Blockade of the checkpoint receptor TIGIT prevents NK anti-tumor immunity

Nature Immunology 19, 723-732 DOI: 10.1038/s41590-018-0132-0

Citation Report

#	Article		CITATIONS
2	Carnosic acid enhances the anti-lung cancer effect of cisplatin by inhibiting myeloid-derived suppressor cells. Chinese Journal of Natural Medicines, 2018, 16, 907-915.		25
3	Natural Killer Cell Dysfunction in Hepatocellular Carcinoma: Pathogenesis and Clinical Implications. International Journal of Molecular Sciences, 2018, 19, 3648.		32
4	CD226 regulates natural killer cell antitumor responses via phosphorylation-mediated inactivation of transcription factor FOXO1. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11731-E11740.	3.3	36
5	Genomics of response to immune checkpoint therapies for cancer: implications for precision medicine. Genome Medicine, 2018, 10, 93.		121
6	The application of nanotechnology in immune checkpoint blockade for cancer treatment. Journal of Controlled Release, 2018, 290, 28-45.	4.8	67
7	Thinking differently about <scp>ILC</scp> s—Not just tissue resident and not just the same as <scp>CD</scp> 4 ⁺ Tâ€cell effectors. Immunological Reviews, 2018, 286, 160-171.	2.8	24
8	Dormant tumour cells, their niches and the influence of immunity. Nature Cell Biology, 2018, 20, 1240-1249.	4.6	134
9	Expression of the Inhibitory Receptor TIGIT Is Up-Regulated Specifically on NK Cells With CD226 Activating Receptor From HIV-Infected Individuals. Frontiers in Immunology, 2018, 9, 2341.	2.2	48
10	KIR3DL1-Negative CD8 T Cells and KIR3DL1-Negative Natural Killer Cells Contribute to the Advantageous Control of Early Human Immunodeficiency Virus Type 1 Infection in HLA-B Bw4 Homozygous Individuals. Frontiers in Immunology, 2018, 9, 1855.	2.2	8
11	Natural Killer Cells in Liver Disease and Hepatocellular Carcinoma and the NK Cell-Based Immunotherapy. Journal of Immunology Research, 2018, 2018, 1-8.		105
12	Natural killer cells and other innate lymphoid cells in cancer. Nature Reviews Immunology, 2018, 18, 671-688.		702
13	Checkpoint inhibition: NK cells enter the scene. Nature Immunology, 2018, 19, 650-652.	7.0	18
14	Opposing Functions of Interferon Coordinate Adaptive and Innate Immune Responses to Cancer Immune Checkpoint Blockade. Cell, 2019, 178, 933-948.e14.	13.5	301
15	Blockade of TIGIT/CD155 Signaling Reverses T-cell Exhaustion and Enhances Antitumor Capability in Head and Neck Squamous Cell Carcinoma. Cancer Immunology Research, 2019, 7, 1700-1713.	1.6	126
16	Development of c‑MET‑specific chimeric antigen receptor‑engineered natural killer cells with cytotoxic effects on human liver cancer HepG2 cells. Molecular Medicine Reports, 2019, 20, 2823-2831.	1.1	28
17	DNAM-1 Activating Receptor and Its Ligands: How Do Viruses Affect the NK Cell-Mediated Immune Surveillance during the Various Phases of Infection?. International Journal of Molecular Sciences, 2019, 20, 3715.	1.8	34
18	Genetic reprogramming for NK cell cancer immunotherapy with CRISPR/Cas9. Immunology, 2019, 158, 63-69.	2.0	45
19	DNAM-1 and the TIGIT/PVRIG/TACTILE Axis: Novel Immune Checkpoints for Natural Killer Cell-Based Cancer Immunotherapy. Cancers, 2019, 11, 877.	1.7	151

#	Article	IF	CITATIONS
20	Structural basis for the recognition of nectin-like protein-5 by the human-activating immune receptor, DNAM-1. Journal of Biological Chemistry, 2019, 294, 12534-12546.	1.6	13
21	NK Cell-Based Immunotherapy for Hematological Malignancies. Journal of Clinical Medicine, 2019, 8, 1702.	1.0	54
22	NANOG helps cancer cells escape NK cell attack by downregulating ICAM1 during tumorigenesis. Journal of Experimental and Clinical Cancer Research, 2019, 38, 416.	3.5	25
23	The Good and the Bad of Natural Killer Cells in Virus Control: Perspective for Anti-HBV Therapy. International Journal of Molecular Sciences, 2019, 20, 5080.	1.8	39
24	Extracellular NK histones promote immune cell anti-tumor activity by inducing cell clusters through binding to CD138 receptor. , 2019, 7, 259.		10
25	Expansion of effector and memory T cells is associated with increased survival in recurrent glioblastomas treated with dendritic cell immunotherapy. Neuro-Oncology Advances, 2019, 1, vdz022.	0.4	16
26	Novel immune checkpoint targets: moving beyond PD-1 and CTLA-4. Molecular Cancer, 2019, 18, 155.	7.9	723
27	The Rise of NK Cell Checkpoints as Promising Therapeutic Targets in Cancer Immunotherapy. Frontiers in Immunology, 2019, 10, 2354.	2.2	70
28	Naturally Killing the Silent Killer: NK Cell-Based Immunotherapy for Ovarian Cancer. Frontiers in Immunology, 2019, 10, 1782.	2.2	45
29	NK Cell Dysfunction and Checkpoint Immunotherapy. Frontiers in Immunology, 2019, 10, 1999.	2.2	105
30	Immune checkpoint molecules. Possible future therapeutic implications in autoimmune diseases. Journal of Autoimmunity, 2019, 104, 102333.	3.0	70
31	Negative regulation of innate lymphoid cell responses in inflammation and cancer. Immunology Letters, 2019, 215, 28-34.	1.1	10
32	An Historical Overview: The Discovery of How NK Cells Can Kill Enemies, Recruit Defense Troops, and More. Frontiers in Immunology, 2019, 10, 1415.	2.2	57
33	Activating KIRs on Educated NK Cells Support Downregulation of CD226 and Inefficient Tumor Immunosurveillance. Cancer Immunology Research, 2019, 7, 1307-1317.	1.6	8
34	Tumor-Derived Extracellular Vesicles Inhibit Natural Killer Cell Function in Pancreatic Cancer. Cancers, 2019, 11, 874.	1.7	85
36	Understanding and overcoming the resistance of cancer to PD-1/PD-L1 blockade. Pharmacological Research, 2019, 145, 104258.	3.1	115
37	Cancer Immunotherapy Based on Natural Killer Cells: Current Progress and New Opportunities. Frontiers in Immunology, 2019, 10, 1205.	2.2	292
38	Stress-elicited glucocorticoid receptor signaling upregulates TIGIT in innate-like invariant T lymphocytes. Brain, Behavior, and Immunity, 2019, 80, 793-804.	2.0	20

	CITATION	I REPORT	
#	Article	IF	CITATIONS
39	Human natural killer cells mediate adaptive immunity to viral antigens. Science Immunology, 2019, 4, .	5.6	135
40	Treg-mediated acquired resistance to immune checkpoint inhibitors. Cancer Letters, 2019, 457, 168-179.	3.2	148
41	Natural Killer Immunotherapy for Minimal Residual Disease Eradication Following Allogeneic Hematopoietic Stem Cell Transplantation in Acute Myeloid Leukemia. International Journal of Molecular Sciences, 2019, 20, 2057.	1.8	17
42	Innate Lymphoid Cells: Expression of PD-1 and Other Checkpoints in Normal and Pathological Conditions. Frontiers in Immunology, 2019, 10, 910.	2.2	54
43	Bibliometric analysis of global research on PD-1 and PD-L1 in the field of cancer. International Immunopharmacology, 2019, 72, 374-384.	1.7	109
44	Natural killer cells as a promising therapeutic target for cancer immunotherapy. Archives of Pharmacal Research, 2019, 42, 591-606.	2.7	29
45	Natural killer cells: From surface receptors to the cure of highâ€risk leukemia (Ceppellini Lecture). Hla, 2019, 93, 185-194.	0.4	11
46	Immunological and clinical implications of immune checkpoint blockade in human cancer. Archives of Pharmacal Research, 2019, 42, 567-581.		17
47	From the "missing self―hypothesis to adaptive NK cells: Insights of NK cell-mediated effector functions in immune surveillance. Journal of Leukocyte Biology, 2019, 105, 955-971.		23
48	Are Conventional Type 1 Dendritic Cells Critical for Protective Antitumor Immunity and How?. Frontiers in Immunology, 2019, 10, 9.		126
49	Natural Killer Cell-Based Immunotherapy for Cancer: Advances and Prospects. Engineering, 2019, 5, 106-114.	3.2	30
50	T-cells interact with B cells, dendritic cells, and fibroblast-like synoviocytes as hub-like key cells in rheumatoid arthritis. International Immunopharmacology, 2019, 70, 428-434.	1.7	52
51	Mutually assured destruction: the cold war between viruses and natural killer cells. Current Opinion in Virology, 2019, 34, 130-139.	2.6	20
52	Endometrial Tumor Microenvironment Alters Human NK Cell Recruitment, and Resident NK Cell Phenotype and Function. Frontiers in Immunology, 2019, 10, 877.	2.2	81
53	The Uncovered Role of Immune Cells and NK Cells in the Regulation of Bone Metastasis. Frontiers in Endocrinology, 2019, 10, 145.	1.5	10
54	NKG2A is a NK cell exhaustion checkpoint for HCV persistence. Nature Communications, 2019, 10, 1507.	5.8	109
55	Natural Killer Cells as Key Players of Tumor Progression and Angiogenesis: Old and Novel Tools to Divert Their Pro-Tumor Activities into Potent Anti-Tumor Effects. Cancers, 2019, 11, 461.	1.7	119
56	Modulation of NK cells with checkpoint inhibitors in the context of cancer immunotherapy. Cancer Immunology, Immunotherapy, 2019, 68, 861-870.	2.0	49

#	Article		CITATIONS
57	CRTAM+ NK cells endowed with suppressor properties arise in leukemic bone marrow. Journal of Leukocyte Biology, 2019, 105, 999-1013.	1.5	12
58	Multi-omics Perspective on the Tumor Microenvironment based on PD-L1 and CD8 T-Cell Infiltration in Urothelial Cancer. Journal of Cancer, 2019, 10, 697-707.	1.2	16
59	Human NK cells: surface receptors, inhibitory checkpoints, and translational applications. Cellular and Molecular Immunology, 2019, 16, 430-441.	4.8	327
60	Human liverâ€derived CXCR6+NK cells are predominantly educated through NKG2A and show reduced cytokine production. Journal of Leukocyte Biology, 2019, 105, 1331-1340.	1.5	20
61	Overcoming Resistance to Natural Killer Cell Based Immunotherapies for Solid Tumors. Frontiers in Oncology, 2019, 9, 51.	1.3	117
62	Tim-3 Hampers Tumor Surveillance of Liver-Resident and Conventional NK Cells by Disrupting PI3K Signaling. Cancer Research, 2020, 80, 1130-1142.	0.4	89
63	Liver-Mediated Adaptive Immune Tolerance. Frontiers in Immunology, 2019, 10, 2525.	2.2	125
64	Harnessing NK Cells for Cancer Treatment. Frontiers in Immunology, 2019, 10, 2836.	2.2	66
65	Harnessing innate immunity in cancer therapy. Nature, 2019, 574, 45-56.	13.7	533
66	The immune checkpoint CD96 defines a distinct lymphocyte phenotype and is highly expressed on tumorâ€infiltrating TÂcells. Immunology and Cell Biology, 2019, 97, 152-164.	1.0	29
67	Immune checkpoint blockade and its combination therapy with small-molecule inhibitors for cancer treatment. Biochimica Et Biophysica Acta: Reviews on Cancer, 2019, 1871, 199-224.	3.3	53
68	NK Cell-Based Immunotherapy in Cancer Metastasis. Cancers, 2019, 11, 29.	1.7	82
69	Human CD96 Correlates to Natural Killer Cell Exhaustion and Predicts the Prognosis of Human Hepatocellular Carcinoma. Hepatology, 2019, 70, 168-183.	3.6	209
70	The Emergence of Natural Killer Cells as a Major Target in Cancer Immunotherapy. Trends in Immunology, 2019, 40, 142-158.	2.9	218
71	Monitoring TIGIT/DNAM-1 and PVR/PVRL2 Immune Checkpoint Expression Levels in Allogeneic Stem Cell Transplantation for Acute Myeloid Leukemia. Biology of Blood and Marrow Transplantation, 2019, 25, 861-867.	2.0	36
72	Breakdown of adaptive immunotolerance induces hepatocellular carcinoma in HBsAg-tg mice. Nature Communications, 2019, 10, 221.	5.8	54
73	Acute myeloid leukemia and NK cells: two warriors confront each other. OncoImmunology, 2019, 8, e1539617.	2.1	27
74	Targeting PVR (CD155) and its receptors in anti-tumor therapy. Cellular and Molecular Immunology, 2019, 16, 40-52.	4.8	110

		15	6
#	ARTICLE	IF	CITATIONS
75	Checkpoint Receptor TIGIT in a Murine Model. Hepatology, 2020, 71, 1297-1315.		41
76	Evaluation of NK cell cytotoxic activity against malignant cells by the calcein assay. Methods in Enzymology, 2020, 631, 483-495.	0.4	10
77	Acquired resistance to cancer immunotherapy: Role of tumor-mediated immunosuppression. Seminars in Cancer Biology, 2020, 65, 13-27.	4.3	170
78	Interleukinâ€33 activates and recruits natural killer cells to inhibit pulmonary metastatic cancer development. International Journal of Cancer, 2020, 146, 1421-1434.	2.3	40
79	Carboplatin chemoresistance is associated with CD11b+/Ly6C+ myeloid release and upregulation of TIGIT and LAG3/CD160 exhausted T cells. Molecular Immunology, 2020, 118, 99-109.	1.0	22
80	Tumor intrinsic and extrinsic immune functions of CD155. Seminars in Cancer Biology, 2020, 65, 189-196.	4.3	85
81	Cancer combinatorial immunotherapy using etigilimab and nivolumab: a patent evaluation of WO2018102536. Expert Opinion on Therapeutic Patents, 2020, 30, 83-86.	2.4	4
82	Immune cells within the tumor microenvironment: Biological functions and roles in cancer immunotherapy. Cancer Letters, 2020, 470, 126-133.	3.2	753
83	TIGIT as an emerging immune checkpoint. Clinical and Experimental Immunology, 2020, 200, 108-119.	1.1	310
84	Natural Killer Cell Regulation of B Cell Responses in the Context of Viral Infection. Viral Immunology, 2020, 33, 334-341.	0.6	17
85	Promising approaches in cancer immunotherapy. Immunobiology, 2020, 225, 151875.	0.8	49
86	Cord-Blood Natural Killer Cell-Based Immunotherapy for Cancer. Frontiers in Immunology, 2020, 11, 584099.	2.2	20
87	Natural killer cells in the human lung tumor microenvironment display immune inhibitory functions. , 2020, 8, e001054.		54
88	NK cells and ILCs in tumor immunotherapy. Molecular Aspects of Medicine, 2021, 80, 100870.	2.7	134
89	COVID-19 Infection: Concise Review Based on the Immunological Perspective. Immunological Investigations, 2020, , 1-20.	1.0	11
90	NK cells in the tumor microenvironment: Prognostic and theranostic impact. Recent advances and trends. Seminars in Immunology, 2020, 48, 101407.	2.7	31
91	Mechanisms of resistance to immune checkpoint inhibitors and strategies to reverse drug resistance in lung cancer. Chinese Medical Journal, 2020, 133, 2444-2455.	0.9	7
92	Expression of Inhibitory Receptors on T and NK Cells Defines Immunological Phenotypes of HCV Patients with Advanced Liver Fibrosis. IScience, 2020, 23, 101513.	1.9	11

#	Article	IF	CITATIONS
93	Increased Expression of TIGIT/CD57 in Peripheral Blood/Bone Marrow NK Cells in Patients with Chronic Myeloid Leukemia. BioMed Research International, 2020, 2020, 1-8.	0.9	8
94	Radiotherapy-Mediated Immunomodulation and Anti-Tumor Abscopal Effect Combining Immune Checkpoint Blockade. Cancers, 2020, 12, 2762.	1.7	41
95	The innate immune effector ISG12a promotes cancer immunity by suppressing the canonical Wnt/β-catenin signaling pathway. Cellular and Molecular Immunology, 2020, 17, 1163-1179.	4.8	40
96	Drug target validation in primary human natural killer cells using CRISPR RNP. Journal of Leukocyte Biology, 2020, 108, 1397-1408.	1.5	27
97	TIM-3 and TIGIT are possible immune checkpoint targets in patients with bladder cancer. Urologic Oncology: Seminars and Original Investigations, 2022, 40, 403-406.	0.8	9
98	The Latest Findings of PD-1/PD-L1 Inhibitor Application in Gynecologic Cancers. International Journal of Molecular Sciences, 2020, 21, 5034.	1.8	30
99	Cancer immunotherapy resistance based on immune checkpoints inhibitors: Targets, biomarkers, and remedies. Drug Resistance Updates, 2020, 53, 100718.	6.5	103
100	<p>Glucometabolic Reprogramming in the Hepatocellular Carcinoma Microenvironment: Cause and Effect</p> . Cancer Management and Research, 2020, Volume 12, 5957-5974.	0.9	21
101	TIGIT blockade enhances functionality of peritoneal NK cells with altered expression of DNAM-1/TIGIT/CD96 checkpoint molecules in ovarian cancer. Oncolmmunology, 2020, 9, 1843247.	2.1	48
102	Multidimensional molecular controls defining NK/ILC1 identity in cancers. Seminars in Immunology, 2021, 52, 101424.		15
104	Adoptive natural killer cell therapy: a human pluripotent stem cell perspective. Current Opinion in Chemical Engineering, 2020, 30, 69-76.	3.8	3
105	Cancer Immunotherapy by Blocking Immune Checkpoints on Innate Lymphocytes. Cancers, 2020, 12, 3504.	1.7	30
106	The Immune Endocannabinoid System of the Tumor Microenvironment. International Journal of Molecular Sciences, 2020, 21, 8929.	1.8	28
107	The Tumor Microenvironment—A Metabolic Obstacle to NK Cells' Activity. Cancers, 2020, 12, 3542.	1.7	30
108	Targeting novel inhibitory receptors in cancer immunotherapy. Seminars in Immunology, 2020, 49, 101436.	2.7	8
109	A Highlight of the Mechanisms of Immune Checkpoint Blocker Resistance. Frontiers in Cell and Developmental Biology, 2020, 8, 580140.	1.8	10
110	Natural killer cells in cancer biology and therapy. Molecular Cancer, 2020, 19, 120.	7.9	344
111	A novel bispecific nanobody with PD-L1/TIGIT dual immune checkpoint blockade. Biochemical and Biophysical Research Communications, 2020, 531, 144-151.	1.0	28

#	Article		CITATIONS
112	Overexpression of TIGIT in NK and T Cells Contributes to Tumor Immune Escape in Myelodysplastic Syndromes. Frontiers in Oncology, 2020, 10, 1595.		33
113	Immunosuppressive Property of MSCs Mediated by Cell Surface Receptors. Frontiers in Immunology, 2020, 11, 1076.		61
114	Mutant <i>KRAS</i> Promotes NKG2D ⁺ T Cell Infiltration and CD155 Dependent Immune Evasion. Anticancer Research, 2020, 40, 4663-4674.	0.5	6
115	Unraveling exhaustion in adaptive and conventional NK cells. Journal of Leukocyte Biology, 2020, 108, 1361-1368.		30
116	Autophagy, the innate immune response and cancer. Molecular Oncology, 2020, 14, 1913-1929.	2.1	55
117	Make killers sweeter: targeting metabolic checkpoints of NK cells. Nature Immunology, 2020, 21, 970-971.	7.0	1
118	Targeting immune checkpoints in hematological malignancies. Journal of Hematology and Oncology, 2020, 13, 111.	6.9	66
119	Immunotherapy in Hematologic Malignancies: Emerging Therapies and Novel Approaches. International Journal of Molecular Sciences, 2020, 21, 8000.	1.8	25
120	Harnessing Natural Killer Cell Function for Genitourinary Cancers. Urologic Clinics of North America, 2020, 47, 433-442.	0.8	6
121	Emerging immunotherapy targets in lung cancer. Chinese Medical Journal, 2020, 133, 2456-2465.	0.9	8
122	Multimodal mapping of the tumor and peripheral blood immune landscape in human pancreatic cancer. Nature Cancer, 2020, 1, 1097-1112.	5.7	234
123	Immune checkpoint molecules in natural killer cells as potential targets for cancer immunotherapy. Signal Transduction and Targeted Therapy, 2020, 5, 250.	7.1	86
124	Natural Killer Cells in Immunotherapy: Are We Nearly There?. Cancers, 2020, 12, 3139.	1.7	15
125	Study and analysis of antitumor resistance mechanism of PD1/PD‣1 immune checkpoint blocker. Cancer Medicine, 2020, 9, 8086-8121.	1.3	95
126	A Cross-Species Reactive TIGIT-Blocking Antibody Fc Dependently Confers Potent Antitumor Effects. Journal of Immunology, 2020, 205, 2156-2168.	0.4	13
127	Escape of tumor cells from the NK cell cytotoxic activity. Journal of Leukocyte Biology, 2020, 108, 1339-1360.	1.5	14
128	Dynamic Natural Killer Cell and T Cell Responses to Influenza Infection. Frontiers in Cellular and Infection Microbiology, 2020, 10, 425.	1.8	51
129	Repositioning liothyronine for cancer immunotherapy by blocking the interaction of immune checkpoint TIGIT/PVR. Cell Communication and Signaling, 2020, 18, 142.	2.7	18

#	Article		CITATIONS
130	COVID-19 in a patient with advanced Merkel cell carcinoma receiving immunotherapy. Immunotherapy, 2020, 12, 1133-1138.	1.0	10
131	TIGIT in cancer immunotherapy. , 2020, 8, e000957.		382
132	<p>Combination of Immune Checkpoint Inhibitors with Chemotherapy in Lung Cancer</p> . OncoTargets and Therapy, 2020, Volume 13, 7229-7241.	1.0	12
133	Intratumoral TIGIT ⁺ CD8 ⁺ T-cell infiltration determines poor prognosis and immune evasion in patients with muscle-invasive bladder cancer. , 2020, 8, e000978.		81
134	Increased lipid metabolism impairs NK cell function and mediates adaptation to the lymphoma environment. Blood, 2020, 136, 3004-3017.	0.6	71
135	Manganese is critical for antitumor immune responses via cGAS-STING and improves the efficacy of clinical immunotherapy. Cell Research, 2020, 30, 966-979.	5.7	349
136	Role of Natural Killer Cells in Uveal Melanoma. Cancers, 2020, 12, 3694.	1.7	16
137	Role of the Main Non HLA-Specific Activating NK Receptors in Pancreatic, Colorectal and Gastric Tumors Surveillance. Cancers, 2020, 12, 3705.	1.7	10
138	Mechanisms of Immunosuppression in Colorectal Cancer. Cancers, 2020, 12, 3850.	1.7	30
139	Galectin-9 expression defines exhausted T cells and impaired cytotoxic NK cells in patients with virus-associated solid tumors. , 2020, 8, e001849.		40
140	Immune checkpoint markers and anti D20â€mediated NK cell activation. Journal of Leukocyte Biology, 2020, 110, 723-733.	1.5	2
141	Single-cell RNA landscape of intratumoral heterogeneity and immunosuppressive microenvironment in advanced osteosarcoma. Nature Communications, 2020, 11, 6322.	5.8	259
142	NK cells in pancreatic cancer demonstrate impaired cytotoxicity and a regulatory IL-10 phenotype. Oncolmmunology, 2020, 9, 1845424.	2.1	38
143	Targeting NK Cell Inhibitory Receptors for Precision Multiple Myeloma Immunotherapy. Frontiers in Immunology, 2020, 11, 575609.	2.2	34
144	Analysis of tumor-infiltrating NK and T cells highlights IL-15 stimulation and TIGIT blockade as a combination immunotherapy strategy for soft tissue sarcomas. , 2020, 8, e001355.		55
145	A Novel d â€Peptide Identified by Mirrorâ€Image Phage Display Blocks TIGIT/PVR for Cancer Immunotherapy. Angewandte Chemie, 2020, 132, 15226-15230.	1.6	1
146	TIGIT Blockade: A Multipronged Approach to Target the HIV Reservoir. Frontiers in Cellular and Infection Microbiology, 2020, 10, 175.	1.8	13
147	A Novel <scp>d</scp> â€Peptide Identified by Mirrorâ€Image Phage Display Blocks TIGIT/PVR for Cancer Immunotherapy. Angewandte Chemie - International Edition, 2020, 59, 15114-15118.	7.2	80

#	Article	IF	CITATIONS
148	Functional and metabolic targeting of natural killer cells to solid tumors. Cellular Oncology (Dordrecht), 2020, 43, 577-600.	2.1	25
149	Influence of Innate Immunity on Cancer Cell Stemness. International Journal of Molecular Sciences, 2020, 21, 3352.	1.8	20
150	Dichotomous Regulation of Acquired Immunity by Innate Lymphoid Cells. Cells, 2020, 9, 1193.	1.8	17
151	Targeting Myeloid-Derived Suppressor Cell, a Promising Strategy to Overcome Resistance to Immune Checkpoint Inhibitors. Frontiers in Immunology, 2020, 11, 783.	2.2	78
152	CD155 immunoregulation as a target for natural killer cell immunotherapy in glioblastoma. Journal of Hematology and Oncology, 2020, 13, 76.	6.9	65
153	IL-6-induced CD39 expression on tumor-infiltrating NK cells predicts poor prognosis in esophageal squamous cell carcinoma. Cancer Immunology, Immunotherapy, 2020, 69, 2371-2380.	2.0	30
154	Targeting NK Cell Checkpoint Receptors or Molecules for Cancer Immunotherapy. Frontiers in Immunology, 2020, 11, 1295.	2.2	58
155	Mechanisms of immune escape in the cancer immune cycle. International Immunopharmacology, 2020, 86, 106700.	1.7	85
156	The cancer–natural killer cell immunity cycle. Nature Reviews Cancer, 2020, 20, 437-454.	12.8	308
157	Peripheral natural killer cells and myeloid-derived suppressor cells correlate with anti-PD-1 responses in non-small cell lung cancer. Scientific Reports, 2020, 10, 9050.	1.6	43
158	TIGIT is upregulated by HIV-1 infection and marks a highly functional adaptive and mature subset of natural killer cells. Aids, 2020, 34, 801-813.	1.0	40
159	Genome engineering of induced pluripotent stem cells to manufacture natural killer cell therapies. Stem Cell Research and Therapy, 2020, 11, 234.	2.4	55
160	The Inhibitory PVRL1/PVR/TIGIT Axis in Immune Therapy for Hepatocellular Carcinoma. Gastroenterology, 2020, 159, 434-436.	0.6	5
161	Regulation of Cancer Immune Checkpoints. Advances in Experimental Medicine and Biology, 2020, , .	0.8	7
162	Targeting Natural Killer Cells for Tumor Immunotherapy. Frontiers in Immunology, 2020, 11, 60.	2.2	80
163	Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cellular and Molecular Immunology, 2020, 17, 533-535.	4.8	1,450
164	Recent progress in and challenges in cellular therapy using NK cells for hematological malignancies. Blood Reviews, 2020, 44, 100678.	2.8	38
165	NK cells mediate clearance of CD8 ⁺ T cell–resistant tumors in response to STING agonists. Science Immunology, 2020, 5, .	5.6	128

#	Article		CITATIONS
166	Distinct Human NK Cell Phenotypes and Functional Responses to Mycobacterium tuberculosis in Adults From TB Endemic and Non-endemic Regions. Frontiers in Cellular and Infection Microbiology, 2020, 10, 120.		27
167	Characterizing the Dysfunctional NK Cell: Assessing the Clinical Relevance of Exhaustion, Anergy, and Senescence. Frontiers in Cellular and Infection Microbiology, 2020, 10, 49.	1.8	122
168	NK Cell-Based Immune Checkpoint Inhibition. Frontiers in Immunology, 2020, 11, 167.	2.2	211
169	Cancer cell-derived exosomal circUHRF1 induces natural killer cell exhaustion and may cause resistance to anti-PD1 therapy in hepatocellular carcinoma. Molecular Cancer, 2020, 19, 110.	7.9	295
170	New immunotherapeutic drugs in advanced non-small cell lung cancer (NSCLC): from preclinical to phase I clinical trials. Expert Opinion on Investigational Drugs, 2020, 29, 1005-1023.	1.9	11
171	News on immune checkpoint inhibitors as immunotherapy strategies in adult and pediatric solid tumors. Seminars in Cancer Biology, 2022, 79, 18-43.	4.3	35
172	IL15 Stimulation with TIGIT Blockade Reverses CD155-mediated NK-Cell Dysfunction in Melanoma. Clinical Cancer Research, 2020, 26, 5520-5533.	3.2	88
173	The two-faces of NK cells in oncolytic virotherapy. Cytokine and Growth Factor Reviews, 2020, 56, 59-68.	3.2	20
174	The expression and immunoregulation of immune checkpoint molecule VISTA in autoimmune diseases and cancers. Cytokine and Growth Factor Reviews, 2020, 52, 1-14.	3.2	18
175	Deverting Immune Suppression to Ephance Cancer Immunethereny, Econtiers in Operland, 2010, 0, 1554	1.0	49
175	Reverting infinutie Suppression to Enhance Cancer infinutionerapy. Frontiers in Oncology, 2019, 9, 1554.	1.3	
176	Natural killer cells as a double-edged sword in cancer immunotherapy: A comprehensive review from cytokine therapy to adoptive cell immunotherapy. Pharmacological Research, 2020, 155, 104691.	3.1	27
176 177	Natural killer cells as a double-edged sword in cancer immunotherapy: A comprehensive review from cytokine therapy to adoptive cell immunotherapy. Pharmacological Research, 2020, 155, 104691. Recent Advances in Molecular Mechanisms of the NKG2D Pathway in Hepatocellular Carcinoma. Biomolecules, 2020, 10, 301.	1.3 3.1 1.8	27 16
175 176 177 178	Natural killer cells as a double-edged sword in cancer immunotherapy: A comprehensive review from cytokine therapy to adoptive cell immunotherapy. Pharmacological Research, 2020, 155, 104691. Recent Advances in Molecular Mechanisms of the NKG2D Pathway in Hepatocellular Carcinoma. Biomolecules, 2020, 10, 301. Unleashing Natural Killer Cells in the Tumor Microenvironment–The Next Generation of Immunotherapy?. Frontiers in Immunology, 2020, 11, 275.	1.3 3.1 1.8 2.2	27 16 101
175 176 177 178 179	 Natural killer cells as a double-edged sword in cancer immunotherapy: A comprehensive review from cytokine therapy to adoptive cell immunotherapy. Pharmacological Research, 2020, 155, 104691. Recent Advances in Molecular Mechanisms of the NKG2D Pathway in Hepatocellular Carcinoma. Biomolecules, 2020, 10, 301. Unleashing Natural Killer Cells in the Tumor Microenvironment–The Next Generation of Immunotherapy?. Frontiers in Immunology, 2020, 11, 275. Influence of the Tumor Microenvironment on NK Cell Function in Solid Tumors. Frontiers in Immunology, 2019, 10, 3038. 	1.3 3.1 1.8 2.2 2.2	27 16 101 245
175 176 177 178 179 180	Revending infinitive Suppression to Enhance Cancer infinitiation of the start	1.3 3.1 1.8 2.2 2.2 1.7	 27 16 101 245 20
175 176 177 178 179 180 181	Reverting infinities suppression to Enhance Cancer Infinition of terapy. Profitters in Oncology, 2019, 9, 1534. Natural killer cells as a double-edged sword in cancer immunotherapy: A comprehensive review from cytokine therapy to adoptive cell immunotherapy. Pharmacological Research, 2020, 155, 104691. Recent Advances in Molecular Mechanisms of the NKG2D Pathway in Hepatocellular Carcinoma. Biomolecules, 2020, 10, 301. Unleashing Natural Killer Cells in the Tumor Microenvironment–The Next Generation of Immunotherapy?. Frontiers in Immunology, 2020, 11, 275. Influence of the Tumor Microenvironment on NK Cell Function in Solid Tumors. Frontiers in Immunology, 2019, 10, 3038. NK Cell-Based Immunotherapy in Renal Cell Carcinoma. Cancers, 2020, 12, 316. Overview of Strategies to Improve Therapy against Tumors Using Natural Killer Cell. Journal of Immunology Research, 2020, 2020, 1-16.	1.3 3.1 1.8 2.2 2.2 1.7 0.9	227 16 101 245 20 12
175 176 177 178 179 180 181 182	Reverting infinite Suppression to Enhance Cancer infinite/outerapy, Profiters in Oncology, 2019, 9, 1334. Natural killer cells as a double-edged sword in cancer immunotherapy: A comprehensive review from cytokine therapy to adoptive cell immunotherapy. Pharmacological Research, 2020, 155, 104691. Recent Advances in Molecular Mechanisms of the NKG2D Pathway in Hepatocellular Carcinoma. Biomolecules, 2020, 10, 301. Unleashing Natural Killer Cells in the Tumor Microenvironment–The Next Generation of Immunotherapy?. Frontiers in Immunology, 2020, 11, 275. Influence of the Tumor Microenvironment on NK Cell Function in Solid Tumors. Frontiers in Immunology, 2019, 10, 3038. NK Cell-Based Immunotherapy in Renal Cell Carcinoma. Cancers, 2020, 12, 316. Overview of Strategies to Improve Therapy against Tumors Using Natural Killer Cell. Journal of Immunology Research, 2020, 2020, 1-16. CD155: A Multi-Functional Molecule in Tumor Progression. International Journal of Molecular Sciences, 2020, 21, 922.	1.3 3.1 1.8 2.2 2.2 1.7 0.9 1.8	 27 16 101 245 20 12 58

#	Article		CITATIONS
184	Hepatocellular Carcinoma Cells Up-regulate PVRL1, Stabilizing PVR and Inhibiting the Cytotoxic T-Cell Response via TIGIT to Mediate Tumor Resistance to PD1 Inhibitors in Mice. Gastroenterology, 2020, 159, 609-623.		100
185	Mechanism of tumor cells escaping from immune surveillance of NK cells. Immunopharmacology and Immunotoxicology, 2020, 42, 187-198.	1.1	17
186	Targeted Therapies: Friends or Foes for Patient's NK Cell-Mediated Tumor Immune-Surveillance?. Cancers, 2020, 12, 774.	1.7	10
187	Natural Killer Cells: Tumor Surveillance and Signaling. Cancers, 2020, 12, 952.	1.7	56
188	Inhibitory checkpoints in human natural killer cells: IUPHAR Review 28. British Journal of Pharmacology, 2020, 177, 2889-2903.	2.7	10
189	Reduced Siglec-7 expression on NK cells predicts NK cell dysfunction in primary hepatocellular carcinoma. Clinical and Experimental Immunology, 2020, 201, 161-170.	1.1	25
190	Mechanisms of Resistance to NK Cell Immunotherapy. Cancers, 2020, 12, 893.	1.7	34
191	Upregulation of TIGIT and PD-1 in Colorectal Cancer with Mismatch-repair Deficiency. Immunological Investigations, 2021, 50, 338-355.	1.0	18
192	Transcriptome Profiling Identifies TIGIT as a Marker of T ell Exhaustion in Liver Cancer. Hepatology, 2021, 73, 1399-1418.	3.6	61
193	NK cells-directed therapies target circulating tumor cells and metastasis. Cancer Letters, 2021, 497, 41-53.	3.2	47
194	Natural Killer Cell Defects in Breast Cancer: A Key Pathway for Tumor Evasion. International Reviews of Immunology, 2021, 40, 197-216.	1.5	8
195	The role of natural killer cell in gastrointestinal cancer: killer or helper. Oncogene, 2021, 40, 717-730.	2.6	54
196	Restoration of T-cell Effector Function, Depletion of Tregs, and Direct Killing of Tumor Cells: The Multiple Mechanisms of Action of a-TIGIT Antagonist Antibodies. Molecular Cancer Therapeutics, 2021, 20, 121-131.	1.9	37
197	Outlook for New CAR-Based Therapies with a Focus on CAR NK Cells: What Lies Beyond CAR-Engineered T Cells in the Race against Cancer. Cancer Discovery, 2021, 11, 45-58.	7.7	128
198	Tumor-Infiltrating Natural Killer Cells. Cancer Discovery, 2021, 11, 34-44.	7.7	223
199	Long non-coding RNAs: Emerging regulators for chemo/immunotherapy resistance in cancer stem cells. Cancer Letters, 2021, 500, 244-252.	3.2	22
200	Chimeric antigen receptor (CAR) natural killer (NK)â€cell therapy: leveraging the power of innate immunity. British Journal of Haematology, 2021, 193, 216-230.	1.2	61
201	Immune checkpoint expression on peripheral cytotoxic lymphocytes in cervical cancer patients: moving beyond the PD-1/PD-L1 axis. Clinical and Experimental Immunology, 2021, 204, 78-95.	1.1	10

		CITATION R	EPORT	
#	Article		IF	CITATIONS
202	Emerging immunotherapies for metastasis. British Journal of Cancer, 2021, 124, 37-48.		2.9	32
203	Cancer Immunotherapy and the Nectin Family. Annual Review of Cancer Biology, 2021, 5,	203-219.	2.3	14
204	Recombinant oncolytic adenovirus expressing a soluble PVR elicits long-term antitumor im surveillance. Molecular Therapy - Oncolytics, 2021, 20, 12-22.	mune	2.0	6
205	A novel human anti-TIGIT monoclonal antibody with excellent function in eliciting NK cell-n antitumor immunity. Biochemical and Biophysical Research Communications, 2021, 534, 2	nediated 134-140.	1.0	12
206	Tumor-infiltrating lymphocytes in the immunotherapy era. Cellular and Molecular Immunol 18, 842-859.	ogy, 2021,	4.8	403
207	Recent advances in chimeric antigen receptor natural killer cell therapy for overcoming int hematological malignancies. Hematological Oncology, 2021, 39, 11-19.	ractable	0.8	5
208	Exploring the NK cell platform for cancer immunotherapy. Nature Reviews Clinical Oncolog 85-100.	gy, 2021, 18,	12.5	605
209	Reinvigorating exhausted CD8 ⁺ cytotoxic T lymphocytes in the tumor microenvironment and current strategies in cancer immunotherapy. Medicinal Research Reviews, 2021, 41, 156-201.		5.0	56
210	CD155 Overexpression Correlates With Poor Prognosis in Primary Small Cell Carcinoma of the Esophagus. Frontiers in Molecular Biosciences, 2020, 7, 608404.		1.6	18
211	Checkpoint inhibition in the fight against cancer: NK cells have some to say in it. , 2021, , 267-304.			1
212	TIGIT ⁺ TIM-3 ⁺ NK cells are correlated with NK cell exhaustion and disease progression in patients with hepatitis B virusâ€related hepatocellular carcinoma. Oncolmmunology, 2021, 10, 1942673.		2.1	34
213	Hitting the complexity of the TIGIT-CD96-CD112R-CD226 axis for next-generation cancer i BMB Reports, 2021, 54, 2-11.	mmunotherapy.	1.1	36
214	Challenges for NK cell-based therapies: What can we learn from lymph nodes?. , 2021, , 33	-51.		0
215	Exploring the Emerging Role of the Gut Microbiota and Tumor Microenvironment in Cance Immunotherapy. Frontiers in Immunology, 2020, 11, 612202.	r	2.2	66
216	Harnessing NK cells for cancer immunotherapy: immune checkpoint receptors and chimeri receptors. BMB Reports, 2021, 54, 44-58.	c antigen	1.1	7
217	Targeting CD155 by rediocide-A overcomes tumour immuno-resistance to natural killer ce Pharmaceutical Biology, 2021, 59, 47-53.	ls.	1.3	4
218	Clinical Detection of Peripheral Blood Natural Killer Cell Activity. Journal of Biosciences and Medicines, 2021, 09, 28-36.		0.1	0
219	Fine-Tuning the Tumour Microenvironment: Current Perspectives on the Mechanisms of Tu Immunosuppression. Cells, 2021, 10, 56.	ımour	1.8	14

	CITATION RE	PORT	
Article		IF	Citations
NK Cells in Immunotherapy: How Important Are They?. , 2021, , 65-81.			0
Immunometabolic targeting of NK cells to solid tumors. , 2021, , 349-368.			0
NK cells and CD8 T cells in cancer immunotherapy: Similar functions by different mech 3-31.	anisms. , 2021, ,		2
The dual role of Natural Killer cells during tumor progression and angiogenesis: Implica tumor microenvironment-targeted immunotherapies. , 2021, , 305-347.	itions for		0
The role of NK cells in oncolytic viral therapy: a focus on hepatocellular carcinoma. , 20)21, 5, 304-322.		2
TIM-3 levels correlate with enhanced NK cell cytotoxicity and improved clinical outcom patients. Oncolmmunology, 2021, 10, 1889822.	ne in AML	2.1	21
Expansion of circulating peripheral TIGIT+CD226+ CD4 T cells with enhanced effector dermatomyositis. Arthritis Research and Therapy, 2021, 23, 15.	functions in	1.6	14
The Natural Killer–Dendritic Cell Immune Axis in Anti-Cancer Immunity and Immunot in Immunology, 2020, 11, 621254.	herapy. Frontiers	2.2	33
Cell differentiation trajectory predicts patient potential immunotherapy response and gastric cancer. Aging, 2021, 13, 5928-5945.	prognosis in	1.4	18
Immune-Checkpoint Inhibitors Combinations in Metastatic NSCLC: New Options on th ImmunoTargets and Therapy, 2021, Volume 10, 9-26.	ne Horizon?.	2.7	14
Enhanced antitumor efficacy of a novel oncolytic vaccinia virus encoding a fully mono antibody against T-cell immunoglobulin and ITIM domain (TIGIT). EBioMedicine, 2021,	clonal 64, 103240.	2.7	22
Natural Killer Cells and Anti-Cancer Therapies: Reciprocal Effects on Immune Function Therapeutic Response. Cancers, 2021, 13, 711.	and	1.7	18
TIGIT/CD226 Axis Regulates Anti-Tumor Immunity. Pharmaceuticals, 2021, 14, 200.		1.7	58
T-Cell Dysfunction as a Limitation of Adoptive Immunotherapy: Current Concepts and Strategies. Cancers, 2021, 13, 598.	Mitigation	1.7	19
Analysis of the Characteristics of TIGIT-Expressing CD3â^'CD56+NK Cells in Controlling of HIV-1 Infection. Frontiers in Immunology, 2021, 12, 602492.	g Different Stages	2.2	8
Metabolism of Innate Immune Cells in Cancer. Cancers, 2021, 13, 904.		1.7	29

236	Dynamics of TIGIT and PD-1 expression on NK cells during the course of normal pregnancy. Immunology Letters, 2021, 230, 42-48.	1.1	5
237	Computer-aided design of PVR mutants with enhanced binding affinity to TIGIT. Cell Communication and Signaling, 2021, 19, 12.	2.7	4

#

#	Article	IF	CITATIONS
238	TIGIT promotes CD8+T cells exhaustion and predicts poor prognosis of colorectal cancer. Cancer Immunology, Immunotherapy, 2021, 70, 2781-2793.	2.0	34
239	Anti-TIGIT differentially affects sepsis survival in immunologically experienced versus previously naive hosts. JCI Insight, 2021, 6, .	2.3	8
240	Immunomodulating nano-adaptors potentiate antibody-based cancer immunotherapy. Nature Communications, 2021, 12, 1359.	5.8	64
241	Therapeutic Targeting of Checkpoint Receptors within the DNAM1 Axis. Cancer Discovery, 2021, 11, 1040-1051.	7.7	24
242	Immunotherapy and predictive immunologic profile: the tip of the iceberg. Medical Oncology, 2021, 38, 51.	1.2	4
244	Renaissance of armored immune effector cells, CAR-NK cells, brings the higher hope for successful cancer therapy. Stem Cell Research and Therapy, 2021, 12, 200.	2.4	25
245	Single-cell map of diverse immune phenotypes in the acute myeloid leukemia microenvironment. Biomarker Research, 2021, 9, 15.	2.8	42
246	Targeting NK Cells to Enhance Melanoma Response to Immunotherapies. Cancers, 2021, 13, 1363.	1.7	24
247	Natural killer cell therapy for hematologic malignancies: successes, challenges, and the future. Stem Cell Research and Therapy, 2021, 12, 211.	2.4	33
248	Tâ€cell immunoglobulin and ITIM domain, as a potential immune checkpoint target for immunotherapy of colorectal cancer. IUBMB Life, 2021, 73, 726-738.	1.5	23
249	The Importance of Regulation in Natural Immunity to HIV. Vaccines, 2021, 9, 271.	2.1	2
250	Therapeutic Approaches Targeting the Natural Killer-Myeloid Cell Axis in the Tumor Microenvironment. Frontiers in Immunology, 2021, 12, 633685.	2.2	4
251	Innate Immune Checkpoint Inhibitors: The Next Breakthrough in Medical Oncology?. Molecular Cancer Therapeutics, 2021, 20, 961-974.	1.9	58
252	Natural Killer Cells: From Innate to Adaptive Features. Annual Review of Immunology, 2021, 39, 417-447.	9.5	85
254	Harnessing Natural Killer Cells in Cancer Immunotherapy: A Review of Mechanisms and Novel Therapies. Cancers, 2021, 13, 1988.	1.7	14
255	Chronic stress physically spares but functionally impairs innate-like invariant TÂcells. Cell Reports, 2021, 35, 108979.	2.9	26
256	Role of tumor mutation burden-related signatures in the prognosis and immune microenvironment of pancreatic ductal adenocarcinoma. Cancer Cell International, 2021, 21, 196.	1.8	18
257	Natural Killer Cells and Regulatory T Cells Cross Talk in Hepatocellular Carcinoma: Exploring Therapeutic Options for the Next Decade. Frontiers in Immunology, 2021, 12, 643310.	2.2	27

		CITATION REPORT		
#	Article		IF	CITATIONS
258	Enhancing a Natural Killer: Modification of NK Cells for Cancer Immunotherapy. Cells, 2	021, 10, 1058.	1.8	17
259	CAR-NK Cells in the Treatment of Solid Tumors. International Journal of Molecular Scier 5899.	ices, 2021, 22,	1.8	69
260	Emerging concepts in PD-1 checkpoint biology. Seminars in Immunology, 2021, 52, 10	1480.	2.7	84
261	Repositioning Azelnidipine as a Dual Inhibitor Targeting CD47/SIRPα and TIGIT/PVR Pat Immuno-Therapy. Biomolecules, 2021, 11, 706.	hways for Cancer	1.8	21
262	Clinical Insights Into Novel Immune Checkpoint Inhibitors. Frontiers in Pharmacology, 2	2021, 12, 681320.	1.6	76
263	Myeloma natural killer cells are exhausted and have impaired regulation of activation. Haematologica, 2021, 106, 2522-2526.		1.7	8
264	Approaches to Enhance Natural Killer Cell-Based Immunotherapy for Pediatric Solid Tur 2021, 13, 2796.	nors. Cancers,	1.7	13
265	The immune landscape of common CNS malignancies: implications for immunotherapy Clinical Oncology, 2021, 18, 729-744.	. Nature Reviews	12.5	50
266	Limited Impact of the Inhibitory Receptor TIGIT on NK and T Cell Responses during <i>T gondii</i> Infection. ImmunoHorizons, 2021, 5, 384-394.	oxoplasma	0.8	4
267	A Poliovirus Receptor (CD155)-Related Risk Signature Predicts the Prognosis of Bladde Frontiers in Oncology, 2021, 11, 660273.	r Cancer.	1.3	6
268	Optimizing NK Cell-Based Immunotherapy in Myeloid Leukemia: Abrogating an Immuno Microenvironment. Frontiers in Immunology, 2021, 12, 683381.	osuppressive	2.2	16
269	Blockade of checkpoint receptor PVRIG unleashes anti-tumor immunity of NK cells in m human solid tumors. Journal of Hematology and Oncology, 2021, 14, 100.	urine and	6.9	21
270	Novel anti-GARP antibody DS-1055a augments anti-tumor immunity by depleting highl GARP+ regulatory T cells. International Immunology, 2021, 33, 435-446.	y suppressive	1.8	14
271	Adaptive Subsets Limit the Anti-Tumoral NK-Cell Activity in Hepatocellular Carcinoma. (1369.	Cells, 2021, 10,	1.8	6
272	Immune Circuits to Shape Natural Killer Cells in Cancer. Cancers, 2021, 13, 3225.		1.7	15
273	Gastric Cancer Mesenchymal Stem Cells Inhibit NK Cell Function through mTOR Signal Tumour Growth. Stem Cells International, 2021, 2021, 1-17.	ing to Promote	1.2	14
274	If small molecules immunotherapy comes, can the prime be far behind?. European Journ Chemistry, 2021, 218, 113356.	nal of Medicinal	2.6	23
275	Acquired Resistance to Immune Checkpoint Blockades: The Underlying Mechanisms an Strategies. Frontiers in Immunology, 2021, 12, 693609.	d Potential	2.2	21

#	ARTICLE	IF	CITATIONS
276	The Adverse Impact of Tumor Microenvironment on NK-Cell. Frontiers in Immunology, 2021, 12, 633361.	2.2	21
277	Current and future drug combination strategies based on programmed death-1/programmed death-1/programmed death-ligand 1 inhibitors in non-small cell lung cancer. Chinese Medical Journal, 2021, 134, 1780-1788.	0.9	7
278	Increased TIGIT expressing NK cells with dysfunctional phenotype in AML patients correlated with poor prognosis. Cancer Immunology, Immunotherapy, 2022, 71, 277-287.	2.0	27
279	Virtual Evolution of HVEM Segment for Checkpoint Inhibitor Discovery. International Journal of Molecular Sciences, 2021, 22, 6638.	1.8	5
280	Optimising NK cell metabolism to increase the efficacy of cancer immunotherapy. Stem Cell Research and Therapy, 2021, 12, 320.	2.4	31
281	Single-cell RNA sequencing in human lung cancer: Applications, challenges, and pathway towards personalized therapy. Journal of the Chinese Medical Association, 2021, 84, 563-576.	0.6	7
282	SIRT2 promotes murine melanoma progression through natural killer cell inhibition. Scientific Reports, 2021, 11, 12988.	1.6	8
283	TIGIT-Fc Promotes Antitumor Immunity. Cancer Immunology Research, 2021, 9, 1088-1097.	1.6	7
284	Strategies to Optimise Oncolytic Viral Therapies: The Role of Natural Killer Cells. Viruses, 2021, 13, 1450.	1.5	7
285	A novel endogenous CD16-Expressing Natural Killer Cell for cancer immunotherapy. Biochemistry and Biophysics Reports, 2021, 26, 100935.	0.7	9
286	Impact of serum soluble CD155 level at diagnosis on interim response to CHOP with or without rituximab in diffuse large B cell lymphoma. Clinical and Experimental Medicine, 2022, 22, 173-181.	1.9	4
287	The N-linked glycosylations of TIGIT Asn32 and Asn101 facilitate PVR/TIGIT interaction. Biochemical and Biophysical Research Communications, 2021, 562, 9-14.	1.0	3
288	Combining single ell sequencing to identify key immune genes and construct the prognostic evaluation model for colon cancer patients. Clinical and Translational Medicine, 2021, 11, e465.	1.7	4
289	Chimeric antigen receptor- and natural killer cell receptor-engineered innate killer cells in cancer immunotherapy. Cellular and Molecular Immunology, 2021, 18, 2083-2100.	4.8	40
290	Leveraging NKG2D Ligands in Immuno-Oncology. Frontiers in Immunology, 2021, 12, 713158.	2.2	56
291	The role of natural killer cells in liver inflammation. Seminars in Immunopathology, 2021, 43, 519-533.	2.8	19
292	TIGIT, the Next Step Towards Successful Combination Immune Checkpoint Therapy in Cancer. Frontiers in Immunology, 2021, 12, 699895.	2.2	102
293	Towards efficient immunotherapy for bacterial infection. Trends in Microbiology, 2022, 30, 158-169.	3.5	41

TATION P

#	Article	IF	CITATIONS
294	Bi-specific and Tri-specific NK Cell Engagers: The New Avenue of Targeted NK Cell Immunotherapy. Molecular Diagnosis and Therapy, 2021, 25, 577-592.	1.6	27
295	Detection of Immune Checkpoint Receptors – A Current Challenge in Clinical Flow Cytometry. Frontiers in Immunology, 2021, 12, 694055.	2.2	22
296	Inhibitory Receptors and Immune Checkpoints Regulating Natural Killer Cell Responses to Cancer. Cancers, 2021, 13, 4263.	1.7	32
297	Poliovirus receptor (PVR)-like protein cosignaling network: new opportunities for cancer immunotherapy. Journal of Experimental and Clinical Cancer Research, 2021, 40, 267.	3.5	21
298	Synergistic Tumor Cytolysis by NK Cells in Combination With a Pan-HDAC Inhibitor, Panobinostat. Frontiers in Immunology, 2021, 12, 701671.	2.2	15
299	NK cell and ILC heterogeneity in colorectal cancer. New perspectives from high dimensional data. Molecular Aspects of Medicine, 2021, 80, 100967.	2.7	7
300	Purinergic Receptor P2Y6 Is a Negative Regulator of NK Cell Maturation and Function. Journal of Immunology, 2021, 207, 1555-1565.	0.4	8
301	Prognostic value of natural killer cell activity for patients with HER2 + advanced gastric cancer treated with first-line fluoropyrimidine–platinum doublet plus trastuzumab. Cancer Immunology, Immunotherapy, 2022, 71, 829-838.	2.0	7
302	Dual-functional super bispecific nano-antibodies derived from monoclonal antibodies potentiate the antitumor effect of innate immune cells. Nano Today, 2021, 39, 101209.	6.2	8
303	Possible Immunotherapeutic Strategies Based on Carcinogen-Dependent Subgroup Classification for Oral Cancer. Frontiers in Molecular Biosciences, 2021, 8, 717038.	1.6	2
304	IFN \hat{I}^3 signaling integrity in colorectal cancer immunity and immunotherapy. Cellular and Molecular Immunology, 2022, 19, 23-32.	4.8	57
306	Engineering the next generation of CAR-NK immunotherapies. International Journal of Hematology, 2021, 114, 554-571.	0.7	37
307	NK Cell Therapy: A Rising Star in Cancer Treatment. Cancers, 2021, 13, 4129.	1.7	34
308	Immune Checkpoints: Therapeutic Targets for Pituitary Tumors. Disease Markers, 2021, 2021, 1-7.	0.6	5
309	Natural Killer Cells and Type 1 Innate Lymphoid Cells in Hepatocellular Carcinoma: Current Knowledge and Future Perspectives. International Journal of Molecular Sciences, 2021, 22, 9044.	1.8	7
310	Targeting natural killer cells to enhance vaccine responses. Trends in Pharmacological Sciences, 2021, 42, 789-801.	4.0	29
311	A reporter gene assay for determining the biological activity of therapeutic antibodies targeting TIGIT. Acta Pharmaceutica Sinica B, 2021, 11, 3925-3934.	5.7	6
312	Involvement of TIGIT in Natural Killer Cell Exhaustion and Immune Escape in Patients and Mouse Model With Liver Echinococcus multilocularis Infection. Hepatology, 2021, 74, 3376-3393.	3.6	22

#	Article	IF	CITATIONS
313	Methionine enkephalin (MENK) suppresses lung cancer by regulating the Bcl-2/Bax/caspase-3 signaling pathway and enhancing natural killer cell-driven tumor immunity. International Immunopharmacology, 2021, 98, 107837.	1.7	22
314	Natural killer cell‑based immunotherapy for lung cancer: Challenges and perspectives (Review). Oncology Reports, 2021, 46, .	1.2	14
315	Resistance to immunotherapy in human malignancies: Mechanisms, research progresses, challenges, and opportunities. Journal of Cellular Physiology, 2022, 237, 346-372.	2.0	13
316	A Systematic Review and Meta-Analysis on the Significance of TIGIT in Solid Cancers: Dual TIGIT/PD-1 Blockade to Overcome Immune-Resistance in Solid Cancers. International Journal of Molecular Sciences, 2021, 22, 10389.	1.8	14
317	High-salt diet mediates interplay between NK cells and gut microbiota to induce potent tumor immunity. Science Advances, 2021, 7, eabg5016.	4.7	58
318	Natural killer (NK) cell-based immunotherapies and the many faces of NK cell memory: A look into how nanoparticles enhance NK cell activity. Advanced Drug Delivery Reviews, 2021, 176, 113860.	6.6	31
319	Identification of N6-Methylandenosine-Related IncRNAs for Subtype Identification and Risk Stratification in Gastric Adenocarcinoma. Frontiers in Oncology, 2021, 11, 725181.	1.3	9
320	TIPE2 is a checkpoint of natural killer cell maturation and antitumor immunity. Science Advances, 2021, 7, eabi6515.	4.7	20
321	NK Cells in a Tug-of-War With Cancer: The Roles of Transcription Factors and Cytoskeleton. Frontiers in Immunology, 2021, 12, 734551.	2.2	13
322	Enhancing immunotherapy in cancer by targeting emerging immunomodulatory pathways. Nature Reviews Clinical Oncology, 2022, 19, 37-50.	12.5	350
323	Immune Cycleâ€Based Strategies for Cancer Immunotherapy. Advanced Functional Materials, 2021, 31, 2107540.	7.8	24
324	TIGIT/CD155 blockade enhances anti-PD-L1 therapy in head and neck squamous cell carcinoma by targeting myeloid-derived suppressor cells. Oral Oncology, 2021, 121, 105472.	0.8	30
325	Innate Lymphoid Cells: New Targets for Cutaneous Squamous Cell Carcinoma Immunotherapy. Journal of Investigative Dermatology, 2021, 141, 2320-2322.	0.3	2
326	Cutaneous Squamous Cell Carcinoma Development Is Associated with a Temporal Infiltration of ILC1 and NK Cells with Immune Dysfunctions. Journal of Investigative Dermatology, 2021, 141, 2369-2379.	0.3	18
327	Natural Killer Cells in Cancer and Cancer Immunotherapy. Cancer Letters, 2021, 520, 233-242.	3.2	19
328	Current status and future perspective of immune checkpoint inhibitors in colorectal cancer. Cancer Letters, 2021, 521, 119-129.	3.2	16
329	Targeting natural killer cells in cancer immunotherapy. , 2022, , 63-82.		1
330	Intrinsic and acquired cancer immunotherapy resistance. , 2022, , 463-497.		0

#	Article	IF	CITATIONS
331	Impacts of pembrolizumab therapy on immune phenotype in patients with high-grade neuroendocrine neoplasms. Cancer Immunology, Immunotherapy, 2021, 70, 1893-1906.	2.0	7
332	CD226: a potent driver of antitumor immunity that needs to be maintained. Cellular and Molecular Immunology, 2022, 19, 969-970.	4.8	7
333	Exploiting the CRISPR as9 geneâ€editing system for human cancers and immunotherapy. Clinical and Translational Immunology, 2021, 10, e1286.	1.7	11
334	Adoptive NK cell therapies in children with cancer: Clinical challenges and future possibilities. , 2021, , 405-437.		0
335	PET Imaging of TIGIT Expression on Tumor-Infiltrating Lymphocytes. Clinical Cancer Research, 2021, 27, 1932-1940.	3.2	25
336	α-Pinene Enhances the Anticancer Activity of Natural Killer Cells via ERK/AKT Pathway. International Journal of Molecular Sciences, 2021, 22, 656.	1.8	38
337	Mechanisms of NK cell dysfunction in the tumor microenvironment and current clinical approaches to harness NK cell potential for immunotherapy. Journal of Leukocyte Biology, 2021, 109, 1071-1088.	1.5	25
338	High-Dimensional Flow Cytometry Analysis of Regulatory Receptors on Human T Cells, NK Cells, and NKT Cells. Methods in Molecular Biology, 2021, 2194, 255-290.	0.4	2
339	Therapeutic Development of Immune Checkpoint Inhibitors. Advances in Experimental Medicine and Biology, 2020, 1248, 619-649.	0.8	15
340	Artemisinin sensitizes tumor cells to NK cell-mediated cytolysis. Biochemical and Biophysical Research Communications, 2020, 524, 418-423.	1.0	14
341	Single-Cell RNA Sequencing of Tumor-Infiltrating NK Cells Reveals that Inhibition of Transcription Factor HIF-11± Unleashes NK Cell Activity. Immunity, 2020, 52, 1075-1087.e8.	6.6	167
342	Cancer cells educate natural killer cells to a metastasis-promoting cell state. Journal of Cell Biology, 2020, 219, .	2.3	85
345	Landscape of natural killer cell activity in head and neck squamous cell carcinoma. , 2020, 8, e001523.		36
346	Combination of PD-L1 and PVR determines sensitivity to PD-1 blockade. JCI Insight, 2020, 5, .	2.3	27
347	Discovery of specialized NK cell populations infiltrating human melanoma metastases. JCI Insight, 2019, 4, .	2.3	81
348	Killers 2.0: NK cell therapies at the forefront of cancer control. Journal of Clinical Investigation, 2019, 129, 3499-3510.	3.9	166
349	Minimal PD-1 expression in mouse and human NK cells under diverse conditions. Journal of Clinical Investigation, 2020, 130, 3051-3068.	3.9	90
350	Large-scale analysis reveals the specific clinical and immune features of CD155 in glioma. Aging, 2019, 11, 5463-5482.	1.4	20

#	Article	IF	CITATIONS
351	Trispecific killer engager 161519 enhances natural killer cell function and provides anti-tumor activity against CD19-positive cancers. Cancer Biology and Medicine, 2020, 17, 1026-1038.	1.4	26
352	Progress in the Understanding of the Immune Microenvironment and Immunotherapy in Malignant Pleural Mesothelioma. Current Drug Targets, 2020, 21, 1606-1612.	1.0	4
353	Innate Lymphoid Cells in Colorectal Cancers: A Double-Edged Sword. Frontiers in Immunology, 2019, 10, 3080.	2.2	14
354	Progress and Challenges in Precise Treatment of Tumors With PD-1/PD-L1 Blockade. Frontiers in Immunology, 2020, 11, 339.	2.2	77
355	Design and Implementation of NK Cell-Based Immunotherapy to Overcome the Solid Tumor Microenvironment. Cancers, 2020, 12, 3871.	1.7	17
356	Gastrointestinal cancer stem cells as targets for innovative immunotherapy. World Journal of Gastroenterology, 2020, 26, 1580-1593.	1.4	9
357	High expression levels of DEF6 predicts a poor prognosis for patients with clear cell renal cell carcinoma. Oncology Reports, 2020, 44, 2056-2066.	1.2	3
358	Galectin-9 Expression Defines a Subpopulation of NK Cells with Impaired Cytotoxic Effector Molecules but Enhanced IFN-Î ³ Production, Dichotomous to TIGIT, in HIV-1 Infection. ImmunoHorizons, 2019, 3, 531-546.	0.8	31
359	Cancer immunotherapy by targeting immune checkpoint receptors. World Journal of Immunology, 2018, 8, 1-11.	0.5	4
360	CD8+ T lymphocytes are sensitive to NKG2A/HLA-E licensing interaction: role in the survival of cancer patients. Oncolmmunology, 2021, 10, 1986943.	2.1	0
361	Expression Regulation and Function of T-Bet in NK Cells. Frontiers in Immunology, 2021, 12, 761920.	2.2	23
362	The Biological Role and Therapeutic Potential of NK Cells in Hematological and Solid Tumors. International Journal of Molecular Sciences, 2021, 22, 11385.	1.8	7
363	Activation of Cascadeâ€Like Antitumor Immune Responses through In Situ Doxorubicin Stimulation and Blockade of Checkpoint Coinhibitory Receptor TIGIT. Advanced Healthcare Materials, 2022, 11, e2102080.	3.9	5
364	Blocking HIF to Enhance NK Cells: Hints for New Anti-Tumor Therapeutic Strategies?. Vaccines, 2021, 9, 1144.	2.1	4
365	Targeted Antiâ€Tumor Immunotherapy Using Tumor Infiltrating Cells. Advanced Science, 2021, 8, e2101672.	5.6	36
366	NK Cell-Based Immunotherapy and Therapeutic Perspective in Gliomas. Frontiers in Oncology, 2021, 11, 751183.	1.3	10
367	The GPR171 pathway suppresses T cell activation and limits antitumor immunity. Nature Communications, 2021, 12, 5857.	5.8	11
369	Checkpoint Inhibitors in the Treatment of Metastatic Melanoma. , 2019, , 1-24.		0

# 370	ARTICLE Checkpoint Inhibitors in the Treatment of Metastatic Melanoma. , 2020, , 1141-1164.	IF	Citations
371	Key Activating and Inhibitory Ligands Involved in the Mobilization of Natural Killer Cells for Cancer Immunotherapies. ImmunoTargets and Therapy, 2021, Volume 10, 387-407.	2.7	9
372	Simultaneous blockade of TIGIT and HIF- $1\hat{l}$ ± induces synergistic anti-tumor effect and decreases the growth and development of cancer cells. International Immunopharmacology, 2021, 101, 108288.	1.7	22
373	Anti-tumour effect of in situ vaccines combined with VEGFR inhibitors in the treatment of metastatic cervical cancer. International Immunopharmacology, 2021, 101, 108302.	1.7	1
374	An engineered IL-21 with half-life extension enhances anti-tumor immunity as a monotherapy or in combination with PD-1 or TIGIT blockade. International Immunopharmacology, 2021, 101, 108307.	1.7	7
375	Perspectives on the Role of T Cell Negative Immune Checkpoint Receptors in Health and Disease. , 2020, , 297-318.		0
377	Role of NKG2D and its ligands in cancer immunotherapy. American Journal of Cancer Research, 2019, 9, 2064-2078.	1.4	37
378	Cross-Talk Between Tumor Cells Undergoing Epithelial to Mesenchymal Transition and Natural Killer Cells in Tumor Microenvironment in Colorectal Cancer. Frontiers in Cell and Developmental Biology, 2021, 9, 750022.	1.8	18
379	Combined Blockade of TIGIT and CD39 or A2AR Enhances NK-92 Cell-Mediated Cytotoxicity in AML. International Journal of Molecular Sciences, 2021, 22, 12919.	1.8	27
380	A pan-cancer analysis revealing the role of TIGIT in tumor microenvironment. Scientific Reports, 2021, 11, 22502.	1.6	23
381	Differential Role of PD-1 Expressed by Various Immune and Tumor Cells in the Tumor Immune Microenvironment: Expression, Function, Therapeutic Efficacy, and Resistance to Cancer Immunotherapy. Frontiers in Cell and Developmental Biology, 2021, 9, 767466.	1.8	13
382	Harnessing the combined potential of cancer immunotherapy and nanomedicine: A new paradigm in cancer treatment. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 40, 102492.	1.7	4
383	Immune Checkpoints and Innate Lymphoid Cells—New Avenues for Cancer Immunotherapy. Cancers, 2021, 13, 5967.	1.7	11
384	Innate tumor killers in colorectal cancer. Cancer Letters, 2022, 527, 115-126.	3.2	11
385	Chronic IL-15 Stimulation and Impaired mTOR Signaling and Metabolism in Natural Killer Cells During Acute Myeloid Leukemia. Frontiers in Immunology, 2021, 12, 730970.	2.2	6
386	Signal pathways of melanoma and targeted therapy. Signal Transduction and Targeted Therapy, 2021, 6, 424.	7.1	115
387	High serum soluble CD155 level predicts poor prognosis and correlates with an immunosuppressive tumor microenvironment in hepatocellular carcinoma. Journal of Clinical Laboratory Analysis, 2022, 36, e24259.	0.9	10
388	Research progress of tumor targeted drug delivery based on PD-1/PD-L1. International Journal of Pharmaceutics, 2022, 616, 121527.	2.6	16

#	Article	IF	CITATIONS
389	High Plus Low Dose Radiation Strategy in Combination with TIGIT and PD1 Blockade to Promote Systemic Antitumor Responses. Cancers, 2022, 14, 221.	1.7	21
390	Acquired resistance for immune checkpoint inhibitors in cancer immunotherapy: challenges and prospects. Aging, 2022, 14, 1048-1064.	1.4	15
391	NF-κB-Related Metabolic Gene Signature Predicts the Prognosis and Immunotherapy Response in Gastric Cancer. BioMed Research International, 2022, 2022, 1-30.	0.9	1
392	Structural and functional characterization of a monoclonal antibody blocking TIGIT. MAbs, 2022, 14, 2013750.	2.6	6
393	Identification of Circular RNA-Based Immunomodulatory Networks in Colorectal Cancer. Frontiers in Oncology, 2021, 11, 779706.	1.3	3
394	Innate Immunity and Cancer Pathophysiology. Annual Review of Pathology: Mechanisms of Disease, 2022, 17, 425-457.	9.6	41
395	Harnessing natural killer cells for the treatment of multiple myeloma. Seminars in Oncology, 2022, 49, 69-85.	0.8	12
396	Cancer cell-expressed BTNL2 facilitates tumour immune escape via engagement with IL-17A-producing γδT cells. Nature Communications, 2022, 13, 231.	5.8	14
397	Immunotherapy for glioblastoma: the promise of combination strategies. Journal of Experimental and Clinical Cancer Research, 2022, 41, 35.	3.5	85
398	Gene of the month: T-cell immunoreceptor with immunoglobulin and ITIM domains (TIGIT). Journal of Clinical Pathology, 2022, 75, 217-221.	1.0	9
399	Preclinical and exploratory human studies of novel 68Ga-labeled D-peptide antagonist for PET imaging of TIGIT expression in cancers. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 2584-2594.	3.3	12
400	Oral-Intestinal Microbiota in Colorectal Cancer: Inflammation and Immunosuppression. Journal of Inflammation Research, 2022, Volume 15, 747-759.	1.6	19
401	Metabolic modulation of immune checkpoints and novel therapeutic strategies in cancer. Seminars in Cancer Biology, 2022, 86, 542-565.	4.3	51
402	LLT1-CD161 Interaction in Cancer: Promises and Challenges. Frontiers in Immunology, 2022, 13, 847576.	2.2	15
403	Immunotherapy in Lung Cancer: Current Landscape and Future Directions. Frontiers in Immunology, 2022, 13, 823618.	2.2	105
404	Single cell RNA sequencing reveals differentiation related genes with drawing implications in predicting prognosis and immunotherapy response in gliomas. Scientific Reports, 2022, 12, 1872.	1.6	0
405	Blockade of novel immune checkpoints and new therapeutic combinations to boost antitumor immunity. Journal of Experimental and Clinical Cancer Research, 2022, 41, 62.	3.5	44
406	TIGIT Signaling Pathway Regulates Natural Killer Cell Function in Chronic Hepatitis B Virus Infection. Frontiers in Medicine, 2021, 8, 816474.	1.2	6

#	Article	IF	CITATIONS
407	CD226 and TIGIT Cooperate in the Differentiation and Maturation of Human Tfh Cells. Frontiers in Immunology, 2022, 13, 840457.	2.2	14
408	Harnessing radiotherapy-induced NK-cell activity by combining DNA damage–response inhibition and immune checkpoint blockade. , 2022, 10, e004306.		36
409	Role of CD155/TIGIT in Digestive Cancers: Promising Cancer Target for Immunotherapy. Frontiers in Oncology, 2022, 12, 844260.	1.3	7
410	TIGIT Blockade Exerts Synergistic Effects on Microwave Ablation Against Cancer. Frontiers in Immunology, 2022, 13, 832230.	2.2	13
411	Cell Differentiation Trajectory in Liver Cirrhosis Predicts Hepatocellular Carcinoma Prognosis and Reveals Potential Biomarkers for Progression of Liver Cirrhosis to Hepatocellular Carcinoma. Frontiers in Genetics, 2022, 13, 858905.	1.1	2
412	CD155 expression impairs anti-PD1 therapy response in non-small cell lung cancer. Clinical and Experimental Immunology, 2022, 208, 220-232.	1.1	6
413	Mechanistic convergence of the TIGIT and PD-1 inhibitory pathways necessitates co-blockade to optimize anti-tumor CD8+ TÂcell responses. Immunity, 2022, 55, 512-526.e9.	6.6	118
414	Biology and Clinical Relevance of HCMV-Associated Adaptive NK Cells. Frontiers in Immunology, 2022, 13, 830396.	2.2	4
415	Negative Regulation and Protective Function of Natural Killer Cells in HIV Infection: Two Sides of a Coin. Frontiers in Immunology, 2022, 13, 842831.	2.2	6
416	The changing role of natural killer cells in cancer metastasis. Journal of Clinical Investigation, 2022, 132, .	3.9	36
417	Recent Advances of Immune Checkpoint Inhibition and Potential for (Combined) TIGIT Blockade as a New Strategy for Malignant Pleural Mesothelioma. Biomedicines, 2022, 10, 673.	1.4	4
418	NKâ€cell exhaustion, Bâ€cell exhaustion and Tâ€cell exhaustion—the differences and similarities. Immunology, 2022, 166, 155-168.	2.0	39
419	CAR-NK cells for cancer immunotherapy: from bench to bedside. Biomarker Research, 2022, 10, 12.	2.8	65
420	Taking Lessons from CAR-T Cells and Going Beyond: Tailoring Design and Signaling for CAR-NK Cells in Cancer Therapy. Frontiers in Immunology, 2022, 13, 822298.	2.2	13
421	Harnessing natural killer cells for cancer immunotherapy: dispatching the first responders. Nature Reviews Drug Discovery, 2022, 21, 559-577.	21.5	68
422	Investigating the susceptibility of treatment-resistant oesophageal tumours to natural killer cell-mediated responses. Clinical and Experimental Medicine, 2023, 23, 411-425.	1.9	2
423	Natural killer cell dysfunction in cancer and new strategies to utilize NK cell potential for cancer immunotherapy. Molecular Immunology, 2022, 144, 58-70.	1.0	23
424	TIGIT-CD226-PVR axis: advancing immune checkpoint blockade for cancer immunotherapy. , 2022, 10, e004711.		69

#	Article	IF	CITATIONS
425	Imaging immunity in patients with cancer using positron emission tomography. Npj Precision Oncology, 2022, 6, 24.	2.3	13
426	CD155/SRC complex promotes hepatocellular carcinoma progression via inhibiting the p38 MAPK signalling pathway and correlates with poor prognosis. Clinical and Translational Medicine, 2022, 12, e794.	1.7	13
427	Natural killer cell therapy: A new frontier for obesity-associated cancer. Cancer Letters, 2022, 535, 215620.	3.2	17
429	Cell-Based Therapy for the Treatment of Glioblastoma: An Update from Preclinical to Clinical Studies. Cells, 2022, 11, 116.	1.8	9
430	An engineered oncolytic vaccinia virus encoding a single-chain variable fragment against TIGIT induces effective antitumor immunity and synergizes with PD-1 or LAG-3 blockade. , 2021, 9, e002843.		29
431	Expression of Immune Checkpoints in Malignant Tumors: Therapy Targets and Biomarkers for the Gastric Cancer Prognosis. Diagnostics, 2021, 11, 2370.	1.3	6
432	Single-cell RNA-sequencing reveals distinct immune cell subsets and signaling pathways in IgA nephropathy. Cell and Bioscience, 2021, 11, 203.	2.1	11
433	CAR-NK Cells: From Natural Basis to Design for Kill. Frontiers in Immunology, 2021, 12, 707542.	2.2	50
434	Identification of Subtypes and a Prognostic Gene Signature in Colon Cancer Using Cell Differentiation Trajectories. Frontiers in Cell and Developmental Biology, 2021, 9, 705537.	1.8	7
435	Natural killer cells in liver transplantation: Can we harness the power of the immune checkpoint to promote tolerance?. Clinical and Translational Science, 2022, 15, 1091-1103.	1.5	4
436	Challenges and Recent Advances in NK Cell-Targeted Immunotherapies in Solid Tumors. International Journal of Molecular Sciences, 2022, 23, 164.	1.8	14
437	Colorectal Cancer-Associated Immune Exhaustion Involves T and B Lymphocytes and Conventional NK Cells and Correlates With a Shorter Overall Survival. Frontiers in Immunology, 2021, 12, 778329.	2.2	26
438	Cutting edge: the regulatory mechanisms of macrophage polarization and function during pregnancy. Journal of Reproductive Immunology, 2022, 151, 103627.	0.8	14
439	Identification of a Tumor Immunological Phenotype-Related Gene Signature for Predicting Prognosis, Immunotherapy Efficacy, and Drug Candidates in Hepatocellular Carcinoma. Frontiers in Immunology, 2022, 13, 862527.	2.2	23
440	Combination Blockade of the IL6R/STAT-3 Axis with TIGIT and Its Impact on the Functional Activity of NK Cells against Prostate Cancer Cells. Journal of Immunology Research, 2022, 2022, 1-19.	0.9	7
441	Reprogramming the tumor microenvironment by genome editing for precision cancer therapy. Molecular Cancer, 2022, 21, 98.	7.9	36
442	The tricks for fighting against cancer using CAR NK cells: A review. Molecular and Cellular Probes, 2022, 63, 101817.	0.9	5
455	Tumor FAK orchestrates immunosuppression in ovarian cancer via the CD155/TIGIT axis. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2117065119.	3.3	26

#	Article	IF	CITATIONS
456	Single-cell Characterization of the Cellular Landscape of Acral Melanoma Identifies Novel Targets for Immunotherapy. Clinical Cancer Research, 2022, 28, 2131-2146.	3.2	36
458	The TOX subfamily: all-round players in the immune system. Clinical and Experimental Immunology, 2022, 208, 268-280.	1.1	4
459	Candida albicans evades NK cell elimination via binding of Agglutinin-Like Sequence proteins to the checkpoint receptor TIGIT. Nature Communications, 2022, 13, 2463.	5.8	10
460	Sequential Single-Cell Transcriptional and Protein Marker Profiling Reveals TIGIT as a Marker of CD19 CAR-T Cell Dysfunction in Patients with Non-Hodgkin Lymphoma. Cancer Discovery, 2022, 12, 1886-1903.	7.7	31
461	NK Cells and ILC1s in Cancer Biology. Advances in Experimental Medicine and Biology, 2022, 1365, 41-55.	0.8	2
462	Targeting CISH enhances natural cytotoxicity receptor signaling and reduces NK cell exhaustion to improve solid tumor immunity. , 2022, 10, e004244.		23
463	Roles of natural killer cells in immunity to cancer, and applications to immunotherapy. Nature Reviews Immunology, 2023, 23, 90-105.	10.6	110
464	Turning cold tumors hot: from molecular mechanisms to clinical applications. Trends in Immunology, 2022, 43, 523-545.	2.9	176
465	Natural killer cells: a promising immunotherapy for cancer. Journal of Translational Medicine, 2022, 20, .	1.8	56
466	Tissue-Resident Innate Immune Cell-Based Therapy: A Cornerstone of Immunotherapy Strategies for Cancer Treatment. Frontiers in Cell and Developmental Biology, 2022, 10, .	1.8	5
467	<scp>TIGIT</scp> / <scp>CD47</scp> dual high expression predicts prognosis and is associated with immunotherapy response in lung squamous cell carcinoma. Thoracic Cancer, 0, , .	0.8	4
468	Novel Immune Checkpoints in Esophageal Cancer: From Biomarkers to Therapeutic Targets. Frontiers in Immunology, 2022, 13, .	2.2	10
469	TgMab-2: An Anti-human T Cell Immunoglobulin and Immunoreceptor Tyrosine-Based Inhibitory Motif Domain Monoclonal Antibody for Immunocytochemistry. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2022, 41, 157-162.	0.8	0
470	Cell-based drug delivery systems and their in vivo fate. Advanced Drug Delivery Reviews, 2022, 187, 114394.	6.6	28
471	Emergence of the CD226 Axis in Cancer Immunotherapy. Frontiers in Immunology, 0, 13, .	2.2	13
472	Tumor Microenvironment—A Short Review of Cellular and Interaction Diversity. Biology, 2022, 11, 929.	1.3	22
473	What Inhibits Natural Killers' Performance in Tumour. International Journal of Molecular Sciences, 2022, 23, 7030.	1.8	2
474	Identification of a differentiation-related prognostic nomogram based on single-cell RNA sequencing in clear cell renal cell carcinoma. Scientific Reports, 2022, 12, .	1.6	4

#	Article	IF	CITATIONS
475	TGFÎ ² and CIS Inhibition Overcomes NK-cell Suppression to Restore Antitumor Immunity. Cancer Immunology Research, 2022, 10, 1047-1054.	1.6	11
476	TIGIT as a Novel Prognostic Marker for Immune Infiltration in Invasive Breast Cancer. Combinatorial Chemistry and High Throughput Screening, 2023, 26, 639-651.	0.6	5
477	In vivo multidimensional CRISPR screens identify <i>Lgals2</i> as an immunotherapy target in triple-negative breast cancer. Science Advances, 2022, 8, .	4.7	26
478	Recruited and Tissue-Resident Natural Killer Cells in the Lung During Infection and Cancer. Frontiers in Immunology, 0, 13, .	2.2	7
479	Oncolytic viruses combined with immune checkpoint therapy for colorectal cancer is a promising treatment option. Frontiers in Immunology, 0, 13, .	2.2	13
480	NK Cells and Other Cytotoxic Innate Lymphocytes in Colorectal Cancer Progression and Metastasis. International Journal of Molecular Sciences, 2022, 23, 7859.	1.8	10
482	The Tumor Immune Microenvironment and Frameshift Neoantigen Load Determine Response to PD-L1 Blockade in Extensive-Stage Small Cell Lung Cancer. JTO Clinical and Research Reports, 2022, , 100373.	0.6	1
483	Natural killer cells in antitumour adoptive cell immunotherapy. Nature Reviews Cancer, 2022, 22, 557-575.	12.8	208
484	Discovery of TIGIT inhibitors based on DEL and machine learning. Frontiers in Chemistry, 0, 10, .	1.8	4
485	Immune Checkpoint Inhibitors in Cancer Therapy—How to Overcome Drug Resistance?. Cancers, 2022, 14, 3575.	1.7	18
486	CD155 in tumor progression and targeted therapy. Cancer Letters, 2022, 545, 215830.	3.2	11
487	Natural killer cells: the next wave in cancer immunotherapy. Frontiers in Immunology, 0, 13, .	2.2	4
488	Panoramic comparison between NK cells in healthy and cancerous liver through single-cell RNA sequencing. Cancer Biology and Medicine, 0, , 1-18.	1.4	2
489	Immunosuppressive landscape in hepatocellular carcinoma revealed by single-cell sequencing. Frontiers in Immunology, 0, 13, .	2.2	15
490	Natural killer cells and bone marrow mesenchymal stem cells: A dangerous liaison in multiple myeloma. Clinical and Translational Discovery, 2022, 2, .	0.2	0
491	Cutting-Edge: Preclinical and Clinical Development of the First Approved Lag-3 Inhibitor. Cells, 2022, 11, 2351.	1.8	29
492	Immunotherapy: Reshape the Tumor Immune Microenvironment. Frontiers in Immunology, 0, 13, .	2.2	77
493	TIGIT blockade enhances tumor response to radiotherapy via a CD103 + dendritic cell-dependent mechanism. Cancer Immunology, Immunotherapy, 2023, 72, 193-209.	2.0	10

#	Article	IF	CITATIONS
494	DNAM-1-chimeric receptor-engineered NK cells, combined with Nutlin-3a, more effectively fight neuroblastoma cells in vitro: a proof-of-concept study. Frontiers in Immunology, 0, 13, .	2.2	8
495	Overcoming tumor resistance mechanisms in CAR-NK cell therapy. Frontiers in Immunology, 0, 13, .	2.2	22
496	The Role of NK Cells and Their Exosomes in Graft Versus Host Disease and Graft Versus Leukemia. Stem Cell Reviews and Reports, 0, , .	1.7	4
497	Blockade of Tâ€cell receptor with Ig and ITIM domains elicits potent antitumor immunity in naturally occurring HBVâ€related HCC in mice. Hepatology, 2023, 77, 965-981.	3.6	12
498	Evasion of NK cell immune surveillance via the vimentin-mediated cytoskeleton remodeling. Frontiers in Immunology, 0, 13, .	2.2	2
499	A <scp>hypoxiaâ€related lncRNA</scp> model for prediction of head and neck squamous cell carcinoma prognosis. Cancer Medicine, 0, , .	1.3	2
500	Immune Checkpoint Inhibitors for Vaccine Improvements: Current Status and New Approaches. Pharmaceutics, 2022, 14, 1721.	2.0	10
501	Functional crosstalk and regulation of natural killer cells in tumor microenvironment: Significance and potential therapeutic strategies. Genes and Diseases, 2023, 10, 990-1004.	1.5	4
502	The Features of Checkpoint Receptor—Ligand Interaction in Cancer and the Therapeutic Effectiveness of Their Inhibition. Biomedicines, 2022, 10, 2081.	1.4	3
503	Unleashing Anti-Tumor Activity of Natural Killer Cells Via Modulation of Immune Checkpoints Receptors and Molecules. , 0, 8, 463-471.		1
504	Immunotherapy in Advanced NSCLC Without Driver Mutations: Available Therapeutic Alternatives After Progression and Future Treatment Options. Clinical Lung Cancer, 2022, 23, 643-658.	1.1	5
505	Immune cellular components and signaling pathways in the tumor microenvironment. Seminars in Cancer Biology, 2022, 86, 187-201.	4.3	18
506	Checkpoint molecules on infiltrating immune cells in colorectal tumor microenvironment. Frontiers in Medicine, 0, 9, .	1.2	5
507	Underlying mechanisms of evasion from NK cells as rationale for improvement of NK cell-based immunotherapies. Frontiers in Immunology, 0, 13, .	2.2	12
508	PVR/TIGIT and PD-L1/PD-1 expression predicts survival and enlightens combined immunotherapy in lung squamous cell carcinoma. Translational Oncology, 2022, 24, 101501.	1.7	5
509	Immune checkpoint blockade in pancreatic cancer: Trudging through the immune desert. Seminars in Cancer Biology, 2022, 86, 14-27.	4.3	21
510	NK cell immunometabolism as target for liver cancer therapy. International Immunopharmacology, 2022, 112, 109193.	1.7	3
511	Molecular imaging of immune checkpoints in oncology: Current and future applications. Cancer Letters, 2022, 548, 215896.	3.2	5

#	Article	IF	CITATIONS
512	Advances in molecular biomarkers research and clinical application progress for gastric cancer immunotherapy. Biomarker Research, 2022, 10, .	2.8	22
513	Primary and secondary immune checkpoint inhibitors resistance in colorectal cancer: Key mechanisms and ways to overcome resistance. Cancer Treatment and Research Communications, 2022, 33, 100643.	0.7	3
514	Biological and Clinical Aspects of Metastatic Spinal Tumors. Cancers, 2022, 14, 4599.	1.7	11
515	Generating Anti-TIGIT and CD155 Monoclonal Antibodies for Tumor Immunotherapy. Pharmaceutical Fronts, 2022, 04, e197-e206.	0.4	0
516	Systemic Sclerosis Association with Malignancy. Clinical Reviews in Allergy and Immunology, 2022, 63, 398-416.	2.9	7
517	Emerging Therapeutic Strategies of Different Immunotherapy Approaches Combined with PD-1/PD-L1 Blockade in Cervical Cancer. Drug Design, Development and Therapy, 0, Volume 16, 3055-3070.	2.0	6
518	V-Set and immunoglobulin domain containing (VSIG) proteins as emerging immune checkpoint targets for cancer immunotherapy. Frontiers in Immunology, 0, 13, .	2.2	3
519	Strategies for Potentiating NK-Mediated Neuroblastoma Surveillance in Autologous or HLA-Haploidentical Hematopoietic Stem Cell Transplants. Cancers, 2022, 14, 4548.	1.7	2
520	Cord Blood-Derived Natural Killer Cell Exploitation in Immunotherapy Protocols: More Than a Promise?. Cancers, 2022, 14, 4439.	1.7	6
521	Harnessing the immune system by targeting immune checkpoints: Providing new hope for Oncotherapy. Frontiers in Immunology, 0, 13, .	2.2	6
522	Human natural killer cells: Form, function, and development. Journal of Allergy and Clinical Immunology, 2023, 151, 371-385.	1.5	14
523	Signaling pathways and targeted therapies in lung squamous cell carcinoma: mechanisms and clinical trials. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	33
524	Bone marrow mesenchymal stem cells regulate the dysfunction of NK cells via the T cell immunoglobulin and ITIM domain in patients with myelodysplastic syndromes. Cell Communication and Signaling, 2022, 20, .	2.7	3
525	Low-dose immunogenic chemotherapeutics promotes immune checkpoint blockade in microsatellite stability colon cancer. Frontiers in Immunology, 0, 13, .	2.2	6
526	Ginsenosides: Allies of gastrointestinal tumor immunotherapy. Frontiers in Pharmacology, 0, 13, .	1.6	3
527	Tissueâ€resident CD69 ⁺ CXCR6 ⁺ Natural Killer cells with exhausted phenotype accumulate in human nonâ€small cell lung cancer. European Journal of Immunology, 2022, 52, 1993-2005.	1.6	3
528	Hypoxia-Regulated Tumor-Derived Exosomes and Tumor Progression: A Focus on Immune Evasion. International Journal of Molecular Sciences, 2022, 23, 11789.	1.8	11
529	Signaling pathways and therapeutic interventions in gastric cancer. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	54

#	ARTICLE	IF	CITATIONS
530	Prognostic and clinicopathological significance of CD155 expression in cancer patients: a meta-analysis. World Journal of Surgical Oncology, 2022, 20, .	0.8	4
531	Immune Checkpoint Blockade: A Strategy to Unleash the Potential of Natural Killer Cells in the Anti-Cancer Therapy. Cancers, 2022, 14, 5046.	1.7	8
532	Impaired intratumoral natural killer cell function in head and neck carcinoma. Frontiers in Immunology, 0, 13, .	2.2	6
533	Next Generation Immuno-Oncology Strategies: Unleashing NK Cells Activity. Cells, 2022, 11, 3147.	1.8	3
534	Development of a bispecific antibody targeting PD-L1 and TIGIT with optimal cytotoxicity. Scientific Reports, 2022, 12, .	1.6	5
535	Advances in immunotherapy for glioblastoma multiforme. Frontiers in Immunology, 0, 13, .	2.2	24
536	Tolerogenic dendritic cells alleviate collagenâ€induced arthritis by forming microchimerism and affecting the expression of immune checkpoint molecules. European Journal of Immunology, 2022, 52, 1980-1992.	1.6	4
537	Immunotherapy targeting inhibitory checkpoints: The role of NK and other innate lymphoid cells. Seminars in Immunology, 2022, 61-64, 101660.	2.7	4
538	VISTA immune regulatory effects in bypassing cancer immunotherapy: Updated. Life Sciences, 2022, 310, 121083.	2.0	19
539	Exosomal circRNAs: A key factor of tumor angiogenesis and therapeutic intervention. Biomedicine and Pharmacotherapy, 2022, 156, 113921.	2.5	2
540	Weaponizing natural killer cells for solid cancer immunotherapy. Trends in Cancer, 2023, 9, 111-121.	3.8	5
541	Generation of NK cells with chimeric-switch receptors to overcome PD1-mediated inhibition in cancer immunotherapy. Cancer Immunology, Immunotherapy, 2023, 72, 1153-1167.	2.0	4
542	TIGITâ€expressing zoledronateâ€specific γδT cells display enhanced antitumor activity. Journal of Leukocyte Biology, 0, , .	1.5	1
543	The effect of neoadjuvant chemotherapy on the tumor immune microenvironment in gastrointestinal tumors. Frontiers in Oncology, 0, 12, .	1.3	1
544	Disruption of the HLA-E/NKG2X axis is associated with uncontrolled HIV infections. Frontiers in Immunology, 0, 13, .	2.2	1
545	The landscape of TIGIT target and clinical application in diseases. , 2022, 1, .		0
546	The Dual Blockade of the TIGIT and PD-1/PD-L1 Pathway as a New Hope for Ovarian Cancer Patients. Cancers, 2022, 14, 5757.	1.7	10
547	Designing Cancer Immunotherapies That Engage T Cells and NK Cells. Annual Review of Immunology, 2023, 41, 17-38.	9.5	30

ARTICLE IF CITATIONS PVRâ€"A Prognostic Biomarker Correlated with Immune Cell Infiltration in Hepatocellular Carcinoma. 1.3 1 Diagnostics, 2022, 12, 2953. N6-methylandenosine-related immune genes correlate with prognosis and immune landscapes in 1.3 gastric cancer. Frontiers in Oncology, 0, 12, . Allogeneic natural killer cell therapy. Blood, 2023, 141, 856-868. 0.6 33 Anticancer traits of chimeric antigen receptors (CARs)-Natural Killer (NK) cells as novel approaches 1.1 for melanoma treatment. BMC Cancer, 2022, 22, . High-Throughput and Efficient Intracellular Delivery Method via a Vibration-Assisted 7.3 6 Nanoneedle/Microfluidic Composite System. ACS Nano, 2023, 17, 2101-2113. <scp>NR4A1</scp> mediates <scp>NK</scp>â€cell dysfunction in hepatocellular carcinoma via the <scp>IFN</scp>â€i³/<scp>pâ€STAT1</scp>/scp>IRF1</scp> pathway. Immunology, 2023, 169, 69-82. CAR-NK as a Rapidly Developed and Efficient Immunotherapeutic Strategy against Cancer. Cancers, 2023, 1.7 7 15, 117. NKG2D engagement on human NK cells leads to DNAMâ€1 hypoâ€responsiveness through different 1.6 converging mechanisms. European Journal of Immunology, 2023, 53, . Current and novel therapeutic strategies for optimizing immunotherapy outcomes in advanced 1.3 4 non-small cell lung cancer. Frontiers in Oncology, 0, 12, . TIGIT: A promising target to overcome the barrier of immunotherapy in hematological malignancies. 1.3 Frontiers in Oncology, 0, 12, . Leveraging Natural Killer Cell Innate Immunity against Hematologic Malignancies: From Stem Cell Transplant to Adoptive Transfer and Beyond. International Journal of Molecular Sciences, 2023, 24, 1.8 0 204. The effect of Wnt/l2-catenin signaling on PD-1/PDL-1 axis in HPV-related cervical cancer. Oncology 0.6 Research, 2022, 30, 99-116. Contribution of natural killer cells in innate immunity against colorectal cancer. Frontiers in 1.3 5 Oncology, 0, 12, . Canagliflozin primes antitumor immunity by triggering PD-L1 degradation in endocytic recycling. 14 Journal of Clinical Investigation, 2023, 133, . Cannabinoid receptor 2 plays a pro-tumorigenic role in non-small cell lung cancer by limiting 2.2 13 anti-tumor activity of CD8+ T and NK cells. Frontiers in Immunology, 0, 13, . Escape from NK cell tumor surveillance by NGFR-induced lipid remodeling in melanoma. Science Advances, 2023, 9, . Tiragolumab (Anti-TIGIT) in SCLC: Skyscraper-02, a Towering Inferno. Lung Cancer: Targets and Therapy, 1.36 0, Volume 14, 1-9.

CITATION REPORT

565NOD-<i>scid IL2rγnull</i>mice lacking TLR4 support human immune system development and the study1.51of human-specific innate immunity. Journal of Leukocyte Biology, 0, , .1.51

#

548

549

550

551

552

554

556

558

560

562

#	Article	IF	CITATIONS
566	Insights into the tumor microenvironment of B cell lymphoma. Journal of Experimental and Clinical Cancer Research, 2022, 41, .	3.5	8
567	Targeting immune checkpoints: how to use natural killer cells for fighting against solid tumors. Cancer Communications, 2023, 43, 177-213.	3.7	8
568	Tumor immunology. , 2023, , 245-452.		0
569	Multifaceted nature of natural killer cells: Potential mode of interaction and shaping of stem cells. , 2023, , 3-25.		1
570	The inhibitory NKR-P1B receptor regulates NK cell-mediated mammary tumor immunosurveillance in mice. Oncolmmunology, 2023, 12, .	2.1	1
571	Clinical application and prospect of immune checkpoint inhibitors for CAR-NK cell in tumor immunotherapy. Frontiers in Immunology, 0, 13, .	2.2	4
573	Natural killer cells as immunotherapeutic effectors for solid tumors. , 2023, , 65-81.		0
574	The Immunoregulatory Effect of Aconite Treatment on H22 Tumor-Bearing Mice via Modulating Adaptive Immunity and Natural Killer-Related Immunity. Evidence-based Complementary and Alternative Medicine, 2023, 2023, 1-10.	0.5	2
575	Combining radiotherapy and NK cell-based therapies: The time has come. International Review of Cell and Molecular Biology, 2023, , .	1.6	1
576	<i>TIPE2</i> deletion improves the therapeutic potential of adoptively transferred NK cells. , 2023, 11, e006002.		5
577	ICI-based therapies: A new strategy for oral potentially malignant disorders. Oral Oncology, 2023, 140, 106388.	0.8	2
578	Simultaneous engineering of natural killer cells for CAR transgenesis and CRISPR-Cas9 knockout using retroviral particles. Molecular Therapy - Methods and Clinical Development, 2023, 29, 173-184.	1.8	5
579	Mycosis Fungoides and Sézary Syndrome: Microenvironment and Cancer Progression. Cancers, 2023, 15, 746.	1.7	2
580	Targets of Immune Escape Mechanisms in Cancer: Basis for Development and Evolution of Cancer Immune Checkpoint Inhibitors. Biology, 2023, 12, 218.	1.3	27
581	The co-inhibitory receptor TIGIT regulates NK cell function and is upregulated in human intrahepatic CD56bright NK cells. Frontiers in Immunology, 0, 14, .	2.2	3
582	Checkpoint TIPE2 Limits the Helper Functions of NK Cells in Supporting Antitumor CD8 ⁺ T Cells. Advanced Science, 2023, 10, .	5.6	6
583	Single-cell RNA sequencing in orthopedic research. Bone Research, 2023, 11, .	5.4	6
584	Targeting tumor microenvironment for non-small cell lung cancer immunotherapy. , 2023, , .		1

#	Article	IF	CITATIONS
585	Prognostic impact of PD-L1 and TIGIT expression in non-small cell lung cancer following concurrent chemo-radiotherapy. Scientific Reports, 2023, 13, .	1.6	1
586	Diversity of immune checkpoints in cancer immunotherapy. Frontiers in Immunology, 0, 14, .	2.2	11
587	Delivering mRNA to a human NK cell line, NK-92 cells, by lipid nanoparticles. International Journal of Pharmaceutics, 2023, 636, 122810.	2.6	2
588	The Role of Different Immunocompetent Cell Populations in the Pathogenesis of Head and Neck Cancer—Regulatory Mechanisms of Pro- and Anti-Cancer Activity and Their Impact on Immunotherapy. Cancers, 2023, 15, 1642.	1.7	4
589	A Nanotherapeutic Strategy to Reverse NK Cell Exhaustion. Advanced Materials, 2023, 35, .	11.1	7
590	Inhibition of hepatic natural killer cell function via the TIGIT receptor in schistosomiasis-induced liver fibrosis. PLoS Pathogens, 2023, 19, e1011242.	2.1	3
591	Integrated bioinformatic analysis and cell line experiments reveal the significant role of the novel immune checkpoint TIGIT in kidney renal clear cell carcinoma. Frontiers in Oncology, 0, 13, .	1.3	1
592	EBV-Upregulated B7-H3 Inhibits NK cell–Mediated Antitumor Function and Contributes to Nasopharyngeal Carcinoma Progression. Cancer Immunology Research, 2023, 11, 830-846.	1.6	4
593	Targeting the Molecular and Immunologic Features of Leiomyosarcoma. Cancers, 2023, 15, 2099.	1.7	5
594	In Situ STINGâ€Activating Nanovaccination with TIGIT Blockade for Enhanced Immunotherapy of Antiâ€PDâ€1â€Resistant Tumors. Advanced Materials, 2023, 35, .	11.1	2
595	Novel strategies for cancer immunotherapy: counter-immunoediting therapy. Journal of Hematology and Oncology, 2023, 16, .	6.9	14
596	The Function of NK Cells in Tumor Metastasis and NK Cell-Based Immunotherapy. Cancers, 2023, 15, 2323.	1.7	14
597	Innate lymphoid cells and innate-like T cells in cancer— at the crossroads of innate and adaptive immunity. Nature Reviews Cancer, 2023, 23, 351-371.	12.8	15
620	Natural Killer Cells: A Promising Cellular Therapy Platform to Conquer Cancer. , 2024, , 403-410.		0
631	Dual impact of radiation therapy on tumor-targeting immune responses. International Review of Cell and Molecular Biology, 2023, , xiii-xxiv.	1.6	0
655	Systemic Oncosphere: Host Innate Immune System. , 2023, , 419-442.		0
657	Significance of NK Cell in Cancer. , 2023, , 1-19.		0
665	Unleashing the Potential of Natural Killer Cells in Immunotherapy for Glioblastoma and Brain Tumors. , 2023, , .		0

	Сітатіо	CITATION REPORT	
#	Article	IF	CITATIONS
696	Breakthrough of solid tumor treatment: CAR-NK immunotherapy. Cell Death Discovery, 2024, 10, .	2.0	1
703	Therapeutic Strategies in BRAF V600 Wild-Type Cutaneous Melanoma. American Journal of Clinical Dermatology, 0, , .	3.3	0