Moiré-Modulated Conductance of Hexagonal Boron N

Nano Letters

18, 4241-4246

DOI: 10.1021/acs.nanolett.8b01223

Citation Report

#	ARTICLE	IF	Citations
1	Transferâ€Free Synthesis of Lateral Graphene–Hexagonal Boron Nitride Heterostructures from Chemically Converted Epitaxial Graphene. Advanced Materials Interfaces, 2019, 6, 1900419.	1.9	10
2	Large-area adlayer-free single-layer h-BN film achieved by controlling intercalation growth. Applied Surface Science, 2019, 498, 143851.	3.1	9
3	Nucleation and growth of atomically thin hexagonal boron nitride on Ni/MgO(111) by molecular beam epitaxy. Journal of Applied Physics, 2019, 125, .	1.1	13
4	GaNâ∈Based Nanorods/Graphene Heterostructures for Optoelectronic Applications. Physica Status Solidi (B): Basic Research, 2019, 256, 1800454.	0.7	5
5	Valley-polarized tunneling currents in bilayer graphene tunneling transistors. Physical Review B, 2019, 99, .	1.1	8
6	Strain Engineering of 2D Materials: Issues and Opportunities at the Interface. Advanced Materials, 2019, 31, e1805417.	11.1	415
7	Hexagonal boron nitride monolayers on metal supports: Versatile templates for atoms, molecules and nanostructures. Surface Science Reports, 2019, 74, 1-95.	3.8	184
8	Understanding Interlayer Contact Conductance in Twisted Bilayer Graphene. Small, 2020, 16, e1902844.	5.2	27
9	Influence of Proximity to Supporting Substrate on van der Waals Epitaxy of Atomically Thin Graphene/Hexagonal Boron Nitride Heterostructures. ACS Applied Materials & Samp; Interfaces, 2020, 12, 8897-8907.	4.0	11
10	Step-flow growth of graphene-boron nitride lateral heterostructures by molecular beam epitaxy. 2D Materials, 2020, 7, 035014.	2.0	14
11	Building Functional Memories and Logic Circuits with 2D Boron Nitride. Advanced Functional Materials, 2021, 31, 2004733.	7.8	22
12	Coherent Electronic Band Structure of TiTe ₂ /TiSe ₂ Moiré Bilayer. ACS Nano, 2021, 15, 3359-3364.	7.3	7
13	Mechanically sensing and tailoring electronic properties in two-dimensional atomic membranes. Current Opinion in Solid State and Materials Science, 2021, 25, 100900.	5.6	7
14	Band gap measurements of monolayer h-BN and insights into carbon-related point defects. 2D Materials, 2021, 8, 044001.	2.0	34
15	Exciton and Phonon Radiative Linewidths in Monolayer Boron Nitride. Physical Review X, 2022, 12, .	2.8	5
16	2+ <i>δ</i> â€Dimensional Materials via Atomistic Zâ€Welding. Advanced Science, 2022, 9, .	5.6	8