materials for the catalytic oxidatic organic compounds: The oxidation of m-xylene and methanol. Journal of Catalysis, 202	on of volatile 1, 402, 275-288.	3.1	5
118	Potential applicability of Zn0.05TiOxNy@MOF-5 nanocomposite for adsorption and ele detection of Zn(II) in saline wastewater. Journal of Environmental Chemical Engineering 106186.	ectrochemical g, 2021, 9,	3.3	15
119	Separate-free BiPO4/graphene aerogel with 3D network structure for efficient photoca mineralization by adsorption enrichment and photocatalytic degradation. Chemical Enjournal, 2021, 421, 129720.	italytic gineering	6.6	39
120	Vibrational modes with long mean free path and large volumetric heat capacity drive h conductivity in amorphous zeolitic imidazolate Framework-4. Materials Today Physics,	igher thermal 2021, 21, 100516.	2.9	13
121	First-principles prediction of NO2 and SO2 adsorption on MgO/(Mg0.5Ni0.5)O/MgO(1 Surface Science, 2021, 566, 150650.	0 0). Applied	3.1	7
122	Hierarchically porous metal hydroxide/metal–organic framework composite nanoarc broad-spectrum adsorbents for toxic chemical filtration. Journal of Colloid and Interface 2022, 606, 272-285.	nitectures as e Science,	5.0	7
123	Blocking polymerization of CTFs induces plentiful structural terminations for synchron of organics and Cr(<scp>vi</scp>). Chemical Communications, 2021, 57, 4946-4949.	ous removal	2.2	18
124	Metal–organic frameworks as photoluminescent biosensing platforms: mechanisms Chemical Society Reviews, 2021, 50, 4484-4513.	and applications.	18.7	322
125	Water-Stable Metal-Organic Frameworks for Water Adsorption. , 2021, , 387-416.			3
126	Porous metal–organic framework-based filters: Synthesis methods and applications environmental remediation. Chemical Engineering Journal, 2022, 430, 133160.	for	6.6	36

ARTICLE IF CITATIONS Metal-Organic Frameworks., 2022,, 637-666. 127 1 Fabrications and applications of hemicellulose-based bio-adsorbents. Carbohydrate Polymers, 2022, 5.1 278, 118945. Porous ZnO/rGO Nanosheetâ€Based NO₂ Gas Sensor with High Sensitivity and ppbâ€Level 129 1.9 18 Detection Limit at Room Temperature. Advanced Materials Interfaces, 2021, 8, 2101511. Preliminary experimental research of metal-organic frameworks (MOFs) for formaldehyde dynamic 0.3 adsorption. Journal of Physics: Conference Series, 2021, 2069, 012246. Crystalline Inorganic Materials From Supertetrahedral Chalcogenide Clusters., 2021,,. 131 1 Advances in FePt-involved nano-system design and application for bioeffect and biosafety. Journal of Materials Chemistry B, 2021, , . Aptamer grafted nanoparticle as targeted therapeutic tool for the treatment of breast cancer. 133 2.5 41 Biomedicine and Pharmacotherapy, 2022, 146, 112530. Urea and thiourea based coordination polymers and metal-organic frameworks: Synthesis, structure 134 24 and applications. Coordination Chemistry Reviews, 2022, 453, 214314. In situ enrichment amplification strategy enabling highly sensitive formaldehyde gas sensor. Sensors 135 4.0 38 and Actuators B: Chemical, 2022, 354, 131206. Capture and recycling of toxic selenite anions by cobalt-based metal-organic-frameworks for 6.6 electrocatalytic overall water splitting. Chemical Engineering Journal, 2022, 433, 134553. Hierarchical Porous MOF-199 Regulated by PVP for Desulfurization at Ambient Conditions. SSRN 137 0 0.4 Electronic Journal, O, , . A Review on Metal-Organic Frameworks as Congenial Heterogeneous Catalysts for Potential Organic 138 1.8 Transformations. Frontiers in Chemistry, 2021, 9, 747615. Uniform Coreâ€"Shell Microspheres of SiO₂@MOF for CO₂ Cycloaddition 139 1.9 13 Reactions. Inorganic Chemistry, 2022, 61, 2724-2732. Origin of the weakly temperature-dependent thermal conductivity in ZIF-4 and ZIF-62. Physical Review 140 Materials, 2022, 6, . Scalable and Heavy Foam Functionalization by Electrodeâ€Inspired Sticky Jammed Fluids for Efficient 141 7.3 1 Inâ€Door Air Quality Management. Energy and Environmental Materials, 0, , . Chemistry and Nanotechnologyâ€Oriented Strategies toward Nanocellulose for Human Water 142 Treatment. Advanced Sustainable Systems, 2022, 6, . Utilizing electrostatic effect in fibrous filters for efficient airborne particles removal: Principles, 143 2.335 fabrication, and material properties. Applied Materials Today, 2022, 26, 101369. Gas sensing based on metal-organic frameworks: Concepts, functions, and developments. Journal of 144 6.5

CITATION REPORT

Hazardous Materials, 2022, 429, 128321.

#	Article	IF	CITATIONS
145	Large refractive index changes in ZIF-8 thin films of optical quality. RSC Advances, 2022, 12, 5807-5815.	1.7	24
146	Advances in Metal-Organic Frameworks-Based Gas Sensors for Hazardous Substances. SSRN Electronic Journal, 0, , .	0.4	Ο
147	Near-infrared light induced adsorption–desorption cycle for VOC recovery by integration of metal–organic frameworks with graphene oxide nanosheets. Environmental Science: Nano, 2022, 9, 1858-1868.	2.2	11
148	High-efficiency radon adsorption by nickel nanoparticles supported on activated carbon. New Journal of Chemistry, 2022, 46, 9222-9228.	1.4	5
149	Collagen Fiberâ€Based Advanced Separation Materials: Recent Developments and Future Perspectives. Advanced Materials, 2022, 34, e2107891.	11.1	14
150	A Literature Review of Modelling and Experimental Studies of Water Treatment by Adsorption Processes on Nanomaterials. Membranes, 2022, 12, 360.	1.4	7
151	Magneto-inductive open-cell cellular carbon composites with activated carbon as guest phase: Guefoams for energy-efficient VOCs management. Ceramics International, 2022, 48, 17440-17448.	2.3	3
152	Perspectives in Adsorptive and Catalytic Mitigations of NO _{<i>x</i>} Using Metal–Organic Frameworks. Energy & Fuels, 2022, 36, 3347-3371.	2.5	13
153	MIL-101(Cr) MOF as an Effective Siloxane Sensor. ACS Applied Materials & Interfaces, 2022, 14, 17531-17538.	4.0	26
154	Electrochemical Synthesis Methods of Metalâ€Organic Frameworks and Their Environmental Analysis Applications: A Review. ChemElectroChem, 2022, 9, .	1.7	16
155	Effect of hierarchical porous MOF-199 regulated by PVP on their ambient desulfurization performance. Fuel, 2022, 319, 123845.	3.4	16
156	Activation or passivation: Influence of halogen dopant (F, Cl, Br) on photothermal activity of Mn2O3 in degrading toluene. Applied Catalysis B: Environmental, 2022, 309, 121236.	10.8	34
157	Carbon Nanotube Based Metal–Organic Framework Hybrids From Fundamentals Toward Applications. Small, 2022, 18, e2104628.	5.2	33
158	UiO-66 Selective Enrichment Integrated with Thermal Desorption GC-MS for Detection of Benzene Homologues in Ambient Air. Journal of Analytical Methods in Chemistry, 2021, 2021, 1-9.	0.7	2
159	Combining metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs): Emerging opportunities for new materials and applications. Nano Research, 2022, 15, 3514-3532.	5.8	46
160	A strategy of designed anionic metal–organic framework adsorbent based on reticular chemistry for rapid selective capture of carcinogenic dyes. Applied Organometallic Chemistry, 2022, 36, .	1.7	7
161	Advances in metal-organic frameworks-based gas sensors for hazardous substances. TrAC - Trends in Analytical Chemistry, 2022, 153, 116644.	5.8	29
162	Metal-organic frameworks for the prolific purification of hazardous airborne pollutants. , 2022, , 47-104.		0

#	Article	IF	CITATIONS
163	Electrically Driven Hydrogenation of MoO ₃ Nanoparticles in Protonic Acid for Oxidative Degradation of Micropollutants. ACS Applied Nano Materials, 0, , .	2.4	2
164	Noninvasive Diagnosis of Gastric Cancer Based on Breath Analysis with a Tubular Surface-Enhanced Raman Scattering Sensor. ACS Sensors, 2022, 7, 1439-1450.	4.0	33
165	Stable Metal–Organic Frameworks for Fluorescent Detection of Tetracycline Antibiotics. Inorganic Chemistry, 2022, 61, 8015-8021.	1.9	44
166	Trace removal of benzene vapour using double-walled metal–dipyrazolate frameworks. Nature Materials, 2022, 21, 689-695.	13.3	109
167	Research Progress of a Composite Metal Oxide Catalyst for VOC Degradation. Environmental Science & Technology, 2022, 56, 9220-9236.	4.6	68
168	Benchmarking various types of partial atomic charges for classical all-atom simulations of metal–organic frameworks. Nanoscale, 2022, 14, 9466-9473.	2.8	5
169	Bimetallic Mn-M (M= Cu Co CE Sm) Supported on Zsm-5 Zeolite Used in the Ntp Catalysis for Abatement of Toluene in Air. SSRN Electronic Journal, 0, , .	0.4	0
170	A Review of Preconcentrator Materials, Flow Regimes and Detection Technologies for Gas Adsorption and Sensing. Advanced Materials Interfaces, 2022, 9, .	1.9	3
171	Efficient determination of BTX compounds based on UiO-66-diatomite composite enrichment and thermal desorption GC–MS. Microchemical Journal, 2022, 181, 107731.	2.3	0
172	VOC Mixture Sensing with a MOF Film Sensor Array: Detection and Discrimination of Xylene Isomers and Their Ternary Blends. ACS Sensors, 2022, 7, 1666-1675.	4.0	36
174	Ultrasensitive photoelectrochemical sensing platform based on heterostructural CuO/NCDs@Au nanocomposites with the efficient photo-induced carrier separation. Microchemical Journal, 2022, 181, 107779.	2.3	2
175	Ag-rGO Nanocomposite as an Efficient Electrochemical Sensor for Thiourea. , 0, , .		1
176	Adsorption of Sulfur Dioxide in Cu(II)-Carboxylate Framework Materials: The Role of Ligand Functionalization and Open Metal Sites. Journal of the American Chemical Society, 2022, 144, 13196-13204.	6.6	13
177	Modified Mn/ZSM-5 for Non-Thermal Plasma Mineralization of VOCs and DFT Simulation Using a Novel Y-Type ZSM-5 Model. Catalysts, 2022, 12, 906.	1.6	0
178	Regulating the Pore Microenvironment of Microporous Metal–Organic Frameworks for Efficient Adsorption of Low-Concentration Ammonia. ACS Sustainable Chemistry and Engineering, 2022, 10, 10945-10954.	3.2	7
179	An overview on recent progress in photocatalytic air purification: Metal-based and metal-free photocatalysis. Environmental Research, 2022, 214, 113995.	3.7	16
180	Efficient NTP-catalytic removal of toluene over Mn-M (M= Cu Co Ce Sm) / ZSM-5 and adsorption simulation with Y-type ZSM-5 model. Journal of Environmental Chemical Engineering, 2022, 10, 108540.	3.3	0
181	Metal–organic-framework composite-based rapid self-detoxifying smart textile filters for chemical warfare agents. , 2023, , 33-79.		0

#	Article	IF	CITATIONS
182	Application of Metal-Organic Frameworks in Gas Pre-concentration, Pre-separation and Detection. Acta Chimica Sinica, 2022, 80, 1183.	0.5	2
183	MOF/POM hybrids as catalysts for organic transformations. Dalton Transactions, 2022, 51, 11952-11986.	1.6	21
184	Humidity-Independent Artificial Olfactory Array Enabled by Hydrophobic Core–Shell Dye/MOFs@COFs Composites for Plant Disease Diagnosis. ACS Nano, 2022, 16, 14297-14307.	7.3	24
185	Metal–Organic Frameworks and Their Composites for Environmental Applications. Advanced Science, 2022, 9, .	5.6	26
186	Rational designed ZIF-8@PDA@PDMS composite sponge for efficient and sustainable particulate matter filtering under harsh environment. Particuology, 2022, , .	2.0	3
187	Synthesis of Nitro Compounds from Nitrogen Dioxide Captured in a Metal-Organic Framework. Journal of the American Chemical Society, 2022, 144, 18967-18975.	6.6	9
188	Quasi-Cu-MOFs: highly improved water stability and electrocatalytic activity toward H ₂ O ₂ reduction among pristine 3D MOFs. Journal of Materials Chemistry A, 2022, 11, 31-40.	5.2	7
189	Toxinâ€Blocking Textiles: Rapid, Benign, Rollâ€ŧoâ€Roll Production of Robust MOFâ€Fabric Composites for Organophosphate Separation and Hydrolysis. ChemSusChem, 2023, 16, .	3.6	3
190	The Complexity of Comparative Adsorption of C6 Hydrocarbons (Benzene, Cyclohexane, n-Hexane) at Metal–Organic Frameworks. Nanomaterials, 2022, 12, 3614.	1.9	5
191	Recent advances and potential applications of flexible adsorption and separation materials: A review. Energy Science and Engineering, 2023, 11, 952-973.	1.9	0
192	Mechanochemistry-assisted linker exchange of metal-organic framework for efficient kinetic separation of propene and propane. Chemical Engineering Journal, 2023, 454, 140093.	6.6	8
193	Coordination Polymers Constructed from an Adaptable Pyridine-Dicarboxylic Acid Linker: Assembly, Diversity of Structures, and Catalysis. Inorganic Chemistry, 2022, 61, 17951-17962.	1.9	5
194	Fabrication of ZnO/Pd@ZIF-8/Pt hybrid for selective methane detection in the presence of ethanol and NO2. Sensors and Actuators B: Chemical, 2023, 375, 132867.	4.0	9
195	Nanoengineered Carbonâ€Based Interfaces for Advanced Energy and Photonics Applications: A Recent Progress and Innovations. Advanced Materials Interfaces, 2023, 10, .	1.9	6
196	Ionic metal–organic frameworks (iMOFs): progress and prospects as ionic functional materials. Chemical Communications, 2022, 58, 13676-13698.	2.2	22
197	Confinementâ€Driven Photophysics in Hydrazoneâ€Based Hierarchical Materials. Angewandte Chemie - International Edition, 2023, 62, .	7.2	5
198	Confinementâ€Driven Photophysics in Hydrazoneâ€Based Hierarchical Materials. Angewandte Chemie, 2023, 135, .	1.6	1
199	Airborne Toluene Detection Using Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2022, 14, 53777-53787.	4.0	11

#	Article	IF	CITATIONS
200	Seeding Layer Approach for the Synthesis of Co-ZIF-90 Thin Films of Optical Quality. Crystal Growth and Design, 2022, 22, 7008-7020.	1.4	2
201	ZnO/Pd Encapsulated Within a Zeolitic Imidazolate Framework-7 Shell as a Sensitive and Selective Methane Sensor. ACS Applied Nano Materials, 2023, 6, 323-331.	2.4	3
202	Inâ€Memoryâ€Computed Lowâ€Frequency Noise Spectroscopy for Selective Gas Detection Using a Reducible Metal Oxide. Advanced Science, 2023, 10, .	5.6	4
203	Novel ammonia-responsive carboxymethyl cellulose/Co-MOF multifunctional films for real-time visual monitoring of seafood freshness. International Journal of Biological Macromolecules, 2023, 230, 123129.	3.6	19
204	Ni-MOF derived NiO/Ni/r-GO nanocomposite as a novel electrode material for high-performance asymmetric supercapacitor. Journal of Energy Storage, 2023, 61, 106769.	3.9	15
205	Ionic liquid hybrid metal–organic frameworks for efficient adsorption and selective separation of ammonia at high temperature. Chemical Engineering Journal, 2023, 464, 142728.	6.6	30
206	Metal-organic framework (MOF)/reduced graphene oxide (rGO) composite for high performance CO sensor. Solid-State Electronics, 2023, 204, 108638.	0.8	10
207	Improved field emission stability with a high current density of decorated CNTs for electron emission devices. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	3
208	A Novel Aluminumâ€Based Metalâ€Organic Framework with Uniform Micropores for Trace BTEX Adsorption. Angewandte Chemie, 2023, 135, .	1.6	1
209	A Novel Aluminumâ€Based Metalâ€Organic Framework with Uniform Micropores for Trace BTEX Adsorption. Angewandte Chemie - International Edition, 2023, 62, .	7.2	9
210	A Simple, Transition Metal Catalystâ€Free Method for the Design of Complex Organic Building Blocks Used to Construct Porous Metal–Organic Frameworks. Angewandte Chemie, 2023, 135, .	1.6	0
211	A Simple, Transition Metal Catalystâ€Free Method for the Design of Complex Organic Building Blocks Used to Construct Porous Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2023, 62, .	7.2	2
212	Preparation of mixed matrix membrane with high efficiency SO2 separation performance by photosensitive modification and enhanced adsorption of metal–organic framework. Journal of Materials Science, 2023, 58, 6185-6202.	1.7	4
213	Photoâ€Activated Direct Catalytic Oxidation of Gaseous Benzene with a Cuâ€Connected Serial Heterojunction Array of Co ₃ O ₄ /Cu _x O/Foam Cu Assembled via Layer upon Layer Oxidation. Small, 2023, 19, .	5.2	1
214	Understanding MOF Flexibility: An Analysis Focused on Pillared Layer MOFs as a Model System. Angewandte Chemie - International Edition, 2023, 62, .	7.2	25
215	Understanding MOF Flexibility: An Analysis Focused on Pillared Layer MOFs as a Model System. Angewandte Chemie, 2023, 135, .	1.6	0
224	Microporous metal-organic framework materials for efficient capture and separation of greenhouse gases. Science China Chemistry, 2023, 66, 2181-2203.	4.2	3
232	Current trends in the detection and removal of heavy metal ions using functional materials. Chemical Society Reviews, 2023, 52, 5827-5860.	18.7	15

#	Article	IF	CITATIONS
234	Use of Metal–Organic Frameworks in the Detection Stage of Analysis/Miniaturization Devices. , 2023, , 228-250.		0