Electrochemical strategies for Câ
€"H functionalization

Chemical Society Reviews 47, 5786-5865 DOI: 10.1039/c7cs00619e

Citation Report

#	Article	IF	CITATIONS
1	Electrochemical synthesis of tetrazoles <i>via</i> metal- and oxidant-free [3 + 2] cycloaddition of azides with hydrazones. Green Chemistry, 2018, 20, 5271-5275.	4.6	42
2	Electrochemical ruthenium-catalyzed alkyne annulations by C–H/Het–H activation of aryl carbamates or phenols in protic media. Chemical Communications, 2018, 54, 12879-12882.	2.2	90
3	Nickelâ€Catalyzed Electrooxidative Câ^'H Amination: Support for Nickel(IV). Chemistry - A European Journal, 2018, 24, 19166-19170.	1.7	107
4	Electrochemically Enabled Carbohydroxylation of Alkenes with H ₂ O and Organotrifluoroborates. Journal of the American Chemical Society, 2018, 140, 16387-16391.	6.6	127
5	Dehydrogenative reagent-free annulation of alkenes with diols for the synthesis of saturated O-heterocycles. Nature Communications, 2018, 9, 3551.	5.8	117
6	Cathode Material Determines Product Selectivity for Electrochemical Câ^'H Functionalization of Biaryl Ketoximes. Angewandte Chemie, 2018, 130, 15373-15376.	1.6	32
7	Cathode Material Determines Product Selectivity for Electrochemical Câ [°] 'H Functionalization of Biaryl Ketoximes. Angewandte Chemie - International Edition, 2018, 57, 15153-15156.	7.2	112
8	Iridiumâ€Catalyzed Electrooxidative Câ^'H Activation by Chemoselective Redoxâ€Catalyst Cooperation. Angewandte Chemie, 2018, 130, 14375-14379.	1.6	46
9	Iridiumâ€Catalyzed Electrooxidative Câ^'H Activation by Chemoselective Redoxâ€Catalyst Cooperation. Angewandte Chemie - International Edition, 2018, 57, 14179-14183.	7.2	121
10	Competitive Routes for Electrochemical Oxidation of Substituted Diarylamines: the Guidelines. ChemElectroChem, 2018, 5, 3391-3410.	1.7	11
11	Conversion of Lignin Models by Photoredox Catalysis. ChemSusChem, 2018, 11, 3071-3080.	3.6	39
12	Electrooxidative Allene Annulations by Mild Cobalt-Catalyzed C–H Activation. ACS Catalysis, 2018, 8, 9140-9147.	5.5	117
13	Electrochemical C–H bond activation <i>via</i> cationic iridium hydride pincer complexes. Chemical Science, 2019, 10, 9326-9330.	3.7	4
14	Redox Denaturation of Proteins: Electrochemical Treatment of Egg Plasma. Electroanalysis, 2019, 31, 2299-2302.	1.5	4
15	En Route to Intermolecular Cross-Dehydrogenative Coupling Reactions. Journal of Organic Chemistry, 2019, 84, 12705-12721.	1.7	186
16	A minireview of hydroamination catalysis: alkene and alkyne substrate selective, metal complex design. BMC Chemistry, 2019, 13, 89.	1.6	36
17	Cupraelectro-Catalyzed Alkyne Annulation: Evidence for Distinct C–H Alkynylation and Decarboxylative C–H/C–C Manifolds. ACS Catalysis, 2019, 9, 7690-7696.	5.5	76
18	Electrochemically dehydrogenative C–H/P–H cross-coupling: effective synthesis of phosphonated quinoxalin-2(1 <i>H</i>)-ones and xanthenes. Green Chemistry, 2019, 21, 4412-4421.	4.6	139

#	Article	IF	CITATIONS
19	Synthesis of 3-Formylindoles via Electrochemical Decarboxylation of Glyoxylic Acid with an Amine as a Dual Function Organocatalyst. Organic Letters, 2019, 21, 5862-5866.	2.4	37
20	Hexafluoroâ€2â€Propanolâ€Promoted Electroâ€Oxidative [3+2] Annulation of 1,3â€Dicarbonyl Compounds and Alkenes. ChemElectroChem, 2019, 6, 3383-3386.	1.7	18
21	Alternate Energy Sources for Sustainable Organic Synthesis. ChemistrySelect, 2019, 4, 8301-8310.	0.7	17
22	PIFA/TEMPOâ€Mediated Oxidative Cascade Cyclization of <i>α</i> â€{(<i>β</i> â€Amino)propenoyl]â€Alkylamide Access to Polysubstituted 3,7â€Dihydrooxazolo[4,5â€ <i>c</i>]pyridineâ€2,4,6(5 <i>H</i>)â€triones. Advanced Synthesis and Catalysis, 2019, 361, 4324-4333.	es: 2.1	7
23	Electrocatalytic Three-Component Reaction: Synthesis of Cyanide-Functionalization Imidazo-Fused <i>N</i> -Heterocycles. Organic Letters, 2019, 21, 6403-6407.	2.4	57
24	Transition-metal- and oxidant-free directed anodic C–H sulfonylation of <i>N</i> , <i>N</i> -disubstituted anilines with sulfinates. Chemical Communications, 2019, 55, 8995-8998.	2.2	77
25	Direct anodic (thio)acetalization of aldehydes with alcohols (thiols) under neutral conditions, and computational insight into the electrochemical formation of the acetals. Green Chemistry, 2019, 21, 4030-4034.	4.6	15
26	Electrochemically Facilitated Oxidative Coupling of Quinoxalinâ€2(1 <i>H</i>)â€Ones with Diarylphosphine Oxides and Pyrroles: A Green Protocol for Câ^P, Câ^C(<i>sp</i> spsoup> <i>2</i>) Bond Formation. Asian Journal of Organic Chemistry, 2019, 8, 2092-2096.	1.3	29
27	Direct Arylation of αâ€Amino C(sp ³)â€H Bonds by Convergent Paired Electrolysis. Angewandte Chemie - International Edition, 2019, 58, 16548-16552.	7.2	109
28	Acquired BRAF V600E Mutation Mediated Resistance to Osimertinib and Responded to Osimertinib, Dabrafenib, and Trametinib Combination Therapy. Journal of Thoracic Oncology, 2019, 14, e236-e237.	0.5	25
29	Direct Arylation of αâ€Amino C(sp ³)â€H Bonds by Convergent Paired Electrolysis. Angewandte Chemie, 2019, 131, 16700-16704.	1.6	28
30	Scalable Rhodium(III)â€Catalyzed Aryl Câ^'H Phosphorylation Enabled by Anodic Oxidation Induced Reductive Elimination. Angewandte Chemie, 2019, 131, 16926-16930.	1.6	35
31	Double electrooxidative C–H functionalization of (het)arenes with thiocyanate and 4-nitropyrazolate ions. Mendeleev Communications, 2019, 29, 334-336.	0.6	17
32	Combined Photoredox/Enzymatic Câ^H Benzylic Hydroxylations. Angewandte Chemie, 2019, 131, 16642-16646.	1.6	9
33	Selective C(sp ²)â€H Amination Catalyzed by Highâ€Valent Cobalt(III)/(IV)â€bpy Complex Immobilized on Silica Nanoparticles. ChemCatChem, 2019, 11, 5615-5624.	1.8	10
34	Practical and stereoselective electrocatalytic 1,2-diamination of alkenes. Nature Communications, 2019, 10, 4953.	5.8	100
35	Manganese-Catalyzed Electrochemical Deconstructive Chlorination of Cycloalkanols via Alkoxy Radicals. Organic Letters, 2019, 21, 9241-9246.	2.4	75
36	Synthesis of Isoxazolines and Oxazines by Electrochemical Intermolecular [2 + 1 + <i>n</i>] Annulation: Diazo Compounds Act as Radical Acceptors. Organic Letters, 2019, 21, 9300-9305.	2.4	27

#	Article	IF	CITATIONS
38	CVâ€driven Optimization: Cobaltâ€Catalyzed Electrochemical Expedient Oxychlorination of Alkenes via ORR. Advanced Synthesis and Catalysis, 2019, 361, 5626-5633.	2.1	13
39	Decarboxylative C _{sp³} –N Bond Formation by Electrochemical Oxidation of Amino Acids. Organic Letters, 2019, 21, 9262-9267.	2.4	51
40	Scalable Rhodium(III) atalyzed Aryl Câ^'H Phosphorylation Enabled by Anodic Oxidation Induced Reductive Elimination. Angewandte Chemie - International Edition, 2019, 58, 16770-16774.	7.2	111
41	Synergy of anodic oxidation and cathodic reduction leads to electrochemical deoxygenative C2 arylation of quinoline <i>N</i> -oxides. Chemical Communications, 2019, 55, 11091-11094.	2.2	35
42	Heterocycles via Cross Dehydrogenative Coupling. , 2019, , .		9
43	Copper or Silver-Mediated Oxidative C(sp ²)–H/N–H Cross-Coupling of Phthalimide and Heterocyclic Arenes: Access to <i>N</i> -Arylphthalimides. Organometallics, 2019, 38, 3617-3628.	1.1	15
44	Ligand-free iron-catalyzed benzylic C (sp ³)–H amination of methylarenes with <i>N</i> -fluorobenzenesulfonimide. RSC Advances, 2019, 9, 27892-27895.	1.7	12
45	C–H and N–H bond annulation of aryl amides with unactivated olefins by merging cobalt(iii) and photoredox catalysis. Chemical Communications, 2019, 55, 11626-11629.	2.2	45
46	Probing Intramolecular Electron Transfer in Redox Tag Processes. Organic Letters, 2019, 21, 8519-8522.	2.4	21
47	Fluorocyclization of <i>N</i> -Propargylamides to Oxazoles by Electrochemically Generated ArIF ₂ . Organic Letters, 2019, 21, 7893-7896.	2.4	69
48	Simple and scalable electrochemical synthesis of 2,1-benzisoxazoles and quinoline <i>N</i> -oxides. Chemical Communications, 2019, 55, 12255-12258.	2.2	33
49	The Mn-catalyzed paired electrochemical facile oxychlorination of styrenes <i>via</i> the oxygen reduction reaction. Chemical Communications, 2019, 55, 12104-12107.	2.2	37
50	Synthesis of rutaecarpine alkaloids <i>via</i> an electrochemical cross dehydrogenation coupling reaction. Green Chemistry, 2019, 21, 5517-5520.	4.6	53
51	Electrochemical Approach for Direct C–H Phosphonylation of Unprotected Secondary Amine. Organic Letters, 2019, 21, 7759-7762.	2.4	36
52	Electrochemically Enabled C3-Formylation and -Acylation of Indoles with Aldehydes. Organic Letters, 2019, 21, 7702-7707.	2.4	14
53	Flow Rhodaelectro-Catalyzed Alkyne Annulations by Versatile C–H Activation: Mechanistic Support for Rhodium(III/IV). Journal of the American Chemical Society, 2019, 141, 17198-17206.	6.6	126
54	Photoelectrochemical Câ^'H Alkylation of Heteroarenes with Organotrifluoroborates. Angewandte Chemie, 2019, 131, 4640-4643.	1.6	63
55	Scalable electrochemical oxidant-and metal-free dehydrogenative coupling of S–H/N–H. Organic and Biomolecular Chemistry, 2019, 17, 1370-1374.	1.5	25

#	Article	IF	CITATIONS
56	Electrochemical oxidative C–H/S–H cross-coupling between enamines and thiophenols with H ₂ evolution. Chemical Science, 2019, 10, 2791-2795.	3.7	73
57	Electrochemically induced oxidative S–O coupling: synthesis of sulfonates from sulfonyl hydrazides and <i>N</i> -hydroxyimides or <i>N</i> -hydroxybenzotriazoles. Organic and Biomolecular Chemistry, 2019, 17, 3482-3488.	1.5	24
58	Electrochemical Fluoroalkynylation of Aryl Alkenes with Fluoride Ions and Alkynyltrifluoroborate Salts. Asian Journal of Organic Chemistry, 2019, 8, 658-660.	1.3	32
59	Electrochemical Synthesis of [1,2,3]Triazolo[1,5â€ <i>a</i>]pyridines through Dehydrogenative Cyclization. ChemElectroChem, 2019, 6, 4177-4179.	1.7	24
60	Electrochemical Radical Selenylation/1,2-Carbon Migration and Dowd–Beckwith-Type Ring-Expansion Sequences of Alkenylcyclobutanols. Organic Letters, 2019, 21, 1021-1025.	2.4	81
61	NiCl2-catalyzed radical cross decarboxylative coupling between arylpropiolic acids and cyclic ethers. Tetrahedron Letters, 2019, 60, 613-616.	0.7	7
62	Electrochemical Dearomative 2,3-Difunctionalization of Indoles. Journal of the American Chemical Society, 2019, 141, 2832-2837.	6.6	137
63	Electrochemical oxidative C–H/N–H cross-coupling for C–N bond formation with hydrogen evolution. Chemical Communications, 2019, 55, 1809-1812.	2.2	103
64	Electrochemical Difluoromethylation of Electronâ€Deficient Alkenes. ChemSusChem, 2019, 12, 3060-3063.	3.6	48
65	Electrochemical oxidative selenylation of imidazo[1,2–a]pyridines with diselenides. Tetrahedron Letters, 2019, 60, 739-742.	0.7	42
66	Electrochemically driven Pâ \in "H oxidation and functionalization: synthesis of carbamoylphosphonates from phosphoramides and alcohols. New Journal of Chemistry, 2019, 43, 1531-1535.	1.4	6
67	Electrochemical Synthesis of Fluorinated Orthoesters from 1,3â€Benzodioxoles. ChemistryOpen, 2019, 8, 1167-1171.	0.9	14
68	Organic Electrosynthesis: Applications in Complex Molecule Synthesis. ChemElectroChem, 2019, 6, 4067-4092.	1.7	143
69	Electrochemical Synthesis of Allylamines via a Radical Trapping Sequence. Advanced Synthesis and Catalysis, 2019, 361, 4041-4047.	2.1	12
70	Electrochemicalâ€∤Photoredox Aspects of Transition Metalâ€Catalyzed Directed Câ^'H Bond Activation. ChemCatChem, 2019, 11, 5160-5187.	1.8	47
71	Ionic liquids as beneficial medium for electrochemically induced transformation and functionalization of white phosphorus. Ionics, 2019, 25, 5495-5500.	1.2	2
72	De Novo Synthesis of Highly Functionalized Benzimidazolones and Benzoxazolones through an Electrochemical Dehydrogenative Cyclization Cascade. Angewandte Chemie, 2019, 131, 9115-9119.	1.6	14
73	Ru ^{II} -Catalyzed/NH ₂ -Assisted Selective Alkenyl C–H [5 + 1] Annulation of Alkenylanilines with Sulfoxonium Ylides to Quinolines. Organic Letters, 2019, 21, 4812-4815.	2.4	90

#	Article	IF	Citations
74	C–N Coupling of Azoles or Imides with Carbocations Generated by Electrochemical Oxidation. European Journal of Organic Chemistry, 2019, 2019, 4089-4094.	1.2	22
75	A synthetic chemist's guide to electroanalytical tools for studying reaction mechanisms. Chemical Science, 2019, 10, 6404-6422.	3.7	255
76	Electrochemical Synthesis of 3â€Bromoimidazo[1,2â€a]pyridines Directly from 2â€Aminopyridines and <i>alpha</i> â€Bromoketones. ChemElectroChem, 2019, 6, 2733-2736.	1.7	16
77	De Novo Synthesis of Highly Functionalized Benzimidazolones and Benzoxazolones through an Electrochemical Dehydrogenative Cyclization Cascade. Angewandte Chemie - International Edition, 2019, 58, 9017-9021.	7.2	65
78	Dirhodium tetracarboxylates as catalysts for selective intermolecular C–H functionalization. Nature Reviews Chemistry, 2019, 3, 347-360.	13.8	233
79	Electrons and Holes as Catalysts in Organic Electrosynthesis. ChemElectroChem, 2019, 6, 4373-4382.	1.7	63
80	Electrochemical Minisci-type trifluoromethylation of electron-deficient heterocycles mediated by bromide ions. Organic Chemistry Frontiers, 2019, 6, 2392-2397.	2.3	108
81	Synthetic applications of light, electricity, mechanical force and flow. Nature Reviews Chemistry, 2019, 3, 290-304.	13.8	51
82	Electrooxidative C–H Functionalization of Heteroarenes. Thiocyanation of Pyrazolo[1,5â€ <i>a</i>)pyrimidines. European Journal of Organic Chemistry, 2019, 2019, 4233-4238.	1.2	30
83	Intermolecular Anodic Oxidative Cross-Dehydrogenative C(sp ³)–N Bond-Coupling Reactions of Xanthenes with Azoles. Organic Letters, 2019, 21, 3228-3231.	2.4	77
84	Synthesis of Highly Functionalized N , N â€Diarylamides by an Anodic C, N â€Coupling Reaction. Chemistry - A European Journal, 2019, 25, 7835-7838.	1.7	13
85	Radical Cation Dielsâ€Alder Reactions of Nonâ€Conjugated Alkenes as Dienophiles by Electrocatalysis. Chinese Journal of Chemistry, 2019, 37, 561-564.	2.6	9
86	Amide Synthesis from Thiocarboxylic Acids and Amines by Spontaneous Reaction and Electrosynthesis. ChemSusChem, 2019, 12, 2570-2575.	3.6	17
87	Electrochemical Radical Formyloxylation–Bromination, â~'Chlorination, and â^'Trifluoromethylation of Alkenes. Organic Letters, 2019, 21, 3167-3171.	2.4	70
88	Benzylarylation of N-Allyl Anilines: Synthesis of Benzylated Indolines. Journal of Organic Chemistry, 2019, 84, 6072-6083.	1.7	21
89	Electrochemical vicinal aminotrifluoromethylation of alkenes: high regioselective acquisition of β-trifluoromethylamines. Organic and Biomolecular Chemistry, 2019, 17, 5014-5020.	1.5	34
90	Continuousâ€Flow Electrosynthesis of Benzofused Sâ€Heterocycles by Dehydrogenative Câ^'S Crossâ€Coupling. Angewandte Chemie - International Edition, 2019, 58, 6650-6653.	7.2	89
91	Resource Economy by Metallaelectrocatalysis: Merging Electrochemistry and C H Activation. Trends in Chemistry, 2019, 1, 63-76.	4.4	174

#	Article	IF	CITATIONS
92	Recent Advances in Constructing Nitrogenâ€Containing Heterocycles <i>via</i> Electrochemical Dehydrogenation. Chinese Journal of Chemistry, 2019, 37, 513-528.	2.6	65
93	Electrochemical trifluoromethylation/semipinacol rearrangement sequences of alkenyl alcohols: synthesis of β-CF ₃ -substituted ketones. Organic and Biomolecular Chemistry, 2019, 17, 3319-3323.	1.5	42
94	Electrochemical Oxidative Csp ³ —H/S—H Cross oupling with Hydrogen Evolution for Synthesis of Tetrasubstituted Olefins. Chinese Journal of Chemistry, 2019, 37, 547-551.	2.6	19
95	Electrooxidative and Regioselective Câ^'H Azolation of Phenol and Aniline Derivatives. Angewandte Chemie, 2019, 131, 8488-8492.	1.6	20
96	Electrooxidative and Regioselective Câ^'H Azolation of Phenol and Aniline Derivatives. Angewandte Chemie - International Edition, 2019, 58, 8400-8404.	7.2	52
97	A diastereoselective approach to axially chiral biaryls via electrochemically enabled cyclization cascade. Beilstein Journal of Organic Chemistry, 2019, 15, 795-800.	1.3	12
98	Substitution Pattern‣elective Olefin Cross ouplings. ChemElectroChem, 2019, 6, 4165-4168.	1.7	10
99	Electrochemical Pinacol Coupling of Acetophenone Using Boronâ€Đoped Diamond Electrode. ChemElectroChem, 2019, 6, 4153-4157.	1.7	21
100	Exogenous-oxidant-free electrochemical oxidative C–H phosphonylation with hydrogen evolution. Chemical Communications, 2019, 55, 4230-4233.	2.2	79
101	A metal- and oxidizing-reagent-free anodic <i>para</i> -selective amination of anilines with phenothiazines. Chemical Communications, 2019, 55, 4371-4374.	2.2	65
102	Biomass-Derived Solvents for Sustainable Transition Metal-Catalyzed C–H Activation. ACS Sustainable Chemistry and Engineering, 2019, 7, 8023-8040.	3.2	90
103	Tiâ~Pd Alloys as Heterogeneous Catalysts for the Hydrogen Autotransfer Reaction and Catalytic Improvement by Hydrogenation Effects. ChemCatChem, 2019, 11, 2432-2437.	1.8	9
104	A Novel Thermomorphic System for Electrocatalytic Dielsâ€Alder Reactions. Chinese Journal of Chemistry, 2019, 37, 557-560.	2.6	7
105	A scalable electrochemical dehydrogenative cross-coupling of P(O)H compounds with RSH/ROH. Chemical Communications, 2019, 55, 4981-4984.	2.2	74
106	An Electrochemical Cinnamyl C—H Amination Reaction Using Carbonyl Sulfamate. Chinese Journal of Chemistry, 2019, 37, 570-574.	2.6	18
107	C–H functionalization reactions under flow conditions. Chemical Society Reviews, 2019, 48, 2767-2782.	18.7	94
108	Electrochemical radical arylsulfonylation/semipinacol rearrangement sequences of alkenylcyclobutanols: Synthesis of β-sulfonated cyclic ketones. Tetrahedron Letters, 2019, 60, 1287-1290.	0.7	41
109	Continuousâ€Flow Electrosynthesis of Benzofused Sâ€Heterocycles by Dehydrogenative Câ^'S Crossâ€Coupling. Angewandte Chemie, 2019, 131, 6722-6725.	1.6	15

#	Article	IF	CITATIONS
110	Application of the Electrochemical Oxygen Reduction Reaction (ORR) in Organic Synthesis. Advanced Synthesis and Catalysis, 2019, 361, 2804-2824.	2.1	45
111	Electrochemical Oxidative Clean Halogenation Using HX/NaX with Hydrogen Evolution. IScience, 2019, 12, 293-303.	1.9	120
112	Electrocatalytic Synthesis of Nonâ€Symmetric Biphenols Mediated by Tri(pâ€bromophenyl)amine: Selective Oxidative Crossâ€Coupling of Different Phenols and Naphthols. Chinese Journal of Chemistry, 2019, 37, 352-358.	2.6	14
113	Investigations on isomerization and rearrangement of polycyclic arenes under oxidative conditions – Anodic versus reagent-mediated reactions. Electrochimica Acta, 2019, 302, 310-315.	2.6	9
114	Electrochemical C(sp3)–H Fluorination. Synlett, 2019, 30, 1178-1182.	1.0	66
115	Electrochemical Umpolung of Bromide: Transition-Metal-Free Bromination of Indole C–H Bond. Molecules, 2019, 24, 696.	1.7	23
116	Electrochemical fluoromethylation triggered lactonizations of alkenes under semi-aqueous conditions. Chemical Science, 2019, 10, 3181-3185.	3.7	117
117	Electrochemical Synthesis of <i>trans</i> -2,3-Disubstituted Aziridines via Oxidative Dehydrogenative Intramolecular C(sp ³)–H Amination. Organic Letters, 2019, 21, 9430-9433.	2.4	52
118	Exogenous-oxidant- and catalyst-free electrochemical deoxygenative C2 sulfonylation of quinoline <i>N</i> -oxides. Chemical Communications, 2019, 55, 13852-13855.	2.2	49
119	Triphenylphosphine-assisted dehydroxylative Csp ³ –N bond formation <i>via</i> electrochemical oxidation. Chemical Communications, 2019, 55, 15089-15092.	2.2	28
120	Chemistry with Electrochemically Generated N-Centered Radicals. Accounts of Chemical Research, 2019, 52, 3339-3350.	7.6	679
121	"Metal-free―electrooxidative C—H thiocyanation of arenes. Russian Chemical Bulletin, 2019, 68, 2140-2141.	0.4	9
122	Electrochemical TEMPO-catalyzed multicomponent C(sp ³)–H α-carbamoylation of free cyclic secondary amines. Green Chemistry, 2019, 21, 6194-6199.	4.6	29
123	Double C–N bond cleavages of <i>N</i> -alkyl 4-oxopiperidinium salts: access to unsymmetrical tertiary sulfonamides. Organic and Biomolecular Chemistry, 2019, 17, 10172-10177.	1.5	4
124	Synthesis of aminobenzoxazoles via simple, clean and efficient electrochemical redox reactions. Tetrahedron Letters, 2019, 60, 358-361.	0.7	7
125	"Snapshots―of Intramolecular Electron Transfer in Redox Tag-Guided [2 + 2] Cycloadditions. Journal of Organic Chemistry, 2019, 84, 1882-1886.	1.7	17
126	Electrochemical Dehydrogenative Imidation of <i>N</i> -Methyl-Substituted Benzylamines with Phthalimides for the Direct Synthesis of Phthalimide-Protected <i>gem</i> -Diamines. Organic Letters, 2019, 21, 156-159.	2.4	25
127	Oxidative Cleavage of the Acyl arbon Bond in Phenylacetone with Electrogenerated Superoxide Anions. ChemElectroChem, 2019, 6, 4194-4198.	1.7	11

# 128	ARTICLE Formal Synthesis of (–)â€Perhydrohistrionicotoxin Using a Thorpeâ€Ziegler Cyclization Approach. Synthesis of Functionalized Aza‧pirocycles. European Journal of Organic Chemistry, 2019, 2019, 1215-1224.	lF 1.2	Citations
129	Photoelectrochemical Câ^'H Alkylation of Heteroarenes with Organotrifluoroborates. Angewandte Chemie - International Edition, 2019, 58, 4592-4595.	7.2	204
130	Electrocatalytic Tandem Synthesis of 1,3-Disubstituted Imidazo[1,5- <i>a</i>]quinolines via Sequential Dual Oxidative C(sp3)–H Amination in Aqueous Medium. Journal of Organic Chemistry, 2019, 84, 3148-3157.	1.7	48
131	Olefin Oxyamination with Unfunctionalized <i>N</i> â€Alkylanilines. Advanced Synthesis and Catalysis, 2019, 361, 1549-1553.	2.1	11
132	Electro-Oxidative C–C Alkenylation by Rhodium(III) Catalysis. Journal of the American Chemical Society, 2019, 141, 2731-2738.	6.6	111
133	Electrochemically Oxidative C–C Bond Cleavage of Alkylarenes for Anilines Synthesis. ACS Catalysis, 2019, 9, 2063-2067.	5.5	69
134	Mn atalyzed Electrochemical Synthesis of Quinazolinones from Primary Alcohols/Benzyl Ethers and <i>o</i> â€Aminobenzamides. ChemElectroChem, 2019, 6, 4188-4193.	1.7	35
135	Electrochemical Transitionâ€Metal atalyzed Câ^'H Bond Functionalization: Electricity as Clean Surrogates of Chemical Oxidants. ChemSusChem, 2019, 12, 115-132.	3.6	63
136	Formation of CX Bonds in CO ₂ Chemical Fixation Catalyzed by Metalâ^'Organic Frameworks. Advanced Materials, 2020, 32, e1806163.	11.1	102
137	Electrochemical Dearomatization: Evolution from Chemicals to Traceless Electrons. Advanced Synthesis and Catalysis, 2020, 362, 462-477.	2.1	63
138	Nickelaâ€electrocatalyzed Câ^'H Alkoxylation with Secondary Alcohols: Oxidationâ€Induced Reductive Elimination at Nickel(III). Angewandte Chemie - International Edition, 2020, 59, 3178-3183.	7.2	81
139	Synergistic Photoredox/Transitionâ€Metal Catalysis for Carbon–Carbon Bond Formation Reactions. European Journal of Organic Chemistry, 2020, 2020, 1327-1378.	1.2	64
140	Recent Advances in the Electrochemical Synthesis and Functionalization of Indole Derivatives. Advanced Synthesis and Catalysis, 2020, 362, 2102-2119.	2.1	75
141	Cobaltaâ€Electrocatalyzed Câ~'H Activation in Biomassâ€Derived Glycerol: Powered by Renewable Wind and Solar Energy. ChemSusChem, 2020, 13, 668-671.	3.6	31
142	Electrochemical Chalcogenation of <i>β,γ</i> â€Unsaturated Amides and Oximes to Corresponding Oxazolines and Isoxazolines. Advanced Synthesis and Catalysis, 2020, 362, 1046-1052.	2.1	62
143	Alternating Current Electrolysis for the Electrocatalytic Synthesis of Mixed Disulfide via Sulfur–Sulfur Bond Metathesis towards Dynamic Disulfide Libraries. Chemistry - A European Journal, 2020, 26, 3129-3136.	1.7	40
144	Electrochemical Synthesis of Î ² -Ketosulfones from Switchable Starting Materials. Organic Letters, 2020, 22, 464-467.	2.4	60
145	Electrochemical diselenylation of indolizines <i>via</i> intermolecular C–Se formation with 2-methylpyridines, α-bromoketones and diselenides. Chemical Communications, 2020, 56, 735-738.	2.2	58

ARTICLE IF CITATIONS Regioselective electrosynthesis of tetra- and hexa-functionalized [60] fullerene derivatives with 146 3.7 32 unprecedented addition patterns. Chemical Science, 2020, 11, 384-388. Electrochemical Synthesis of 1-Naphthols by Intermolecular Annulation of Alkynes with 147 2.4 89 1,3-Dicarbonyl Compounds. Organic Letters, 2020, 22, 724-728. Merging photochemistry with electrochemistry in organic synthesis. Organic Chemistry Frontiers, 148 2.3 111 2020, 7, 131-135. Application of electrochemical oxidative methods in the C(sp2) H functionalization of heterocyclic 149 0.9 compounds. Advances in Heterocyclic Chemistry, 2020, , 1-47. Anodic Oxidation for the Stereoselective Synthesis of Heterocycles. Accounts of Chemical Research, 150 7.6 163 2020, 53, 105-120. Electrophotocatalytic Undirected Câ[^]H Trifluoromethylations of (Het)Arenes. Chemistry - A European Journal, 2020, 26, 3241-3246. 1.7 Metalla-electrocatalyzed Câ€"H Activation by Earth-Abundant 3d Metals and Beyond. Accounts of 152 7.6 431 Chemical Research, 2020, 53, 84-104. Transition metal-free electrocatalytic halodeborylation of arylboronic acids with metal halides MX 2.3 29 (X = I, Br) to synthesize aryl halides. Organic Chemistry Frontiers, 2020, 7, 590-595. Large, Highly Modular Narrow-Gap Electrolytic Flow Cell and Application in Dehydrogenative 154 1.3 36 Cross-Coupling of Phenols. Organic Process Research and Development, 2020, 24, 1916-1926. Electrolyte-free paired electrosynthesis of some pyrimidine derivatives using flow electrochemistry as a powerful technology. Journal of Electroanalytical Chemistry, 2020, 857, 113746. Electrochemicalâ€Induced Ring Transformation of Cyclic αâ€(<i>ortho</i>â€Iodophenyl)â€Î²â€oxoesters. Chemistry, 156 12 - A European Journal, 2020, 26, 3222-3225. Photoinduced deaminative strategies: Katritzky salts as alkyl radical precursors. Chemical 2.2 116 Communications, 2020, 56, 503-514. A Survival Guide for the "Electro-curiousâ€. Accounts of Chemical Research, 2020, 53, 72-83. 158 7.6 431 Electrochemical Synthesis of 1,2,4â€Thiadiazoles through Intermolecular Dehydrogenative Sâ€N Coupling. Advanced Synthesis and Catalysis, 2020, 362, 771-775. 159 2.1 Nickelaelektroâ€katalysierte Câ€Hâ€Alkoxylierung mit sekundän Alkoholen: oxidationsinduzierte 160 19 1.6 reduktive Eliminierung an Nickel(III). Angewandte Chemie, 2020, 132, 3204-3209. Modifying Positional Selectivity in Câ€"H Functionalization Reactions with Nitrogen-Centered Radicals: 1.0 34 Generálizable Approaches to 1,6-Hydrogen-Atom Transfer Processes. Synlett, 2020, 31, 102-116. Electrochemical C–N Bond Formation for Sustainable Amine Synthesis. Trends in Chemistry, 2020, 2, 162 4.4 56 1004-1019. Probing the versatility of metallo-electro hybrid catalysis: enabling access towards facile C–N bond 1.5 formation. Organic and Biomolecular Chemistry, 2020, 18, 8994-9017.

#	Article	IF	CITATIONS
164	New Redox Strategies in Organic Synthesis by Means of Electrochemistry and Photochemistry. ACS Central Science, 2020, 6, 1317-1340.	5.3	270
165	Recent advances in electrochemical meso- and β-functionalization of porphyrins and electrografting of diazonium porphyrins. Current Opinion in Electrochemistry, 2020, 24, 69-78.	2.5	4
166	Electrochemical Synthesis of O â€Phthalimide Oximes from α â€Azido Styrenes via Radical Sequence: Generation, Addition and Recombination of Imide―N â€Oxyl and Iminyl Radicals with Câ^'O/Nâ^'O Bonds Formation. Advanced Synthesis and Catalysis, 2020, 362, 3864-3871.	2.1	24
167	Rapid Electrochemical Methane Functionalization Involves Pd–Pd Bonded Intermediates. Journal of the American Chemical Society, 2020, 142, 20631-20639.	6.6	21
168	Atomic-scale evidence for highly selective electrocatalytic Nâ^'N coupling on metallic MoS ₂ . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31631-31638.	3.3	18
169	Accelerating Electrochemical Reactions in a Voltage ontrolled Interfacial Microreactor. Angewandte Chemie - International Edition, 2020, 59, 19862-19867.	7.2	34
170	New Strategy for Catalytic Oxidative C–H Functionalization: Efficient Combination of Transition-metal Catalyst and Electrochemical Oxidation. Chemistry Letters, 2020, 49, 1256-1269.	0.7	28
171	A Review on Metal-Free Oxidative α-Cyanation and Alkynylation of N-Substituted Tetrahydroisoquinolines as a Rapid Route for the Synthesis of Isoquinoline Alkaloids. Current Organic Chemistry, 2020, 24, 809-816.	0.9	6
172	Metalâ€Free Twofold Electrochemical Câ^'H Amination of Activated Arenes: Application to Medicinally Relevant Precursor Synthesis. Chemistry - A European Journal, 2020, 26, 17574-17580.	1.7	14
173	Recent Advances in Asymmetric Catalytic Electrosynthesis. Catalysts, 2020, 10, 982.	1.6	30
174	TEMPO-Mediated C–H Amination of Benzoxazoles with N-Heterocycles. Journal of Organic Chemistry, 2020, 85, 12797-12803.	1.7	15
175	Electrode Materials in Modern Organic Electrochemistry. Angewandte Chemie, 2020, 132, 19026-19044.	1.6	53
176	A Concise Enantioselective Total Synthesis of (â^')â€Deoxoapodine. Angewandte Chemie, 2020, 132, 23289-23293.	1.6	7
177	Facilitating Ir-Catalyzed C–H Alkynylation with Electrochemistry: Anodic Oxidation-Induced Reductive Elimination. ACS Catalysis, 2020, 10, 11693-11699.	5.5	22
178	Oxoiron(<scp>v</scp>) mediated selective electrochemical oxygenation of unactivated C–H and C bonds using water as the oxygen source. Chemical Science, 2020, 11, 11877-11885.	3.7	28
179	Electrochemical <i>N</i> -demethylation of tropane alkaloids. Green Chemistry, 2020, 22, 6455-6463.	4.6	13
180	Electrochemical sulfonylation of alkenes with sulfonyl hydrazides: a metal- and oxidant-free protocol for the synthesis of (<i>E</i>)-vinyl sulfones in water. RSC Advances, 2020, 10, 33155-33160.	1.7	23
	Synthesis of Benzazoles through Electrochemical Oxidative Cyclization Reactions. ChemElectroChem,		

#	Article	IF	CITATIONS
182	Synthesis, Characterization and Biological Evaluation of Some Novel Regioisomers of Ropivacaine Analogues: An Anaesthetic Drug. Asian Journal of Chemistry, 2020, 32, 2180-2186.	0.1	0
183	A Perspective on Organic Electrochemistry. Journal of Organic Chemistry, 2020, 85, 13375-13390.	1.7	101
184	Electrochemical asymmetric synthesis of biologically active substances. Organic and Biomolecular Chemistry, 2020, 18, 7026-7055.	1.5	19
185	A New Method for the Synthesis of 3-Thiocyanatopyrazolo[1,5-a]pyrimidines. Molecules, 2020, 25, 4169.	1.7	12
186	Manganese-Catalyzed Oxidative Azidation of C(sp ³)–H Bonds under Electrophotocatalytic Conditions. Journal of the American Chemical Society, 2020, 142, 17693-17702.	6.6	200
187	A Concise Enantioselective Total Synthesis of (â^')â€Đeoxoapodine. Angewandte Chemie - International Edition, 2020, 59, 23089-23093.	7.2	29
188	Transition metal-catalyzed electrochemical processes for C–C bond formation. New Journal of Chemistry, 2020, 44, 15321-15336.	1.4	8
189	The continuous-flow electrosynthesis of 4-(sulfonylmethyl)isoquinoline-1,3(2 <i>H</i> ,4 <i>H</i>)-diones from <i>N</i> -alkyl- <i>N</i> -methacryloyl benzamides under metal-free and oxidant-free conditions. Organic Chemistry Frontiers, 2020, 7, 3223-3228.	2.3	22
190	Electrochemical esterification reaction of alkynes with diols <i>via</i> cleavage of carbon–carbon triple bonds without catalyst and oxidant. Green Chemistry, 2020, 22, 6783-6791.	4.6	13
191	Direct electrochemical defluorinative carboxylation of α-CF ₃ alkenes with carbon dioxide. Chemical Science, 2020, 11, 10414-10420.	3.7	83
192	Accelerating Electrochemical Reactions in a Voltage ontrolled Interfacial Microreactor. Angewandte Chemie, 2020, 132, 20034-20039.	1.6	5
193	The preparation and applications of amides using electrosynthesis. Green Chemistry, 2020, 22, 7737-7759.	4.6	48
194	Electrochemical regioselective selenylation/oxidation of <i>N</i> -alkylisoquinolinium salts <i>via</i> double C(sp ²)–H bond functionalization. Chemical Communications, 2020, 56, 15325-15328.	2.2	24
195	Organic Electrosynthesis: When Is It Electrocatalysis?. ACS Catalysis, 2020, 10, 13156-13158.	5.5	26
196	Emerging Concepts in Carbon Nitride Organic Photocatalysis. ChemPlusChem, 2020, 85, 2499-2517.	1.3	47
197	Diallingâ€In New Reactivity into the Shonoâ€ŧype Anodic Oxidation Reaction. Chemical Record, 2020, 21, 2120-2129.	2.9	8
198	Electrochemical-Induced Transfer Hydrogenation of Imidazopyridines with Secondary Amine as Hydrogen Donor. Organic Letters, 2020, 22, 8824-8828.	2.4	25
199	Chemistry of electrochemical oxidative reactions of sulfinate salts. Green Chemistry, 2020, 22, 3028-3059.	4.6	63

#	Article	IF	CITATIONS
200	Electrochemical Ruthenium-Catalyzed C–H Hydroxylation of Amine Derivatives in Aqueous Acid. Organic Letters, 2020, 22, 7060-7063.	2.4	16
201	Electrochemical and direct C–H methylthiolation of electron-rich aromatics. Green Chemistry, 2020, 22, 4906-4911.	4.6	25
202	Carboxylate breaks the arene C–H bond <i>via</i> a hydrogen-atom-transfer mechanism in electrochemical cobalt catalysis. Chemical Science, 2020, 11, 5790-5796.	3.7	19
203	Electro-organic synthesis – a 21 st century technique. Chemical Science, 2020, 11, 12386-12400.	3.7	379
204	Electrochemical Synthesis of 2,5â€Disubstituted 1,3,4â€Oxadiazoles from αâ€Keto Acids and Acylhydrazines Under Mild Conditions. European Journal of Organic Chemistry, 2020, 2020, 3257-3260.	1.2	18
205	Cu II /TEMPOâ€Catalyzed Enantioselective C(sp 3)–H Alkynylation of Tertiary Cyclic Amines through Shonoâ€Type Oxidation. Angewandte Chemie, 2020, 132, 15366-15371.	1.6	26
206	Cu ^{II} /TEMPOâ€Catalyzed Enantioselective C(sp ³)–H Alkynylation of Tertiary Cyclic Amines through Shonoâ€Type Oxidation. Angewandte Chemie - International Edition, 2020, 59, 15254-15259.	7.2	109
207	Electrochemical Annulation–Iodosulfonylation of 1,5-Enyne-containing <i>para</i> -Quinone Methides (<i>p</i> -QMs) to Access (<i>E</i>)-Spiroindenes. Organic Letters, 2020, 22, 4471-4477.	2.4	74
208	Site-selective electrooxidation of methylarenes to aromatic acetals. Nature Communications, 2020, 11, 2706.	5.8	61
209	Electrochemical dehydrogenative cross-coupling of xanthenes with ketones. Chemical Communications, 2020, 56, 7585-7588.	2.2	45
210	Metal-free electrochemical fluorodecarboxylation of aryloxyacetic acids to fluoromethyl aryl ethers. Chemical Science, 2020, 11, 6053-6057.	3.7	37
211	Scalable Photoelectrochemical Dehydrogenative Cross oupling of Heteroarenes with Aliphatic Câ^'H Bonds. Angewandte Chemie - International Edition, 2020, 59, 14275-14280.	7.2	179
212	Supporting-Electrolyte-Free and Scalable Flow Process for the Electrochemical Synthesis of 3,3′,5,5′-Tetramethyl-2,2′-biphenol. Organic Process Research and Development, 2020, 24, 2347-2355.	1.3	31
213	Making electrochemistry easily accessible to the synthetic chemist. Green Chemistry, 2020, 22, 3358-3375.	4.6	176
214	Electrochemically Catalyzed Newman–Kwart Rearrangement: Mechanism, Structure–Reactivity Relationship, and Parallels to Photoredox Catalysis. Journal of Organic Chemistry, 2020, 85, 8029-8044.	1.7	21
215	One-electron oxidative dehydrogenative annulation and cyclization reactions. Organic Chemistry Frontiers, 2020, 7, 2107-2144.	2.3	32
216	Electrochemical Nonacidic Nâ€Nitrosation/Nâ€Nitration of Secondary Amines through a Biradical Coupling Reaction. Advanced Synthesis and Catalysis, 2020, 362, 5036-5043.	2.1	26
217	Recent advances in photoelectrochemical cells (PECs) for organic synthesis. Organic Chemistry Frontiers, 2020, 7, 1895-1902.	2.3	67

#	Article	IF	CITATIONS
218	Visibleâ€Light Induced C(<i>sp</i> ³)â^'H Functionalization for the Formation of Câ^'N Bonds under Metal Catalystâ€Free Conditions. Advanced Synthesis and Catalysis, 2020, 362, 2770-2777.	2.1	22
219	Scalable Photoelectrochemical Dehydrogenative Crossâ€Coupling of Heteroarenes with Aliphatic Câ^H Bonds. Angewandte Chemie, 2020, 132, 14381-14386.	1.6	28
220	Closing the radical gap in chemical synthesis. Science, 2020, 368, 1312-1313.	6.0	5
221	Electroâ€Mechanochemical Atom Transfer Radical Cyclizations using Piezoelectric BaTiO ₃ . Angewandte Chemie - International Edition, 2020, 59, 16357-16360.	7.2	77
222	Electroâ€Mechanochemical Atom Transfer Radical Cyclizations using Piezoelectric BaTiO ₃ . Angewandte Chemie, 2020, 132, 16499-16502.	1.6	22
223	Electrochemical Synthesis of 5â€Selenouracil Derivatives by Selenylation of Uracils. European Journal of Organic Chemistry, 2020, 2020, 4384-4388.	1.2	16
224	Recent Progress in the Construction of Câ^'N Bonds <i>via</i> Metalâ€Free Radical C(<i>sp</i> ³)â^'H Functionalization. Advanced Synthesis and Catalysis, 2020, 362, 2120-2134.	2.1	49
225	Electrochemical Selenation/Cyclization of Quinones: A Rapid, Green and Efficient Access to Functionalized Trypanocidal and Antitumor Compounds. European Journal of Organic Chemistry, 2020, 2020, 4474-4486.	1.2	42
226	Tunable Electrochemical Câ^'N versus Nâ^'N Bond Formation of Nitrogenâ€Centered Radicals Enabled by Dehydrogenative Dearomatization: Biological Applications. Angewandte Chemie - International Edition, 2020, 59, 11583-11590.	7.2	71
227	Electroâ€Olefination—A Catalyst Free Stereoconvergent Strategy for the Functionalization of Alkenes. Chemistry - A European Journal, 2020, 26, 8382-8387.	1.7	17
228	Catalystâ€Free Electrosynthesis of Benzimidazolones through Intramolecular Oxidative Câ^'N Coupling. Advanced Synthesis and Catalysis, 2020, 362, 1977-1981.	2.1	19
229	Scalable Electrochemical Transitionâ€Metalâ€Free Dehydrogenative Cross oupling Amination Enabled Alkaloid Clausines Synthesis. Advanced Synthesis and Catalysis, 2020, 362, 2342-2347.	2.1	38
230	Electrophotocatalytic Decarboxylative Câ^'H Functionalization of Heteroarenes. Angewandte Chemie - International Edition, 2020, 59, 10626-10632.	7.2	161
231	Recent Advances in the Electrochemical Reduction of Substrates Involving Nâ^'O Bonds. Advanced Synthesis and Catalysis, 2020, 362, 2088-2101.	2.1	67
232	Electrophotocatalytic Decarboxylative Câ^'H Functionalization of Heteroarenes. Angewandte Chemie, 2020, 132, 10713-10719.	1.6	30
233	Enantioselective Palladaâ€Electrocatalyzed Câ~'H Activation by Transient Directing Groups: Expedient Access to Helicenes. Angewandte Chemie - International Edition, 2020, 59, 13451-13457.	7.2	177
234	Copper-Catalyzed Electrochemical Selective B–H Oxygenation of <i>o</i> -Carboranes at Room Temperature. Journal of the American Chemical Society, 2020, 142, 6940-6945.	6.6	56
235	Tunable Electrochemical Câ^'N versus Nâ^'N Bond Formation of Nitrogenâ€Centered Radicals Enabled by Dehydrogenative Dearomatization: Biological Applications. Angewandte Chemie, 2020, 132, 11680-11687.	1.6	14

#	Article	IF	CITATIONS
236	Electrochemical Câ^'H Functionalization of (Hetero)Arenes—Optimized by DoE. Chemistry - A European Journal, 2020, 26, 10195-10198.	1.7	35
237	Electrocatalytic C–N Coupling via Anodically Generated Hypervalent Iodine Intermediates. Journal of the American Chemical Society, 2020, 142, 4990-4995.	6.6	61
238	Halogen-mediated electrochemical organic synthesis. Organic and Biomolecular Chemistry, 2020, 18, 5315-5333.	1.5	98
239	Organic electrochemistry: Anodic construction of heterocyclic structures. Current Opinion in Electrochemistry, 2020, 24, 31-43.	2.5	19
240	Electrode Materials in Modern Organic Electrochemistry. Angewandte Chemie - International Edition, 2020, 59, 18866-18884.	7.2	238
241	Cobalt catalyzed electrochemical [4 + 2] annulation for the synthesis of sultams. Green Chemistry, 2020, 22, 1548-1552.	4.6	44
242	Electrochemical Synthesis of Biaryls via Oxidative Intramolecular Coupling of Tetra(hetero)arylborates. Journal of the American Chemical Society, 2020, 142, 4341-4348.	6.6	39
243	Electrooxidative C–H thiocyanation of hetarenes: voltammetric assessment of thiocyanogen reactivity. Mendeleev Communications, 2020, 30, 70-72.	0.6	8
244	Catalyzing Electrosynthesis: A Homogeneous Electrocatalytic Approach to Reaction Discovery. Accounts of Chemical Research, 2020, 53, 547-560.	7.6	460
245	pH Transitions and electrochemical behavior during the synthesis of iron oxide nanoparticles with gas-diffusion electrodes. Nanoscale Advances, 2020, 2, 2052-2062.	2.2	6
246	Electrochemical Synthesis of α-Ketoamides under Catalyst-, Oxidant-, and Electrolyte-Free Conditions. Organic Letters, 2020, 22, 2206-2209.	2.4	37
247	Nickelâ€Catalyzed Chainâ€Walking Crossâ€Electrophile Coupling of Alkyl and Aryl Halides and Olefin Hydroarylation Enabled by Electrochemical Reduction. Angewandte Chemie, 2020, 132, 6575-6581.	1.6	25
248	Electrochemical Oxidative Oxydihalogenation of Alkynes for the Synthesis of α,α-Dihaloketones. Organic Letters, 2020, 22, 1169-1174.	2.4	64
249	Site-Selective C–H Functionalization via Synergistic Use of Electrochemistry and Transition Metal Catalysis. Accounts of Chemical Research, 2020, 53, 300-310.	7.6	499
250	Electrochemical Oxidative Intramolecular N–S Bond Formation: Synthesis of 3-Substituted 5-Amino-1,2,4-Thiadiazoles. Journal of Organic Chemistry, 2020, 85, 3358-3363.	1.7	22
251	Neat 3D C3N4 monolithic aerogels embedded with carbon aerogels via ring-opening polymerization with high photoreactivity. Applied Catalysis B: Environmental, 2020, 266, 118652.	10.8	21
252	Selective and Scalable Electrosynthesis of <i>2H</i> â€2â€(Aryl)â€benzo[<i>d</i>]â€1,2,3â€triazoles and Their Nâ€Oxides by Using Leaded Bronze Cathodes. Chemistry - A European Journal, 2020, 26, 5592-5597.	1.7	22
253	The synthesis of sulfonated 4 <i>H</i> -3,1-benzoxazines <i>via</i> an electro-chemical radical cascade cyclization. Chemical Communications, 2020, 56, 2735-2738.	2.2	36

#	Article	IF	CITATIONS
254	Electrochemical oxidative iodination of imidazo[1,2- <i>a</i>]pyridines using Nal as iodine source. Synthetic Communications, 2020, 50, 710-718.	1.1	28
255	Anodically Triggered Aldehyde Cation Autocatalysis for Alkylation of Heteroarenes. ChemSusChem, 2020, 13, 1997-2001.	3.6	5
256	Recent Advances in the Construction of Phosphorusâ€Substituted Heterocycles, 2009–2019. Advanced Synthesis and Catalysis, 2020, 362, 1724-1818.	2.1	105
257	Enantioselective Radicalâ€Polar Crossover Reactions of Indanonecarboxamides with Alkenes. Angewandte Chemie - International Edition, 2020, 59, 4846-4850.	7.2	15
258	Joy and Challenges of Alkynylation of Arenes and Heteroarenes through Double Câ^'H Functionalizations. Asian Journal of Organic Chemistry, 2020, 9, 492-507.	1.3	17
259	Enantioselective Radicalâ€Polar Crossover Reactions of Indanonecarboxamides with Alkenes. Angewandte Chemie, 2020, 132, 4876-4880.	1.6	4
260	Electrochemical Intramolecular Oxytrifluoromethylation of <i>N</i> -Tethered Alkenyl Alcohols: Synthesis of Functionalized Morpholines. Organic Letters, 2020, 22, 1580-1584.	2.4	48
261	Rhodiumâ€Catalyzed Electrooxidative Câ^'H Olefination of Benzamides. Angewandte Chemie - International Edition, 2020, 59, 15076-15080.	7.2	36
262	Rhodiumkatalysierte elektrooxidative Câ€Hâ€Olefinierung von Benzamiden. Angewandte Chemie, 2020, 132, 15188-15192.	1.6	9
263	Photochemical strategies for C–N bond formation <i>via</i> metal catalyst-free (hetero) aryl C(sp ²)–H functionalization. Green Chemistry, 2020, 22, 3060-3068.	4.6	46
264	Enantioselektive Palladaâ€elektrokatalysierte Câ€Hâ€Aktivierung durch transiente dirigierende Gruppen: Ein nützlicher Zugang zu Helicenen. Angewandte Chemie, 2020, 132, 13553-13559.	1.6	42
265	Radical-Cation Vinylcyclopropane Rearrangements by TiO ₂ Photocatalysis. Journal of Organic Chemistry, 2020, 85, 6551-6566.	1.7	28
266	Electroreductive 4-Pyridylation of Electron-deficient Alkenes with Assistance of Ni(acac) ₂ . Organic Letters, 2020, 22, 3570-3575.	2.4	43
267	Evolution of Highâ€Valent Nickelaâ€Electrocatalyzed Câ^H Activation: From Cross(â€Electrophile) ouplings to Electrooxidative Câ^H Transformations. Chemistry - A European Journal, 2020, 26, 10936-10947.	1.7	32
268	Electrochemical Oxidation of Δ ⁹ -Tetrahydrocannabinol: A Simple Strategy for Marijuana Detection. Organic Letters, 2020, 22, 3951-3955.	2.4	15
269	Electrochemically Oxidative Coupling of Sâ€H/Sâ€H for Sâ€S Bond Formation: A Facile Approach to Diacidâ€disulfides. ChemistrySelect, 2020, 5, 4637-4641.	0.7	6
270	A Versatile Electrochemical Batch Reactor for Synthetic Organic and Inorganic Transformations and Analytical Electrochemistry. Organic Process Research and Development, 2020, 24, 1084-1089.	1.3	10
271	Cobaltaelectro-catalyzed C–H activation for resource-economical molecular syntheses. Nature Protocols, 2020, 15, 1760-1774.	5.5	19

#	Article	IF	CITATIONS
272	About the selectivity and reactivity of active nickel electrodes in C–C coupling reactions. RSC Advances, 2020, 10, 14249-14253.	1.7	13
273	Advances in Electrochemical Decarboxylative Transformation Reactions. Chemistry - A European Journal, 2021, 27, 3213-3228.	1.7	56
274	Electrochemical Methods for Pd atalyzed Câ^'H Functionalization. Asian Journal of Organic Chemistry, 2021, 10, 50-60.	1.3	12
275	Electrochemical Câ^'H Amidation of Heteroarenes with <i>N</i> â€Alkyl Sulfonamides in Aqueous Medium. Chemistry - A European Journal, 2021, 27, 242-246.	1.7	32
276	Site‣elective Electrochemical Benzylic Câ^'H Amination. Angewandte Chemie - International Edition, 2021, 60, 2943-2947.	7.2	123
277	Synthesis of Diverse Aryliodine(<scp>III</scp>) Reagents by Anodic Oxidation ^{â€} . Chinese Journal of Chemistry, 2021, 39, 627-632.	2.6	27
278	Iodonium Cationâ€Pool Electrolysis for the Threeâ€Component Synthesis of 1,3â€Oxazoles. Chemistry - A European Journal, 2021, 27, 605-608.	1.7	19
279	N-Radical enabled cyclization of 1,n-enynes. Chinese Journal of Catalysis, 2021, 42, 731-742.	6.9	33
280	Electrochemical Regioselective Phosphorylation of Nitrogen ontaining Heterocycles and Related Derivatives. Advanced Synthesis and Catalysis, 2021, 363, 464-469.	2.1	15
281	-Proline N-oxide dihydrazides as an efficient ligand for cross-coupling reactions of aryl iodides and bromides with amines and phenols. Tetrahedron, 2021, 79, 131826.	1.0	8
282	Recent Advances in Metal-Catalyzed, Electrochemical Coupling Reactions of sp2 Halides/Boronic Acids and sp3 Centers. Synthesis, 2021, 53, 879-888.	1.2	9
283	Electrochemical Oxidative Halogenation of <i>N</i> -Aryl Alkynamides for the Synthesis of Spiro[4.5]trienones. Journal of Organic Chemistry, 2021, 86, 917-928.	1.7	46
284	Electrochemical access to benzimidazolone and quinazolinone derivatives <i>via in situ</i> generation of isocyanates. Chemical Communications, 2021, 57, 631-634.	2.2	15
285	Electrochemical Oxidative Functionalization of Arylalkynes: Access to α,αâ€Dibromo Aryl Ketones. Advanced Synthesis and Catalysis, 2021, 363, 1022-1027.	2.1	18
286	Access to 10â€Phenanthrenols <i>via</i> Electrochemical Câ^'H/Câ^'H Arylation. Advanced Synthesis and Catalysis, 2021, 363, 1120-1125.	2.1	16
287	Recent advances in transition metal-catalyzed olefinic C–H functionalization. Organic Chemistry Frontiers, 2021, 8, 1085-1101.	2.3	116
288	Electrosynthesis of 3,3′,5,5'-Tetramethyl-2,2′-biphenol in Flow. Journal of Flow Chemistry, 2021, 11, 143-162.	1.2	9
289	Siteâ€Selective Electrochemical Benzylic Câ^'H Amination. Angewandte Chemie, 2021, 133, 2979-2983.	1.6	81

#	Article	IF	CITATIONS
290	Electrochemical synthesis of 3-azido-indolines from amino-azidation of alkenes. Chinese Chemical Letters, 2021, 32, 1033-1036.	4.8	29
291	Direct electrochemical hydrodefluorination of trifluoromethylketones enabled by non-protic conditions. Chemical Science, 2021, 12, 10252-10258.	3.7	32
292	Electrochemical synthesis of sulfamides. Chemical Communications, 2021, 57, 4775-4778.	2.2	24
293	Electrochemical rearrangement protocols towards the construction of diverse molecular frameworks. Chemical Communications, 2021, 57, 2464-2478.	2.2	18
294	Recent advances in the functionalization of saturated cyclic amines. Organic Chemistry Frontiers, 2021, 8, 4582-4606.	2.3	45
295	Electrooxidative dearomatization of biaryls: synthesis of tri- and difluoromethylated spiro[5.5]trienones. Chemical Science, 2021, 12, 10092-10096.	3.7	60
296	Electrochemical sulfonylation of enamides with sodium sulfinates to access Î ² -amidovinyl sulfones. Organic and Biomolecular Chemistry, 2021, 19, 8295-8300.	1.5	13
297	Metal-free nanostructured catalysts: sustainable driving forces for organic transformations. Green Chemistry, 2021, 23, 6223-6272.	4.6	32
298	Electrochemical oxidative cyclization of alkenes, boronic acids, and dichalcogenides to access chalcogenated boronic esters and 1,3-diols. Organic Chemistry Frontiers, 2021, 9, 12-18.	2.3	11
299	Directing transition metal-based oxygen-functionalization catalysis. Chemical Science, 2021, 12, 8967-8995.	3.7	9
300	Electrochemical anodic oxidative fluorination and trifluoroalkylation of organic compounds. , 2021, , 349-368.		2
301	Stereoselective synthesis of unnatural α-amino acid derivatives through photoredox catalysis. Chemical Science, 2021, 12, 5430-5437.	3.7	33
303	Recent developments in the difunctionalization of alkenes with C–N bond formation. Organic Chemistry Frontiers, 2021, 8, 5206-5228.	2.3	83
304	Recent progress on electrochemical synthesis involving carboxylic acids. Organic and Biomolecular Chemistry, 2021, 19, 5501-5520.	1.5	37
305	An organophotoredox-catalyzed C(sp ²)–N cross coupling reaction of cyclic aldimines with cyclic aliphatic amines. Organic and Biomolecular Chemistry, 2021, 19, 3595-3600.	1.5	9
306	Insights into Sustainable C–H Bond Activation. , 2021, , 253-318.		0
307	Electrochemical synthesis of isobenzofuran-1-imines using oxidative halocyclization of <i>>o</i> -alkynylbenzamides. Organic and Biomolecular Chemistry, 2021, 19, 6792-6796.	1.5	11
308	Electrocatalytic ethylbenzene valorization using a polyoxometalate@covalent triazine framework with water as the oxygen source. Chemical Communications, 2021, 57, 7430-7433.	2.2	12

#	Article	IF	CITATIONS
309	α-C–H functionalization of tertiary amines catalyzed/promoted by molecular iodine/derivatives. New Journal of Chemistry, 2021, 45, 14345-14359.	1.4	14
310	Electrifying Sustainability on Transition Metalâ€Free Modes: An Ecoâ€Friendly Approach for the Formation of Câ^'N Bonds. ChemSusChem, 2021, 14, 1229-1257.	3.6	19
311	Electrochemical NaI/NaCl-mediated one-pot synthesis of 2-aminobenzoxazoles in aqueous media <i>via</i> tandem addition–cyclization. Green Chemistry, 2021, 23, 5189-5194.	4.6	15
312	Metal-free regioselective bromination of imidazo-heteroarenes: the dual role of an organic bromide salt in electrocatalysis. Green Chemistry, 2021, 23, 5687-5695.	4.6	18
313	Amine functionalization of <i>N</i> , <i>N</i> , <i>N</i> ′, <i>N</i> ′-tetramethyl- <i>p</i> -phenylenediamine for the electrosynthesis of a wide range of <i>p</i> -phenylenediamines in green conditions. New Journal of Chemistry, 2021, 45, 16872-16882.	1.4	0
314	Electrochemical activation in organic synthesis applications. , 2021, , 329-347.		1
315	Electroreductive C3 Pyridylation of Quinoxalin-2(1 <i>H</i>)-ones: An Effective Way to Access Bidentate Nitrogen Ligands. Organic Letters, 2021, 23, 1081-1085.	2.4	32
316	Post-Functionalization of Aromatic C–H Bonds at the Main Chains of π-Conjugated Polymers via Anodic Chlorination Facilitated by Lewis Acids. Macromolecules, 2021, 54, 1539-1547.	2.2	15
317	Synthesis of 3-nitroindoles by sequential paired electrolysis. Organic and Biomolecular Chemistry, 2021, 19, 7903-7913.	1.5	9
318	Copper-Catalyzed Intramolecular Amination of C(sp ³)–H Bond of Secondary Amines to Access Azacycles. Organic Letters, 2021, 23, 421-426.	2.4	16
319	Regioselective intramolecular sp ² C–H amination: direct <i>vs.</i> mediated electrooxidation. Organic Chemistry Frontiers, 2021, 8, 1581-1586.	2.3	18
320	Electrochemically induced nickel catalysis for oxygenation reactions with water. Nature Catalysis, 2021, 4, 116-123.	16.1	65
321	Catalyst-free synthesis of phenanthridines <i>via</i> electrochemical coupling of 2-isocyanobiphenyls and amines. New Journal of Chemistry, 2021, 45, 6367-6378.	1.4	14
322	Electrochemical Oxidative Cyclization: Synthesis of Polysubstituted Pyrrole from Enamines. European Journal of Organic Chemistry, 2021, 2021, 951-955.	1.2	14
323	In-Situ and Real-Time Monitoring of Oxygen Evolution during Kolbe Reaction by Scanning Electrochemical Microscopy. International Journal of Electrochemical Science, 2021, 16, 210240.	0.5	3
324	Electrolyteâ€Triggered C5â€Selective Trifluoromethylation and Halogenation of 8â€Aminoquinoline Derivatives. Asian Journal of Organic Chemistry, 2021, 10, 559-562.	1.3	10
325	Tunable Electrocatalytic Annulations of <i>o-</i> Arylalkynylanilines: Green and Switchable Syntheses of Skeletally Diverse Indoles. Journal of Organic Chemistry, 2021, 86, 15886-15896.	1.7	19
326	Metalâ€Free Electrochemical Synthesis of Sulfonamides Directly from (Hetero)arenes, SO ₂ , and Amines. Angewandte Chemie - International Edition, 2021, 60, 5056-5062.	7.2	54

#	Article	IF	CITATIONS
327	Electrochemical Synthesis of Benzimidazoles via Dehydrogenative Cyclization of Amidines. ChemSusChem, 2021, 14, 1692-1695.	3.6	18
328	One-pot synthesis of 2-aminobenzoxazole derivatives using acetic acid as an electrolyte under electrochemical conditions. Journal of the Iranian Chemical Society, 2021, 18, 2241-2248.	1.2	1
329	Rhodium-Catalyzed Redox-Neutral Olefination of Aryldiazenes with Acrylate Esters via C–H Activation and Transfer Hydrogenation. Organic Letters, 2021, 23, 1687-1691.	2.4	9
330	Metallfreie, elektrochemische Synthese von Sulfonamiden direkt aus (Hetero)arenen, SO ₂ und Aminen. Angewandte Chemie, 2021, 133, 5114-5120.	1.6	15
331	Singleâ€Atom Catalysts: A Sustainable Pathway for the Advanced Catalytic Applications. Small, 2021, 17, e2006473.	5.2	135
332	"Metal-free―synthesis and antifungal activity of 3-thiocyanatopyrazolo[1,5-a]pyrimidines. Russian Chemical Bulletin, 2021, 70, 600-604.	0.4	11
333	Recent Advances in Transition Metal-Catalyzed Selective B-H Functionalization of <i>o</i> -Carboranes. Bulletin of the Chemical Society of Japan, 2021, 94, 879-899.	2.0	63
334	Electrochemically Driven Radical Reactions: From Direct Electrolysis to Molecular Catalysis. Chemical Record, 2021, 21, 2306-2319.	2.9	57
335	Electrochemical Radical Silylâ€Oxygenation of Activated Alkenes. Angewandte Chemie, 2021, 133, 8826-8831.	1.6	11
336	Reproducibility in Electroorganic Synthesis—Myths and Misunderstandings. Angewandte Chemie - International Edition, 2021, 60, 14750-14759.	7.2	129
337	Nitrogenâ€containing organic products from the treatment of liquid toluene with plasmaâ€activated N ₂ gas. Plasma Processes and Polymers, 2021, 18, 2100012.	1.6	10
338	Electrochemical generation of nitrogen-centered radicals for organic synthesis. Green Synthesis and Catalysis, 2021, 2, 165-178.	3.7	130
339	Electroâ€Oxidative Coupling Reactions Leading to π onjugated Compounds. Chemical Record, 2021, 21, 2269-2276.	2.9	8
340	Organic Electrochemistry: Molecular Syntheses with Potential. ACS Central Science, 2021, 7, 415-431.	5.3	335
341	Synthetic Semiconductor Photoelectrochemistry. Chemical Record, 2021, 21, 2223-2238.	2.9	17
342	Reproduzierbarkeit in der elektroorganischen Synthese – Mythen und Missverstädnisse. Angewandte Chemie, 2021, 133, 14874-14883.	1.6	38
343	Electrochemicalâ€Induced Hydrogenation of Electronâ€Deficient Internal Olefins and Alkynes with CH ₃ OH as Hydrogen Donor. Advanced Synthesis and Catalysis, 2021, 363, 2104-2109.	2.1	19
344	Electrochemical Radical Silylâ€Oxygenation of Activated Alkenes. Angewandte Chemie - International Edition, 2021, 60, 8744-8749.	7.2	65

#	Article	IF	CITATIONS
345	Nickelâ€Catalyzed <i>N</i> â€Arylation of <i>NH</i> â€Sulfoximines with Aryl Halides via Paired Electrolysis. Angewandte Chemie, 2021, 133, 9530-9535.	1.6	15
346	Nickelâ€Catalyzed <i>N</i> â€Arylation of <i>NH</i> â€Sulfoximines with Aryl Halides via Paired Electrolysis. Angewandte Chemie - International Edition, 2021, 60, 9444-9449.	7.2	62
347	Lineare gepaarte Elektrolyse – Realisierung von 200 % Stromausbeute in stöchiometrischen Umsetzungen – die elektrochemische Bromierung von Alkenen. Angewandte Chemie, 2021, 133, 10084-10088.	1.6	9
348	Indirect Electrosynthesis with Halogen Ions as Mediators. Chemical Record, 2021, 21, 2290-2305.	2.9	39
349	Linear Paired Electrolysis—Realising 200 % Current Efficiency for Stoichiometric Transformations—The Electrochemical Bromination of Alkenes. Angewandte Chemie - International Edition, 2021, 60, 9996-10000.	7.2	32
350	Shonoâ€Type Oxidation for Functionalization of Nâ€Heterocycles. Chemical Record, 2021, 21, 2239-2253.	2.9	17
351	A facile electrochemical synthesis of suvorexant. Tetrahedron Letters, 2021, 70, 153014.	0.7	0
352	Paired Electrosynthesis of Aromatic Azo Compounds from Aryl Diazonium Salts with Pyrroles or Indoles. Advanced Synthesis and Catalysis, 2021, 363, 2752-2756.	2.1	12
353	Mediator-Enabled Electrocatalysis with Ligandless Copper for Anaerobic Chan–Lam Coupling Reactions. Journal of the American Chemical Society, 2021, 143, 6257-6265.	6.6	44
354	Electrocatalytic multicomponent oneâ€pot approach to tetrahydroâ€2′ <i>H</i> , <scp>4<i>H</i></scp> â€spiro[benzofuranâ€2,5′â€pyrimidine] scaffold. Journal of Heterocyclic Chemistry, 2021, 58, 1484-1495.	1.4	3
355	Electricityâ€Driven Postâ€Functionalization of Conducting Polymers. Chemical Record, 2021, 21, 2107-2119.	2.9	9
356	Catalyst―and Reagentâ€Free Formal Azaâ€Wacker Cyclizations Enabled by Continuousâ€Flow Electrochemistry. Angewandte Chemie - International Edition, 2021, 60, 11237-11241.	7.2	47
357	Synthesis of Dibenzosiloles through Electrocatalytic Silaâ€Friedelâ€Crafts Reaction. Advanced Synthesis and Catalysis, 2021, 363, 2757-2761.	2.1	18
358	From Bench to Plant: An Opportunity for Transition Metal Paired Electrocatalysis. Organic Process Research and Development, 2021, 25, 2581-2586.	1.3	24
359	Electrochemical TEMPO-Catalyzed Oxidative Ugi-Type Reaction. ACS Organic & Inorganic Au, 0, , .	1.9	6
360	Nal-mediated oxidative amidation of benzyl alcohols/aromatic aldehydes to benzamides via electrochemical reaction. Tetrahedron Letters, 2021, 70, 153017.	0.7	3
361	Recent Advances in Paired Electrosynthesis. Chemical Record, 2021, 21, 2585-2600.	2.9	46
362	Catalyst―and Reagentâ€Free Formal Azaâ€Wacker Cyclizations Enabled by Continuousâ€Flow Electrochemistry. Angewandte Chemie, 2021, 133, 11337-11341.	1.6	2

#	Article	IF	CITATIONS
363	Palladium atalyzed Aromatic Câ^'H Functionalizations Utilizing Electrochemical Oxidations. Chemical Record, 2021, 21, 2320-2331.	2.9	11
364	Electrochemical Dehydrogenative C(sp ²)â^'H Amination. Chemistry - A European Journal, 2021, 27, 8008-8012.	1.7	15
365	Efficient Electrocatalytic Approach to Spiro[Furo[3,2-b]pyran-2,5′-pyrimidine] Scaffold as Inhibitor of Aldose Reductase. Electrochem, 2021, 2, 295-310.	1.7	0
366	Evolution of Earthâ€Abundant 3 dâ€Metallaelectroâ€Catalyzed Câ^'H Activation: From Chelationâ€Assistance Câ^'H Functionalization without Directing Groups. Chemical Record, 2021, 21, 2430-2441.	2 to 2.9	12
367	Electrochemical Câ^'C bond cleavage of cyclopropanes towards the synthesis of 1,3-difunctionalized molecules. Nature Communications, 2021, 12, 3075.	5.8	54
368	Electrocatalytic C–H phosphorylation through nickel(III/IV/II) catalysis. CheM, 2021, 7, 1379-1392.	5.8	26
369	Electrochemical Tandem Cyclization of Unsaturated Oximes with Diselenides: A General Approach to Seleno Isoxazolines Derivatives with Quaternary Carbon Center. European Journal of Organic Chemistry, 2021, 2021, 2431-2435.	1.2	17
370	Electrosynthetic Screening and Modern Optimization Strategies for Electrosynthesis of Highly Valueâ€added Products. ChemElectroChem, 2021, 8, 2621-2629.	1.7	41
371	Complementary Reactivity in Selective Radical Processes: Electrochemistry of Oxadiazolines to Quinazolinones. Organic Letters, 2021, 23, 5148-5152.	2.4	5
372	Ynonylation of Acyl Radicals by Electroinduced Homolysis of 4-Acyl-1,4-dihydropyridines. Organic Letters, 2021, 23, 4960-4965.	2.4	20
373	Electrochemicalâ€Inâ€Situâ€Oxidative Sulfonylation of Phenols with Sulfinic Acids as an Access to Sulfonylated Hydroquinones. Advanced Synthesis and Catalysis, 2021, 363, 3485-3490.	2.1	7
374	Tailored cobalt-salen complexes enable electrocatalytic intramolecular allylic C–H functionalizations. Nature Communications, 2021, 12, 3745.	5.8	44
375	The Use of Potassium/Sodium Nitrite as a Nitrosating Agent in the Electrooxidative <i>N</i> â€Nitrosation of Secondary Amines. European Journal of Organic Chemistry, 2021, 2021, 3289-3293.	1.2	9
376	Inhibiting the Hydrogen Evolution Reaction (HER) with Proximal Cations: A Strategy for Promoting Selective Electrocatalytic Reduction. ACS Catalysis, 2021, 11, 8155-8164.	5.5	32
377	Direct and efficient electrocatalytic multicomponent assembling of arylaldehydes, malononitrile, and pyrazolin-5-ones into spirocyclopropyl pyrazolone scaffold. Monatshefte Für Chemie, 2021, 152, 641-648.	0.9	3
378	C–H activation. Nature Reviews Methods Primers, 2021, 1, .	11.8	277
379	Mechanistic insights into 2,4-D photoelectrocatalytic removal from water with TiO2 nanotubes under dark and solar light irradiation. Journal of Hazardous Materials, 2021, 412, 125202.	6.5	13
380	Electro-oxidative Intermolecular Allylic C(sp ³)–H Aminations. Journal of Organic Chemistry, 2021, 86, 15935-15945.	1.7	25

#	Article	IF	CITATIONS
381	Electrocatalytic cascade approach to the synthesis of dihydro-2'H,3H-spiro[1-benzofuran-2,5'-pyrimidines]. Chemistry of Heterocyclic Compounds, 2021, 57, 672.	0.6	2
382	From Screening to Scale-Up: The DoE-Based Optimization of Electrochemical Reduction of <scp>l</scp> -Cystine at Metal Cathodes. Organic Process Research and Development, 2021, 25, 2622-2630.	1.3	6
383	Review—Electrochemical Strategies for Selective Fluorination of Organic Compounds. Journal of the Electrochemical Society, 2021, 168, 075503.	1.3	5
384	Electrochemical Oxidative Syntheses of NHâ€&ulfoximines, NHâ€&ulfonimidamides and Dibenzothiazines via Anodically Generated Hypervalent Iodine Intermediates. ChemSusChem, 2021, 14, 3277-3282.	3.6	16
385	Recent advances in organic electrosynthesis employing transition metal complexes as electrocatalysts. Science Bulletin, 2021, 66, 2412-2429.	4.3	183
386	Manganese-catalyzed chlorosulfonylation of terminal alkene and alkyne via convergent paired electrolysis. Cell Reports Physical Science, 2021, 2, 100476.	2.8	25
387	Direct Electrochemical Selenylation/Cyclization of Alkenes: Access to Functionalized Benzheterocycles. Journal of Organic Chemistry, 2021, 86, 16045-16058.	1.7	31
388	TEMPOâ€Mediated Electrochemical Nâ€demethylation of Opiate Alkaloids. ChemElectroChem, 2021, 8, 2590-2596.	1.7	13
389	Electrochemically Catalyzed N–N Coupling and Ring Cleavage Reaction of 1H-Pyrazoles. Synthesis, 2021, 53, 3591-3596.	1.2	3
390	Electrochemical Radical δ-H Sulfonylation Reaction for the Synthesis of 4-((Aryl,Arylsul) Tj ETQq1 1 0.784314 rgBT	lOyerlock	19 Tf 50 38
391	Electrochemical Oxidation Cross Dehydrogenative Coupling of Enamines and Thiophenols for the Synthesis of Vinyl Sulfides. ChemistrySelect, 2021, 6, 6460-6463.	0.7	5
392	Electrochemical Heteroatomâ€Heteroatom Bond Construction. Chemical Record, 2022, 22, .	2.9	14
393	Acetic Acid Mediated Electrochemical Synthesis of Benzazole and its Application in the Synthesis of Pharmaceutically Active Compounds. ChemistrySelect, 2021, 6, 8080-8084.	0.7	1
395	C(sp 3)â^'C(sp 3) Bond Formation via Electrochemical Alkoxylation and Subsequent Lewis Acid Promoted Reactions. Advanced Synthesis and Catalysis, 2021, 363, 4521.	2.1	5
396	Application of an Electrochemical Microflow Reactor for Cyanosilylation: Machine Learning-Assisted Exploration of Suitable Reaction Conditions for Semi-Large-Scale Synthesis. Journal of Organic Chemistry, 2021, 86, 16035-16044.	1.7	19
397	Electrochemical Palladium-Catalyzed Oxidative Sonogashira Carbonylation of Arylhydrazines and Alkynes to Ynones. Journal of the American Chemical Society, 2021, 143, 12460-12466.	6.6	54
398	Desulfonylation via Radical Process: Recent Developments in Organic Synthesis. Chemical Reviews, 2021, 121, 12548-12680.	23.0	118
399	Direct Photocatalyzed Hydrogen Atom Transfer (HAT) for Aliphatic C–H Bonds Elaboration. Chemical Reviews, 2022, 122, 1875-1924.	23.0	442

#	Article	IF	CITATIONS
400	Electrophotochemical Ring-Opening Bromination of <i>tert</i> -Cycloalkanols. Journal of Organic Chemistry, 2021, 86, 16177-16186.	1.7	15
401	Photoinduced intermolecular hydrogen atom transfer reactions in organic synthesis. Chem Catalysis, 2021, 1, 523-598.	2.9	191
402	Electrooxidation Is a Promising Approach to Functionalization of Pyrazole-Type Compounds. Molecules, 2021, 26, 4749.	1.7	10
403	High-Throughput Electrochemistry: State of the Art, Challenges, and Perspective. Organic Process Research and Development, 2021, 25, 2587-2600.	1.3	27
404	Dehydrogenative Azolation of Arenes in a Microflow Electrochemical Reactor. Journal of Organic Chemistry, 2021, 86, 16195-16203.	1.7	16
405	Electrochemical Reductive Arylation of Nitroarenes with Arylboronic Acids. ChemSusChem, 2021, 14, 5399-5404.	3.6	17
406	Electrochemical Synthesis of Seleniumâ€substituted Benzoxazine <i>via</i> Radical Initiated Cyclization. ChemElectroChem, 2021, 8, 4091-4095.	1.7	5
407	N-Hydroxyphthalimide-Mediated Electrochemical Denitrogenation of Aroylhydrazides to Generate Acyl Radicals and Their Applications in the Syntheses of Fluorenones. Journal of Organic Chemistry, 2021, 86, 16171-16176.	1.7	9
408	Sustainable electrochemical cross-dehydrogenative coupling of 4-quinolones and diorganyl diselenides. Chinese Journal of Catalysis, 2021, 42, 1445-1450.	6.9	86
409	Electrochemical methods for synthesis and in situ generation of organometallic compounds. Coordination Chemistry Reviews, 2021, 442, 213986.	9.5	32
410	Electricity Driven 1,3â€Oxohydroxylation of Donorâ€Acceptor Cyclopropanes: a Mild and Straightforward Access to βâ€Hydroxy Ketones. European Journal of Organic Chemistry, 2021, 2021, 5053-5057.	1.2	20
411	Revitalization of electro-catalysis for the formation of organic scaffolds. Journal of the Indian Chemical Society, 2021, 98, 100130.	1.3	3
412	Emerging microdroplet chemistry for synthesis and analysis. International Journal of Mass Spectrometry, 2021, 468, 116639.	0.7	26
413	Electrochemical Functionalization of Imidazopyridine and Indazole: An Overview. Advanced Synthesis and Catalysis, 2021, 363, 5047-5071.	2.1	49
414	Electrochemical oxidative synthesis of 1,3,4-thiadiazoles from isothiocyanates and hydrazones. Organic Chemistry Frontiers, 2021, 8, 2208-2214.	2.3	19
415	Electrochemically site-selective alkoxylation of twisted 2-arylbenzoic acids <i>via</i> spirolactonization. Organic Chemistry Frontiers, 2021, 8, 5130-5138.	2.3	12
416	Progress and perspectives of electrochemical insights for C–H and N–H sulfonylation. New Journal of Chemistry, 2021, 45, 18246-18267.	1.4	6
417	Discovery of a tetraarylhydrazine catalyst for electrocatalytic synthesis of imidazo-fused N-heteroaromatic compounds. Organic and Biomolecular Chemistry, 2021, 19, 8789-8793.	1.5	8

#	Article	IF	CITATIONS
418	Electrochemical synthesis of sulfonated benzothiophenes using 2-alkynylthioanisoles and sodium sulfinates. Organic and Biomolecular Chemistry, 2021, 19, 3844-3849.	1.5	36
419	Asymmetric copper-catalyzed propargylic amination with amine hydrochloride salts. Chemical Communications, 2021, 57, 4674-4677.	2.2	10
420	Visible-light-promoted α-methoxymethylation and aminomethylation of ketones with methanol as the C1 source. Organic and Biomolecular Chemistry, 2021, 19, 5572-5576.	1.5	8
421	Green Chemistry on C–H Activation. Materials Horizons, 2021, , 181-200.	0.3	0
422	Oxidant- and Catalyst-Free Synthesis of Sulfonated Benzothiophenes via Electrooxidative Tandem Cyclization. Journal of Organic Chemistry, 2021, 86, 2593-2601.	1.7	31
423	Electrochemically promoted oxidative α-cyanation of tertiary and secondary amines using cheap AIBN. Organic and Biomolecular Chemistry, 2021, 19, 8254-8258.	1.5	7
424	Biphasic electrochemical peptide synthesis. Chemical Science, 2021, 12, 12911-12917.	3.7	27
425	Computational insights into Ir(<scp>iii</scp>)-catalyzed allylic C–H amination of terminal alkenes: mechanism, regioselectivity, and catalytic activity. RSC Advances, 2021, 11, 19113-19120.	1.7	2
426	Mangana(<scp>iii</scp> / <scp>iv</scp>)electro-catalyzed C(sp ³)–H azidation. Chemical Science, 2021, 12, 2890-2897.	3.7	69
427	Electrochemical Oxidative Arylsulfonylation and 1, <scp>2â€Alkyl</scp> Shift Sequences of Alkenyl Cyclobutanols for the Synthesis of <scp>l²â€Sulfonated</scp> Cyclopentanones. Bulletin of the Korean Chemical Society, 2021, 42, 510-513.	1.0	16
428	Nickelâ€Catalyzed Chainâ€Walking Crossâ€Electrophile Coupling of Alkyl and Aryl Halides and Olefin Hydroarylation Enabled by Electrochemical Reduction. Angewandte Chemie - International Edition, 2020, 59, 6513-6519.	7.2	121
429	An electrochemical method for deborylative seleno/thiocyanation of arylboronic acids under catalyst- and oxidant-free conditions. Green Chemistry, 2020, 22, 1559-1564.	4.6	45
430	Radical-mediated oxidative annulations of 1, <i>n</i> -enynes involving C–H functionalization. Chemical Communications, 2020, 56, 6907-6924.	2.2	57
431	Cobalt fluorides: preparation, reactivity and applications in catalytic fluorination and C–F functionalization. Chemical Communications, 2020, 56, 8512-8523.	2.2	15
432	EC-Backward-E Electrochemistry in Radical Cation Diels-Alder Reactions. Journal of the Electrochemical Society, 2020, 167, 155518.	1.3	11
433	Mechanistic Studies on TiO ₂ Photoelectrochemical Radical Cation [2 + 2] Cycloadditions. Journal of the Electrochemical Society, 2020, 167, 155529.	1.3	9
434	Merging Electrolysis and Nickel Catalysis in Redox Neutral Cross-Coupling Reactions: Experiment and Computation for Electrochemically Induced C–P and C–Se Bonds Formation. CCS Chemistry, 2020, 2, 179-190.	4.6	56
435	Redox-Neutral Radical-Cation Reactions: Multiple Carbon–Carbon Bond Formations Enabled by Single-Electron Transfer. Electrochemistry, 2020, 88, 497-506.	0.6	12

#	Article	IF	CITATIONS
436	Metal-free electrochemical [3 + 2] heteroannulation of anilines with pyridines enabled by dual C–H radical aminations. Green Chemistry, 2021, 23, 9024-9029.	4.6	10
437	Enantioselective palladaelectro-catalyzed C–H olefinations and allylations for N–C axial chirality. Chemical Science, 2021, 12, 14182-14188.	3.7	52
438	Electro-oxidative C–H amination of heteroarenes with aniline derivatives <i>via</i> radical–radical cross coupling. Green Chemistry, 2021, 23, 8853-8858.	4.6	21
439	Electrochemically selective double C(sp ²)–X (X = S/Se, N) bond formation of isocyanides. Chemical Science, 2021, 12, 14121-14125.	3.7	12
440	Regio―and Chemoselectivity of Oxidative Conversion of Diarylamines to N,N'â€Diaryldihydrophenazines and N,N'â€Diarylbenzidines: DFT and Experimental Study. ChemistrySelect, 2021, 6, 9769-9775.	0.7	1
441	Electrochemicalâ€Induced C(sp 3)â^'H Dehydrogenative Trimerization of Pyrazolones to Tripyrazolones. European Journal of Organic Chemistry, 2021, 2021, 5491-5496.	1.2	4
442	The Electrochemical cis hlorination of Alkenes. Chemistry - A European Journal, 2021, 27, 17341-17345.	1.7	4
443	Application of Electrochemical Cross-Dehydrogenative Couplings in the Syntheses of Heterocycles. , 2019, , 445-494.		0
444	Electrooxidative Dearomatization to Spiroisoxazolines: Application to Total Synthesis of Xanthoisoxazoline B. Advanced Synthesis and Catalysis, 2022, 364, 286-290.	2.1	6
445	Z-Acrylonitrile Derivatives: Improved Synthesis, X-ray Structure, and Interaction with Human Serum Albumin. Current Organic Synthesis, 2020, 16, 1149-1160.	0.7	4
446	Practical Synthesis of Halogenated <i>N</i> â€Heterocycles via Electrochemical Anodic Oxidation of Unactivated Alkenes. European Journal of Organic Chemistry, 2021, 2021, 5831-5834.	1.2	11
447	Advances in Electrochemical Hydrogenation Since 2010. Advanced Synthesis and Catalysis, 2021, 363, 5407-5416.	2.1	24
448	Electrochemical Generation of a Nonstabilized Azomethine Ylide: Access to Substituted <i>N</i> -Heterocycles. Journal of Organic Chemistry, 2021, 86, 16104-16113.	1.7	10
449	Selective Electrochemical Oxidation of Functionalized Pyrrolidines. Organic Letters, 2021, 23, 8834-8837.	2.4	7
450	Electrochemical Oxidative Selenolactonization of Alkenoic Acids with Diselenides: Synthesis of Selenated Î³â€Łactones. Asian Journal of Organic Chemistry, 2021, 10, 3271-3274.	1.3	13
451	Oneâ€Pot Electroâ€Oxidative Annulation Reactions: Synthesis of Polysubstituted Pyrroles from Anilines and Alkynoates. ChemistrySelect, 2021, 6, 12342-12345.	0.7	1
452	Photochemical and Electrochemical Applications of Proton-Coupled Electron Transfer in Organic Synthesis. Chemical Reviews, 2022, 122, 2017-2291.	23.0	211
453	Challenges in the Electrochemical Synthesis of Si ₂ Cl ₆ Starting from Tetrachlorosilane and Trichlorosilane. ChemElectroChem, 2022, 9, .	1.7	6

#	Article	IF	CITATIONS
454	Advances on the Merger of Electrochemistry and Transition Metal Catalysis for Organic Synthesis. Chemical Reviews, 2022, 122, 3180-3218.	23.0	173
455	Photons or Electrons? A Critical Comparison of Electrochemistry and Photoredox Catalysis for Organic Synthesis. Chemical Reviews, 2022, 122, 2487-2649.	23.0	210
456	Electrochemical C–H phosphorylation of arenes in continuous flow suitable for late-stage functionalization. Nature Communications, 2021, 12, 6629.	5.8	38
457	Hydroxylamine-mediated C–C amination via an aza-hock rearrangement. Nature Communications, 2021, 12, 7029.	5.8	10
458	Supramolecular chiral electrochemical reduction of acetophenone with hybridization of a chiral multifarene and Au nanoparticles. Journal of Catalysis, 2021, 404, 529-536.	3.1	9
459	Electrochemical oxidative <i>Z</i> -selective C(sp ²)–H chlorination of acrylamides. Chemical Communications, 2021, 57, 12643-12646.	2.2	9
460	Recent Advances in Electrochemical C(3)—H Functionalization of Quinoxalin-2(1 <i>H</i>)-ones. Chinese Journal of Organic Chemistry, 2021, 41, 4610.	0.6	11
461	Acetonitrile and benzonitrile as versatile amino sources in copper-catalyzed mild electrochemical C–H amidation reactions. RSC Advances, 2021, 11, 37540-37543.	1.7	14
462	Electrocatalysis as a key strategy for the total synthesis of natural products. Organic and Biomolecular Chemistry, 2022, 20, 727-748.	1.5	12
463	Electrochemical α-thiolation and azidation of 1,3-dicarbonyls. Chemical Communications, 2022, 58, 2758-2761.	2.2	5
464	Electrochemical regioselective C–H selenylation of 2 <i>H</i> -indazole derivatives. Organic and Biomolecular Chemistry, 2021, 20, 117-121.	1.5	29
465	Steps, hops and turns: examining the effects of channel shapes on mass transfer in continuous electrochemical reactors. Reaction Chemistry and Engineering, 2022, 7, 264-268.	1.9	1
466	Photochemical and electrochemical strategies in C–F bond activation and functionalization. Organic Chemistry Frontiers, 2022, 9, 853-873.	2.3	71
467	Electrochemical synthesis of dipyrazolo/dipyrimidine-fused pyridines <i>via</i> oxidative domino cyclization of C(sp ³)–H bonds. Organic Chemistry Frontiers, 2022, 9, 1662-1667.	2.3	6
468	Insertion of ammonia into alkenes to build aromatic N-heterocycles. Nature Communications, 2022, 13, 425.	5.8	41
469	Electrochemical dehydrogenative C–N coupling of hydrazones for the synthesis of 1 <i>H</i> -indazoles. Green Chemistry, 2022, 24, 1463-1468.	4.6	9
470	Electrochemical fluorosulfonylation of alkenes to access vicinal fluorinated sulfones derivatives. Tetrahedron, 2022, 106-107, 132651.	1.0	5
471	Synthesis of active pharmaceutical ingredients using electrochemical methods: keys to improve sustainability. Chemical Communications, 2022, 58, 619-628.	2.2	29

#	Article	IF	CITATIONS
472	Synthesis of an Organometallic Alkyl-Co(III) Complex with Amidoquinoline Directing Groups via C(sp3)–H Activation and Its UV–vis/NMR Spectroscopic, Crystallographic, DFT, and Electrochemical Studies. Bulletin of the Chemical Society of Japan, 2022, 95, 400-409.	2.0	0
473	Electrochemical Cross-Dehydrogenative Aromatization Protocol for the Synthesis of Aromatic Amines. Organic Letters, 2022, 24, 1011-1016.	2.4	7
474	Electrochemical oxidative bromolactonization of unsaturated carboxylic acids with sodium bromide: Synthesis of bromomethylated Î ³ -lactones. Tetrahedron Letters, 2022, 88, 153567.	0.7	7
475	Identification of stomatal-regulating molecules from de novo arylamine collection through aromatic C–H amination. Scientific Reports, 2022, 12, 949.	1.6	5
476	Forging C-C Bonds through Intramolecular Oxidative Coupling of Organoborates – an Overview. Synthesis, 0, 0, .	1.2	3
477	Electro-Oxidative sp ³ C–H Bond Functionalization and Annulation Cascade: Synthesis of Novel Heterocyclic Substituted Indolizines. Journal of Organic Chemistry, 2022, 87, 2898-2911.	1.7	15
478	Electrocatalysis under a magnetic lens: A combined electrochemistry and electron paramagnetic resonance review. Electrochimica Acta, 2022, 407, 139704.	2.6	11
479	Lanthanide-containing clusters for catalytic water splitting and CO2 conversion. Coordination Chemistry Reviews, 2022, 457, 214419.	9.5	41
480	A highly efficient metal-free hydrocarbonylation of alkynes with propargylamines and water. Green Chemistry, 2022, 24, 1978-1982.	4.6	11
481	Sustainable electrochemical dehydrogenative C(sp ³)–H mono/di-alkylations. Green Chemistry, 2022, 24, 2483-2491.	4.6	9
482	Paired electrolysis enabled annulation for the quinolyl-modification of bioactive molecules. Chemical Science, 2022, 13, 2310-2316.	3.7	11
483	Atropoenantioselective palladaelectro-catalyzed anilide C–H olefinations viable with natural sunlight as sustainable power source. Chemical Science, 2022, 13, 2729-2734.	3.7	24
484	Electrochemical benzylic C–H arylation of xanthenes and thioxanthenes without a catalyst and oxidant. Organic Chemistry Frontiers, 2022, 9, 1911-1916.	2.3	17
485	Electrocatalytic Allylic Câ`'H Alkylation Enabled by a Dualâ€Function Cobalt Catalyst**. Angewandte Chemie - International Edition, 2022, 61, .	7.2	40
486	Electrocatalytic Allylic Câ^'H Alkylation Enabled by a Dualâ€Function Cobalt Catalyst**. Angewandte Chemie, 2022, 134, .	1.6	10
487	Complementary Copper-Catalyzed and Electrochemical Aminosulfonylation of <i>O</i> -Homoallyl Benzimidates and <i>N</i> -Alkenyl Amidines with Sodium Sulfinates. Organic Letters, 2022, 24, 1405-1411.	2.4	9
488	Progress in Catalytic Decarboxylative Oxidative C-H Alkynylation. Current Catalysis, 2022, 11, .	0.5	0
489	Electrochemistry for the Chemoselective Modification of Peptides and Proteins. Journal of the American Chemical Society, 2022, 144, 23-41.	6.6	37

#	Article	IF	CITATIONS
490	Effective metal-free electrooxidative thiocyanation of anilines. Mendeleev Communications, 2022, 32, 94-96.	0.6	1
491	Multicomponent reactions and photo/electrochemistry join forces: atom economy meets energy efficiency. Chemical Society Reviews, 2022, 51, 2313-2382.	18.7	103
492	The eco-friendly electrosynthesis of trifluoromethylated spirocyclic indolines and their anticancer activity. Organic and Biomolecular Chemistry, 2022, , .	1.5	9
493	Electrochemical bromolactonization of alkenoic acids with carbon tetrabromide: Synthesis of bromomethylated Î ³ -lactones. Synthetic Communications, 2022, 52, 402-412.	1.1	4
494	Electrophotocatalytic Câ^'H Functionalization of Nâ€Heteroarenes with Unactivated Alkanes under External Oxidantâ€Free Conditions. ChemSusChem, 2022, 15, .	3.6	43
495	Progress in the Electrochemical Reactions of Sulfonyl Compounds. ChemSusChem, 2022, 15, .	3.6	15
496	Direct Anodic <i>N</i> â€Î± Hydroxylation: Accessing Versatile Intermediates for Azanucleoside Derivatives. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	3
497	Recent developments in electrosynthesis of nitriles and electrocatalytic cyanations. Journal of Energy Chemistry, 2022, 70, 542-575.	7.1	11
498	Synthesis of Cyclohexanones by a Tandem Photocatalyzed Annulation. Journal of the American Chemical Society, 2022, 144, 7030-7037.	6.6	36
499	Charged Particle Induced Etching and Functionalization of Two-Dimensional Materials. ECS Journal of Solid State Science and Technology, 2022, 11, 035011.	0.9	1
500	Manganese-catalyzed C H functionalizations driven via weak coordination: Recent developments and perspectives. Tetrahedron Letters, 2022, 97, 153749.	0.7	4
501	Câ^'H Bond Functionalization under Electrochemical Flow Conditions. Chemical Record, 2022, 22, e202100338.	2.9	12
502	Electrooxidative [3 + 2] annulation of amidines with alkenes for the synthesis of spiroimidazolines. Chinese Chemical Letters, 2022, 33, 5128-5131.	4.8	4
503	Electro-oxidative Trimerization of 1,2-Dimethoxybenzene: Reductive Workup Strategy and Alternating Current Electrolysis to Peel off the Precipitated Radical Cation Ion Pair. Chemistry Letters, 2022, 51, 629-632.	0.7	1
504	Electrochemical Decarboxylative Oxygenation of Carboxylic Acids. ACS Sustainable Chemistry and Engineering, 2022, 10, 5067-5071.	3.2	9
505	Electrochemical Enantioselective Nucleophilic α-C(sp ³)–H Alkenylation of 2-Acyl Imidazoles. Journal of the American Chemical Society, 2022, 144, 6964-6971.	6.6	48
506	Oxidation of benzyl alcohol using linear paired electrolysis. Journal of Environmental Chemical Engineering, 2022, 10, 107490.	3.3	1
507	Electrochemical Desaturative βâ€Acylation of Cyclic <i>N</i> â€Aryl Amines. Angewandte Chemie - International Edition, 2022, 61, .	7.2	51

#	Article	IF	CITATIONS
508	Electrochemical Desaturative βâ€Acylation of Cyclic <i>N</i> â€Aryl Amines. Angewandte Chemie, 2022, 134, .	1.6	8
509	Electrochemically Mediated Direct C(<i>sp</i> ³)â^'H Sulfonylation of Xanthene Derivatives. Advanced Synthesis and Catalysis, 2022, 364, 726-731.	2.1	21
510	Electrochemical Rearrangement of 3-Hydroxyoxindoles into Benzoxazinones. Organic Letters, 2022, 24, 27-32.	2.4	6
511	Electrooxidative tricyclic 6–7–6 fused-system domino assembly to allocolchicines by a removable radical strategy. Green Chemistry, 2022, 24, 3697-3703.	4.6	17
512	Theoretical Insight into Catalysis of the Aluminabenzene–Iridium Complex for C(sp ³)–H Borylation of NEt ₃ : How to Control α- and β-Regioselectivities?. ACS Catalysis, 2022, 12, 4880-4897.	5.5	5
513	Electrochemical Câ \in "H Functionalization of Cyclic Amines. Synlett, 0, , .	1.0	2
514	Redox-mediated Electrochemical Cyclization Reactions. RSC Green Chemistry, 2022, , 1-28.	0.0	1
515	Activated Ni–OH Bonds in a Catalyst Facilitates the Nucleophile Oxidation Reaction. Advanced Materials, 2022, 34, e2105320.	11.1	47
516	Recent progress in cathodic reduction-enabled organic electrosynthesis: Trends, challenges, and opportunities. EScience, 2022, 2, 243-277.	25.0	67
517	<i>Para</i> â€Fluorination of Anilides Using Electrochemically Generated Hypervalent Iodoarenes. Chemistry - A European Journal, 2022, 28, .	1.7	6
518	Stepwise Oxidative C–C Coupling and/or C–N Fusion of Zn(II) <i>meso</i> -Pyridin-2-ylthio-porphyrins. Inorganic Chemistry, 2022, , .	1.9	1
519	Electrode material promoted dehydrogenative homo-/cross-coupling of weakly activated naphthalenes. Green Synthesis and Catalysis, 2022, , .	3.7	4
520	Electrochemically controlled dearomative 2,3-difunctionalization of indoles to synthesize oxoindoline derivatives. Organic Chemistry Frontiers, 2022, 9, 3800-3806.	2.3	12
521	Electrochemical triamination of alkynes: controllable synthesis of functionalized indolines and indoles. Green Chemistry, 2022, 24, 4754-4760.	4.6	11
522	N-Dealkylation of Amines. Molecules, 2022, 27, 3293.	1.7	16
523	Unified Electrochemical Synthetic Strategy for [2 + 2 + 2] Cyclotrimerizations: Construction of 1,3,5- and 1,2,4-Trisubstituted Benzenes from Ni(I)-Mediated Reduction of Alkynes. ACS Catalysis, 2022, 12, 6874-6886.	5.5	10
524	Electro-organic synthesis: an environmentally benign alternative for heterocycle synthesis. Organic and Biomolecular Chemistry, 2022, 20, 5163-5229.	1.5	17
525	Depolymerization of Lignin by Homogeneous Photocatalysis. Springer Handbooks, 2022, , 1537-1562.	0.3	1

#	Article	IF	CITATIONS
526	<scp>Nickelâ€Catalyzed</scp> Electroreductive Syntheses of Triphenylenes Using <scp><i>ortho</i>â€Dihalobenzeneâ€Derived</scp> Benzynes. Chinese Journal of Chemistry, 2022, 40, 2335-2344.	2.6	13
527	Electricity Induced Rhodium-Catalyzed Oxidative C–H/N–H Annulation of Alkynes with Arylhydrophthalazinediones. Organic Letters, 2022, 24, 4530-4535.	2.4	7
528	Counter Electrode Reactions—Important Stumbling Blocks on the Way to a Working Electroâ€organic Synthesis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	42
529	Reaktionen an der Gegenelektrode – wichtige Stolpersteine auf dem Weg einer funktionierenden elektroâ€organischen Synthese. Angewandte Chemie, 2022, 134, .	1.6	5
530	Multicomponent Electrocatalytic Selective Approach to Unsymmetrical Spiro[furo[3,2-c]pyran-2,5′-pyrimidine] Scaffold under a Column Chromatography-Free Protocol at Room Temperature. Chemistry, 2022, 4, 615-629.	0.9	5
531	Electrochemical alkene azidocyanation <i>via</i> 1,4-nitrile migration. Chemical Communications, 2022, 58, 8658-8661.	2.2	8
532	Electrooxidative Annulation of Unsaturated Molecules via Directed C—H Activation. Chinese Journal of Organic Chemistry, 2022, 42, 1286.	0.6	0
533	Electrochemical Cascade Thia-Michael and Thioacetalization of Cyclic Enones. Synthesis, 0, , .	1.2	3
534	Electrochemical [3+2] Cycloaddition of Anilines and 1,3â€Dicarbonyl Compounds: Construction of Multisubstituted Indoles. Advanced Synthesis and Catalysis, 2022, 364, 2865-2871.	2.1	6
535	Electrochemically Enabled Cascade Cyclization Reaction of Aromatic Aldehydes and Pyrazol-5-amines: Synthesis of Bis-pyrazolo[3,4- <i>b</i> :4′,3′- <i>e</i>]pyridines. Journal of Organic Chemistry, 2022, 87, 9242-9249.	1.7	5
536	Electrochemical synthesis of tetrahydrobenzo[b]pyran derivatives in deep eutectic solvents. Journal of Electroanalytical Chemistry, 2022, 920, 116629.	1.9	5
537	Electrochemical Activation of the C–X Bond on Demand: Access to the Atom Economic Group Transfer Reaction Triggered by Noncovalent Interaction. Journal of Organic Chemistry, 2022, 87, 9551-9564.	1.7	6
538	Ritter-type amination of C(sp3)-H bonds enabled by electrochemistry with SO42â^'. Nature Communications, 2022, 13, .	5.8	24
539	Water enables the tunable electrochemical synthesis of heterocyclic 3a- or 5a-bromoindolines. Green Chemistry, 2022, 24, 6720-6726.	4.6	13
540	Electro-/photocatalytic alkene-derived radical cation chemistry: recent advances in synthetic applications. Chemical Society Reviews, 2022, 51, 7206-7237.	18.7	78
541	Exploring Electrosynthesis: Bulk Electrolysis and Cyclic Voltammetry Analysis of the Shono Oxidation. Journal of Chemical Education, 2022, 99, 3242-3248.	1.1	6
542	Selective Electrochemical Dibromination of Terpenes and Naturally Derived Olefins. European Journal of Organic Chemistry, 2022, 2022, .	1.2	5
543	Tandem Electro-Oxidative C–C and C–N Coupling and Aromatization for the Construction of Pyrazine-Fused Bis <i>-</i> aza[7]helicene. Organic Letters, 2022, 24, 7053-7057.	2.4	9

#	Article	IF	CITATIONS
544	Cross oupling of Câ^'H and Nâ^'H Bonds: A Hydrogen Evolution Strategy for the Construction of Câ^'N Bonds. European Journal of Organic Chemistry, 2022, 2022, .	1.2	12
545	Electrochemical Oxidative C(sp ²)–H Amination of Aldehyde Hydrazones with Azoles. Organic Letters, 2022, 24, 5874-5878.	2.4	8
546	Electrosynthesis of 2-Substituted Benzoxazoles via Intramolecular Shono-Type Oxidative Coupling of Glycine Derivatives. Journal of Organic Chemistry, 0, , .	1.7	2
547	Visible-Light-Induced Dual C(sp ³)–H Bond Functionalization of Tertiary Amine via Hydrogen Transfer to Carbene and Subsequent Cycloaddition. Organic Letters, 2022, 24, 6335-6340.	2.4	8
548	Defect engineering of electrocatalysts for organic synthesis. Nano Research, 2023, 16, 1890-1912.	5.8	13
549	Cathode enabled high faradaic efficiency: reduction of imines to amines with H ₂ O as a H-source. Chemical Communications, 2022, 58, 9906-9909.	2.2	3
550	Radical coupling reactions of hydrazines <i>via</i> photochemical and electrochemical strategies. Organic Chemistry Frontiers, 2022, 9, 6114-6128.	2.3	7
551	Electrochemically driven oxidative C–H/N–H cross-coupling reactions of cyclic sulfamidate imines with primary anilines and secondary amines. Green Chemistry, 2022, 24, 8377-8385.	4.6	11
552	Electrooxidation-induced selective cleavage of C–N bonds of tertiary amines to access thioureas, selenoureas, and 2-aminated benzoselenazoles. Organic Chemistry Frontiers, 2022, 9, 6305-6311.	2.3	5
553	Electrochemical oxidative rearrangement of tetrahydro-β-carbolines in a zero-gap flow cell. Chemical Science, 2022, 13, 10479-10485.	3.7	9
554	Electrolyte-free electrochemical C–H trifluoromethylation of 2-pyridones under batch and flow conditions. Green Chemistry, 2022, 24, 7388-7394.	4.6	7
555	Energy-Efficient Process in Organic Synthesis. , 2022, , 37-77.		Ο
556	Electrochemically promoted annulation of aldehydes and carbazates: access to 2-alkoxy/aryloxy-5-substituted 1,3,4-oxadiazole and 1,3,4-oxadiazol-2(3 <i>H</i>)-one derivatives. New Journal of Chemistry, 2022, 46, 20347-20353.	1.4	2
557	Non-directed Pd-catalysed electrooxidative olefination of arenes. Chemical Science, 2022, 13, 9432-9439.	3.7	14
558	Electrochemical oxidative regio- and stereo-selective thio(seleno)cyanation of enamides and mechanistic insights. Green Chemistry, 2022, 24, 6556-6561.	4.6	10
559	Electrochemical deoxygenative reduction of ketones. Chemical Communications, 2022, 58, 11155-11158.	2.2	9
560	Electricity Promoted Chemoselective Functionalization of Alkenes: Diastereoselective Synthesis of Oxindole Containing Thioethers and Selenoethers. ChemistrySelect, 2022, 7, .	0.7	3
561	Divergent Câ [~] 'H Amidations and Imidations by Tuning Electrochemical Reaction Potentials. ChemSusChem, 2022, 15, .	3.6	3

#	Article	IF	CITATIONS
562	Direct Electrooxidative Selenylation/Cyclization of Alkynes: Access to Functionalized Benzo[b]furans. Molecules, 2022, 27, 6314.	1.7	8
563	Electrosynthesis and characterization of 2-ethoxy benzoic acid at platinum electrode by Potentiostatic method. Materials Today: Proceedings, 2022, , .	0.9	0
564	A Facile Access to Spirooxindoles by Halogen-mediated Electrochemical Semi-pinacol Rearrangement. Chemistry Letters, 2022, 51, 1067-1069.	0.7	2
565	Electrochemically time-dependent oxidative coupling/coupling-cyclization reaction between heterocycles: tunable synthesis of polycyclic indole derivatives with fluorescence properties. Science China Chemistry, 2022, 65, 1962-1967.	4.2	11
566	Recent Progress in Electrocatalytic Urea Synthesis under Ambient Conditions. ACS Sustainable Chemistry and Engineering, 2022, 10, 12477-12496.	3.2	22
567	Copper atalyzed C(sp ³)â^'H/Nâ^'H Cross Dehydrogenative Coupling Between Toluene Derivatives and Picolinamides. Asian Journal of Organic Chemistry, 0, , .	1.3	1
568	Electrochemical Câ^'H Oxidation/Conjugate Addition/Cyclization Sequences of 2â€Alkyl Phenols: Oneâ€Pot Synthesis of 2â€Aminoâ€4 <i>H</i> â€chromenes. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	6
569	Probing Electron Transfer Events in Radical Cation Cycloadditions: Intramolecular vs. Intermolecular. European Journal of Organic Chemistry, 0, , .	1.2	1
570	Scalable Microreactor Concept for the Continuous Kolbe Electrolysis of Carboxylic Acids Using Aqueous Electrolyte. ChemistryOpen, 2022, 11, .	0.9	1
571	Transient Stabilization Effect of CO ₂ in the Electrochemical Hydrogenation of Azo Compounds and the Reductive Coupling of αâ€Ketoesters. Angewandte Chemie, 2022, 134, .	1.6	2
572	Transient Stabilization Effect of CO ₂ in the Electrochemical Hydrogenation of Azo Compounds and the Reductive Coupling of αâ€Ketoesters. Angewandte Chemie - International Edition, 2022, 61, .	7.2	11
573	Electrocatalytic Synthesis of Substituted Pyrazoles <i>via</i> Hypervalent Iodine Mediated Intramolecular Câ^'N Coupling. Advanced Synthesis and Catalysis, 2022, 364, 3910-3916.	2.1	10
577	NHPI-catalyzed electrochemical C–H alkylation of indoles with alcohols to access di(indolyl)methanes <i>via</i> radical coupling. Organic Chemistry Frontiers, 2022, 9, 6861-6868.	2.3	6
578	Peroxodicarbonate: Electrosynthesis and first directions to green industrial applications. Current Research in Green and Sustainable Chemistry, 2022, 5, 100341.	2.9	1
579	Transitionâ€Metalâ€Free Methods for the Remote Câ^'H Bond Functionalization of Cyclic Amines. Asian Journal of Organic Chemistry, 2023, 12, .	1.3	6
580	Photochemical Radical Cation Cycloadditions of Aryl Vinyl Ethers. European Journal of Organic Chemistry, 2022, 2022, .	1.2	4
581	Electrochemical <i>N</i> â€Centered Radical Addition/Semipinacol Rearrangement Sequence of Alkenyl Cyclobutanols: Synthesis of βâ€Amino Cyclic Ketones. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	5
582	Heterocycle Synthesis via Decarboxylative Cyclization Methods. Advanced Synthesis and Catalysis, 2022, 364, 3756-3781.	2.1	10

#	Article	IF	CITATIONS
583	Ruthenium-catalyzed divergent deaminative and denitrative C–N cleavages: facile access to quinoxalines. Organic Chemistry Frontiers, 2022, 10, 22-29.	2.3	8
584	Tunable Electrochemical Peptide Modifications: Unlocking New Levels of Orthogonality for Sideâ€Chain Functionalization. Angewandte Chemie - International Edition, 2023, 62, .	7.2	10
585	Lipophilic Nâ€Hydroxyimide Derivatives: Design, Synthesis, and Application to Aerobic Alkane Oxidation Under Neat Conditions. ChemPlusChem, 0, , .	1.3	1
586	Tunable Electrochemical Peptide Modifications: Unlocking New Levels of Orthogonality for Sideâ€Chain Functionalization. Angewandte Chemie, 2023, 135, .	1.6	2
587	Recent Advances in the Nickelâ€catalysed Electrochemical Coupling Reactions with a Focus on the Type of Bond Formed. Asian Journal of Organic Chemistry, 2023, 12, .	1.3	6
588	Cu-catalyzed enantioselective decarboxylative cyanation <i>via</i> the synergistic merger of photocatalysis and electrochemistry. Chemical Science, 2023, 14, 705-710.	3.7	17
589	Metal-free methods for the generation of benzimidazoles and 2-aminobenzimidazoles. Tetrahedron, 2023, 130, 133143.	1.0	1
590	Electrocatalytic synthesis: an environmentally benign alternative for radical-mediated aryl/alkenyl C(sp ²)–C(sp ³) cross-coupling reactions. Green Chemistry, 2022, 24, 9373-9401.	4.6	17
592	Electrochemical Oxidation of 3-Aryl-2-cyanothioacrylamides. Russian Journal of General Chemistry, 2022, 92, 2235-2245.	0.3	1
593	Direct Electrochemical Synthesis of 2,3â€Disubstituted Quinoline <i>Nâ€</i> oxides by Cathodic Reduction of Nitro Arenes. Chemistry - A European Journal, 2023, 29, .	1.7	4
594	Electrochemical Selenium-Catalyzed <i>N,O</i> -Difunctionalization of Ynamides: Access to Polysubstituted Oxazoles. Organic Letters, 2022, 24, 9419-9424.	2.4	11
595	Synthesis of 3â€Thiocyanobenzothiophene via Difunctionalization of Active Alkyne Promoted by Electrochemicalâ€Oxidation. Chemistry - A European Journal, 2023, 29, .	1.7	3
596	Electrochemical Decarbonylative Aminosulfonylation of Alkynes with Sulfinates and <i>N</i> -(Formyl)anilides. Organic Letters, 2022, 24, 9337-9341.	2.4	5
597	Electrochemical Synthesis of Pyrazolines and Pyrazoles via [3+2] Dipolar Cycloaddition. Angewandte Chemie - International Edition, 2023, 62, .	7.2	16
598	Elektrochemische Synthese von Pyrazolinen und Pyrazolen via [3+2] dipolarer Cycloaddition. Angewandte Chemie, 2023, 135, .	1.6	1
599	Controlling the Hydrophilicity of the Electrochemical Interface to Modulate the Oxygen-Atom Transfer in Electrocatalytic Epoxidation Reactions. Journal of the American Chemical Society, 2022, 144, 22734-22746.	6.6	9
600	Electrochemical organic reactions: A tutorial review. Frontiers in Chemistry, 0, 10, .	1.8	11
601	Electrochemical reactor dictates site selectivity in N-heteroarene carboxylations. Nature, 2023, 615, 67-72.	13.7	79

#	Article	IF	CITATIONS
602	Mechanistic Aspects of the Electrochemical Oxidation of Aliphatic Amines and Aniline Derivatives. Molecules, 2023, 28, 471.	1.7	12
603	{V ₆ } Ring Sandwiched Polyoxoniobate as Molecular Electrocatalyst for Oxidantâ€Free Synthesis of Sulfoxides. Chemistry - A European Journal, 2023, 29, .	1.7	2
604	Synthesis of 2,4,5-trisubstituted oxazoles from 1,2-diketones and amines by using an electrochemical method. Tetrahedron, 2023, 132, 133246.	1.0	4
605	Catalytic Enantioselective Synthesis Enabled by Electrochemistry. Synthesis, 2023, 55, 2926-2942.	1.2	2
606	Electrochemical monofluoroalkylation cyclization of <i>N</i> -arylacrylamides to construct monofluorinated 2-oxindoles. Organic and Biomolecular Chemistry, 2023, 21, 1014-1020.	1.5	12
607	Transition-metal-free electrochemical-induced active C(sp ³)-H functionalization. Green Chemistry Letters and Reviews, 2023, 16, .	2.1	2
608	Sodium salts mediated electrochemical reactions: Recent instances. Synthetic Communications, 0, , 1-29.	1.1	0
609	Photo- and Electrochemically Initiated Thiocyanation Reactions. Russian Journal of Organic Chemistry, 2022, 58, 1712-1751.	0.3	4
610	Electrochemical Carbon-Ferrier Rearrangement Using a Microflow Reactor and Machine Learning-Assisted Exploration of Suitable Conditions. Organic Process Research and Development, 0, ,	1.3	0
611	Electricity-driven asymmetric bromocyclization enabled by chiral phosphate anion phase-transfer catalysis. Nature Communications, 2023, 14, .	5.8	7
612	Electrochemical C(sp ³)–H functionalization of ethers <i>via</i> hydrogen-atom transfer by means of cathodic reduction. Chemical Communications, 2023, 59, 2664-2667.	2.2	8
613	General Concepts and Recent Advances in the Electrochemical Transformation of Chloro―and Hydrosilanes. ChemElectroChem, 2023, 10, .	1.7	4
614	Transition metal-free electrochemical fluorotrifluoromethylation of Styrenes. Organic Chemistry Frontiers, 2023, 10, 1283-1288.	2.3	3
615	Gold(I) atalyzed Alkynylation of <i>N</i> , <i>O</i> â€Acetals: An Access to Alkynylated Saturated Nâ€heterocycles. Advanced Synthesis and Catalysis, 2023, 365, 496-501.	2.1	4
616	Synthesis of P-stereogenic cyclicphosphinic amides <i>via</i> electrochemically enabled cobalt-catalyzed enantioselective C–H annulation. Green Chemistry, 2023, 25, 3606-3614.	4.6	18
617	Electroreductive Dicarboxylation of Unactivated Skipped Dienes with CO ₂ . Angewandte Chemie - International Edition, 2023, 62, .	7.2	10
618	C(sp ³)–H Aerobic Alkenylation of Tetrahydroisoquinolines via Organic Electrosynthesis. Journal of Organic Chemistry, 2023, 88, 6203-6208.	1.7	6
619	C(sp ³)–H Alkenylation of Tetrahydroisoquinolines via Merging Electrochemistry and Organocatalysis. Organic Letters, 2023, 25, 608-613.	2.4	7

C	1	D
CITAT	ION	Report

#	Article	IF	CITATIONS
620	Access to Saturated Oxygen Heterocycles and Lactones via Electrochemical Sulfonylative Oxycyclization of Alkenes with Sulfonyl Hydrazides. Journal of Organic Chemistry, 2023, 88, 2505-2520.	1.7	5
621	Electrochemically Enabled Direct C3â€Formylation of Imidazopyridines with Me ₃ N as a Carbonyl Source. Chemistry - an Asian Journal, 2023, 18, .	1.7	3
622	Simple and scalable electrosynthesis of 1 <i>H</i> -1-hydroxy-quinazolin-4-ones. Chemical Science, 2023, 14, 2669-2675.	3.7	2
623	Radical Cation [2+2] Cycloadditions Enabled by Surface-Assisted Pseudo-Intramolecular Electron Transfers. Synthesis, 0, , .	1.2	1
624	Electrosynthesis of bridged or fused sulfonamides through complex radical cascade reactions: divergence in medium-sized ring formation. Chemical Science, 2023, 14, 3541-3547.	3.7	6
625	Consecutive cross-dehydrogenative C–O and C–N construction for the synthesis of polyarene with AIE properties under electrochemical condition involving oxygen radical species. Green Chemistry, 2023, 25, 2287-2292.	4.6	2
626	Novel and highly efficient electro-catalytic cycloaddition of CO ₂ and epoxides to cyclic carbonates over reusable ionic liquid-based cooperative catalytic system. Green Chemistry Letters and Reviews, 2023, 16, .	2.1	1
627	Electrochemical Synthesis of Imidazopyridine and Benzylidene Malononitrile. , 0, , .		0
628	Visible-Light-Driven Organocatalytic Alkoxylation of Benzylic C–H Bonds. Journal of Organic Chemistry, 2023, 88, 3532-3538.	1.7	3
629	Transition metal-freeï€ïŧ-C-H functionalization of tertiary amines catalysed/promoted by acids: A brief review. Mini-Reviews in Organic Chemistry, 2023, 20, .	0.6	0
630	Introducing Phenalenyl-Based Organic Lewis Acid as a Photocatalyst to Facilitate Oxidative Azolation of Unactivated Arenes. Organic Letters, 2023, 25, 1895-1900.	2.4	9
631	The Oxidation of Organoâ€Boron Compounds Using Electrochemically Generated Peroxodicarbonate. European Journal of Organic Chemistry, 2023, 26, .	1.2	4
632	Electrochemical Dearomative Spirocyclization. Chemistry - an Asian Journal, 2023, 18, .	1.7	15
633	Electrochemically Driven Selective Removal of the Sâ•N Bond-Directing Group Using Cyclohexanone Oxime as the Mediator. Journal of Organic Chemistry, 2023, 88, 4334-4344.	1.7	2
634	Electrochemically enabled decyanative C(sp ³)–H oxygenation of <i>N</i> -cyanomethylamines to formamides. Organic and Biomolecular Chemistry, 2023, 21, 2917-2921.	1.5	1
635	How the Conformational Movement of the Substrate Drives the Regioselective C–N Bond Formation in P450 TleB: Insights from Molecular Dynamics Simulations and Quantum Mechanical/Molecular Mechanical Calculations. Journal of the American Chemical Society, 2023, 145, 7252-7267.	6.6	13
636	Regiodivergent electroreductive defluorinative carboxylation of <i>gem</i> -difluorocyclopropanes. Green Chemistry, 2023, 25, 3095-3102.	4.6	11
637	Using a nitrogen-centered radical as a selective mediator in electrochemical C(sp3)-H amination. Chem Catalysis, 2023, 3, 100582.	2.9	9

#	Article	IF	CITATIONS
638	Electrochemical electrophilic bromination/spirocyclization of <i>N</i> -benzyl-acrylamides to brominated 2-azaspiro[4.5]decanes. Green Chemistry, 2023, 25, 3543-3548.	4.6	38
639	Electroreductive Dicarboxylation of Unactivated Skipped Dienes with CO2. Angewandte Chemie, 0, , .	1.6	0
640	Electrochemical Oxidation and Functionalization of Lowâ€Đensity Polyethylene. ChemElectroChem, 2023, 10, .	1.7	3
641	Electrochemistry in organics: a powerful tool for "green―synthesis. Journal of Solid State Electrochemistry, 2024, 28, 659-676.	1.2	2
642	Electrochemical, Regioselective, and Stereoselective Synthesis of Allylic Thioethers and Selenoethers under Transition-Metal-Free and Oxidant-Free Conditions. Journal of Organic Chemistry, 2023, 88, 6096-6107.	1.7	4
643	Exploring Synthetic Strategies for 1 <i>H</i> â€Indazoles and Their <i>N</i> â€Oxides: Electrochemical Synthesis of 1 <i>H</i> â€Indazole <i>N</i> â€Oxides and Their Divergent Câ^'H Functionalizations. Angewandte Chemie, 2023, 135, .	1.6	0
644	Exploring Synthetic Strategies for 1 <i>H</i> â€Indazoles and Their <i>N</i> â€Oxides: Electrochemical Synthesis of 1 <i>H</i> â€Indazole <i>N</i> â€Oxides and Their Divergent Câ^'H Functionalizations. Angewandte Chemie - International Edition, 2023, 62, .	7.2	5
651	Electrochemically Mediated S-Glycosylation of 1-Thiosugars with Xanthene Derivatives. Organic Letters, 2023, 25, 4252-4257.	2.4	0
661	Anodic Dehydrogenative Aromatization of Tetrahydrocarbazoles Leading to Carbazoles. Organic Letters, 2023, 25, 5339-5344.	2.4	2
665	Electrochemical ring-opening 1,3-dihydroxylation of arylcyclopropanes with H ₂ O. Green Chemistry, 2023, 25, 6618-6622.	4.6	3
669	Electrochemical nitration for organic C–N bond formation: a current view on possible N-sources, mechanisms, and technological feasibility. Green Chemistry, 0, , .	4.6	0
670	Recent advances in electrochemical C–H bond amination. Organic Chemistry Frontiers, 2023, 10, 5309-5330.	2.3	1
673	Electrochemical reductive cascade cyclization of <i>o</i> -alkynylated derivatives for saturated amides/amines. Chemical Communications, 2023, 59, 11125-11128.	2.2	1
686	Electrochemical cascade reactions: an account of the recent developments of the modern strategic tool in the arsenal of chemical synthesis. Green Chemistry, 0, , .	4.6	1
705	Peptide coupling using recyclable bicyclic benziodazolone. Chemical Communications, 0, , .	2.2	1
711	Electrochemistry-enabled residue-specific modification of peptides and proteins. Organic and Biomolecular Chemistry, 2024, 22, 1085-1101.	1.5	0
723	Clay based heterogeneous catalysts for carbon–nitrogen bond formation: a review. RSC Advances, 2024, 14, 4810-4834.	1.7	0
726	Asymmetric Dual Catalytic Processes: Transition Metal Catalysis and Photoredox Catalysis. , 2024, , .		Ο

ARTICLE

IF CITATIONS