MAGE-A3 immunotherapeutic as adjuvant therapy for J MAGE-A3-positive, stage III melanoma (DERMA): a dou placebo-controlled, phase 3 trial

Lancet Oncology, The 19, 916-929 DOI: 10.1016/s1470-2045(18)30254-7

Citation Report

#	Article	IF	CITATIONS
1	CANCER VACCINES. Hematology/Oncology Clinics of North America, 2001, 15, 741-773.	2.2	25
2	Perspective: cancer vaccines in the era of immune checkpoint blockade. Mammalian Genome, 2018, 29, 703-713.	2.2	20
3	Dissecting the Immune Stimulation Promoted by CSF-470 Vaccine Plus Adjuvants in Cutaneous Melanoma Patients: Long Term Antitumor Immunity and Short Term Release of Acute Inflammatory Reactants. Frontiers in Immunology, 2018, 9, 2531.	4.8	32
4	A phase II trial of recombinant MAGE-A3 protein with immunostimulant AS15 in combination with high-dose Interleukin-2 (HDIL2) induction therapy in metastatic melanoma. BMC Cancer, 2018, 18, 1274.	2.6	31
6	A Designer Cross-reactive DNA Immunotherapeutic Vaccine that Targets Multiple MAGE-A Family Members Simultaneously for Cancer Therapy. Clinical Cancer Research, 2018, 24, 6015-6027.	7.0	35
7	Negative but not futile: MAGE-A3 immunotherapeutic for melanoma. Lancet Oncology, The, 2018, 19, 852-853.	10.7	7
8	Systematic cancer-testis gene expression analysis identified CDCA5 as a potential therapeutic target in esophageal squamous cell carcinoma. EBioMedicine, 2019, 46, 54-65.	6.1	31
9	Cellular Therapy for Melanoma. , 2019, , 1-33.		0
10	Vaccine Strategy in Melanoma. Surgical Oncology Clinics of North America, 2019, 28, 337-351.	1.5	17
11	The Role of Toll-Like Receptors in Oncotherapy. Oncology Research, 2019, 27, 965-978.	1.5	23
12	Efficacy of adoptive therapy with tumor-infiltrating lymphocytes and recombinant interleukin-2 in advanced cutaneous melanoma: a systematic review and meta-analysis. Annals of Oncology, 2019, 30, 1902-1913.	1.2	144
13	Cancer Vaccines. Hematology/Oncology Clinics of North America, 2019, 33, 199-214.	2.2	84
14	Immunomodulatory Nanosystems. Advanced Science, 2019, 6, 1900101.	11.2	255
15	Adjuvant Treatment of Melanoma: Recent Developments and Future Perspectives. American Journal of Clinical Dermatology, 2019, 20, 817-827.	6.7	29
16	Adaptive Signature Design- review of the biomarker guided adaptive phase –III controlled design. Contemporary Clinical Trials Communications, 2019, 15, 100378.	1.1	10
17	Pathogen Molecular Pattern Receptor Agonists: Treating Cancer by Mimicking Infection. Clinical Cancer Research, 2019, 25, 6283-6294.	7.0	38
18	MAGE-A3 Is a Clinically Relevant Target in Undifferentiated Pleomorphic Sarcoma/Myxofibrosarcoma. Cancers, 2019, 11, 677.	3.7	20
19	Therapeutic efficacy of a human papillomavirus type 16 E7 bacterial exotoxin fusion protein adjuvanted with CpG or CPI-0100 in a preclinical mouse model for HPV-associated disease. Vaccine, 2019, 37, 2915-2924.	3.8	20

TION RE

#	Article	IF	CITATIONS
20	Updated insights into the mechanism of action and clinical profile of the immunoadjuvant QS-21: A review. Phytomedicine, 2019, 60, 152905.	5.3	108
21	Phase III Precision Medicine Clinical Trial Designs That Integrate Treatment and Biomarker Evaluation. JCO Precision Oncology, 2019, 3, 1-9.	3.0	5
22	Gene Signatures in Cutaneous Malignancies. Current Surgery Reports, 2019, 7, 1.	0.9	4
23	Cancer testis antigens in sarcoma: Expression, function and immunotherapeutic application. Cancer Letters, 2020, 479, 54-60.	7.2	26
24	Adjuvant Therapy for Melanoma: Past, Current, and Future Developments. Cancers, 2020, 12, 1994.	3.7	26
25	Identifying and Targeting Human Tumor Antigens for T Cell-Based Immunotherapy of Solid Tumors. Cancer Cell, 2020, 38, 454-472.	16.8	190
26	Emerging roles of the MAGE protein family in stress response pathways. Journal of Biological Chemistry, 2020, 295, 16121-16155.	3.4	42
27	Systemic adjuvant therapy for adult patients at high risk for recurrent melanoma: A systematic review. Cancer Treatment Reviews, 2020, 87, 102032.	7.7	13
28	Promising targets based on pattern recognition receptors for cancer immunotherapy. Pharmacological Research, 2020, 159, 105017.	7.1	27
29	Better Adjuvants for Better Vaccines: Progress in Adjuvant Delivery Systems, Modifications, and Adjuvant–Antigen Codelivery. Vaccines, 2020, 8, 128.	4.4	98
30	Patient Experience Captured by Quality-of-Life Measurement in Oncology Clinical Trials. JAMA Network Open, 2020, 3, e200363.	5.9	49
31	The fully synthetic glycopeptide MAG-Tn3 therapeutic vaccine induces tumor-specific cytotoxic antibodies in breast cancer patients. Cancer Immunology, Immunotherapy, 2020, 69, 703-716.	4.2	28
32	Cancer/testis antigens expression during cultivation of melanoma and soft tissue sarcoma cells. Clinical Sarcoma Research, 2020, 10, 3.	2.3	11
33	First-in-human phase I clinical trial of the NY-ESO-1 protein cancer vaccine with NOD2 and TLR9 stimulants in patients with NY-ESO-1-expressing refractory solid tumors. Cancer Immunology, Immunotherapy, 2020, 69, 663-675.	4.2	22
34	Tumor Immunology and Tumor Evolution: Intertwined Histories. Immunity, 2020, 52, 55-81.	14.3	357
35	An Open-Label Study of the Safety and Efficacy of <i>Tag-7</i> Gene-Modified Tumor Cells-Based Vaccine in Patients with Locally Advanced or Metastatic Malignant Melanoma or Renal Cell Cancer. Oncologist, 2020, 25, e1303-e1317.	3.7	1
36	A Th1/IFNγ Gene Signature Is Prognostic in the Adjuvant Setting of Resectable High-Risk Melanoma but Not in Non–Small Cell Lung Cancer. Clinical Cancer Research, 2020, 26, 1725-1735.	7.0	13
37	Genomic and signalling pathway characterization of the NZM panel of melanoma cell lines: A valuable model for studying the impact of genetic diversity in melanoma. Pigment Cell and Melanoma Research, 2021, 34, 136-143.	3.3	9

#	Article	IF	CITATIONS
38	IGF2BP1 is the first positive marker for anaplastic thyroid carcinoma diagnosis. Modern Pathology, 2021, 34, 32-41.	5.5	29
39	Adjuvant Therapy of Melanoma. Hematology/Oncology Clinics of North America, 2021, 35, 73-84.	2.2	2
40	MAGEA10 expression is a predictive marker of early hepatic recurrence after curative gastrectomy for gastric and gastroesophageal junction cancer. Gastric Cancer, 2021, 24, 341-351.	5.3	3
41	Strategies for Vaccination: Conventional Vaccine Approaches Versus New-Generation Strategies in Combination with Adjuvants. Pharmaceutics, 2021, 13, 140.	4.5	28
42	Cancer Vaccines: Antigen Selection Strategy. Vaccines, 2021, 9, 85.	4.4	30
43	Vaccine Therapies for Cancer: Then and Now. Targeted Oncology, 2021, 16, 121-152.	3.6	90
44	Characterization and comparison of innate and adaptive immune responses at vaccine sites in melanoma vaccine clinical trials. Cancer Immunology, Immunotherapy, 2021, 70, 2151-2164.	4.2	6
45	Neoadjuvant and Adjuvant Therapies of Melanoma. , 2021, , 401-415.		0
46	Cancer Vaccines: Adjuvant Potency, Importance of Age, Lifestyle, and Treatments. Frontiers in Immunology, 2020, 11, 615240.	4.8	59
47	Safety and antibody immune response of CHP-NY-ESO-1 vaccine combined with poly-ICLC in advanced or recurrent esophageal cancer patients. Cancer Immunology, Immunotherapy, 2021, 70, 3081-3091.	4.2	20
48	Monitoring T Cells Responses Mounted by Therapeutic Cancer Vaccines. Frontiers in Molecular Biosciences, 2021, 8, 623475.	3.5	6
49	Impact of Immunotherapy on CD4 T Cell Phenotypes and Function in Cancer. Vaccines, 2021, 9, 454.	4.4	11
50	Development and Validation of a CD8+ T Cell Infiltration-Related Signature for Melanoma Patients. Frontiers in Immunology, 2021, 12, 659444.	4.8	17
51	AutoEncoder-Based Computational Framework for Tumor Microenvironment Decomposition and Biomarker Identification in Metastatic Melanoma. Frontiers in Genetics, 2021, 12, 665065.	2.3	0
52	Evolution of Cancer Vaccines—Challenges, Achievements, and Future Directions. Vaccines, 2021, 9, 535.	4.4	38
53	In Situ Tumor Vaccination with Nanoparticle Coâ€Delivering CpG and STAT3 siRNA to Effectively Induce Wholeâ€Body Antitumor Immune Response. Advanced Materials, 2021, 33, e2100628.	21.0	34
54	Cancer Vaccines: Promising Therapeutics or an Unattainable Dream. Vaccines, 2021, 9, 668.	4.4	32
55	Lipid-Based Nanoparticles for Delivery of Vaccine Adjuvants and Antigens: Toward Multicomponent Vaccines. Molecular Pharmaceutics, 2021, 18, 2867-2888.	4.6	65

		CITATION REPORT	
#	Article	IF	CITATIONS
56	Oncogenic cancer/testis antigens are a hallmarker of cancer and a sensible target for cancer immunotherapy. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1876, 188558.	7.4	18
57	A novel era of cancer/testis antigen in cancer immunotherapy. International Immunopharmacol 2021, 98, 107889.	ogy, 3.8	36
58	Heterologous prime-boost vaccination targeting MAGE-type antigens promotes tumor T-cell infiltration and improves checkpoint blockade therapy. , 2021, 9, e003218.		10
59	Dendritic cells matured with recombinant human sperm associated antigen 9 (rhSPAG9) induce CD8+ T cells and activate NK cells: a potential candidate molecule for immunotherapy in cervica cancer. Cancer Cell International, 2021, 21, 473.	2 CD4+, al 4.1	4
60	Emerging Therapies in the Treatment of Advanced Melanoma. Clinics in Plastic Surgery, 2021, 4	ł8, 713-733. 1.5	3
61	Oncogenic activity and cellular functionality of melanoma associated antigen A3. Biochemical Pharmacology, 2021, 192, 114700.	4.4	10
62	The Landscape of the Tumor Microenvironment in Skin Cutaneous Melanoma Reveals a Progno Immunotherapeutically Relevant Gene Signature. Frontiers in Cell and Developmental Biology, 2 739594.	stic and 2021, 9, 3.7	4
63	The magic bullet as cancer therapeutic—has nanotechnology failed to find its mark?. Progress Biomedical Engineering, 2020, 2, 042004.	in 4.9	5
64	Vaccines for Non-Viral Cancer Prevention. International Journal of Molecular Sciences, 2021, 22 10900.	, 4.1	4
65	Progress in adjuvant treatment of melanoma patients. Nowotwory, 2018, 68, 140-145.	0.3	Ο
66	Melanoma Vaccines. , 2019, , 1-23.		0
67	Adjuvant Systemic Therapy for High-Risk Melanoma Patients. , 2019, , 1-20.		Ο
68	Novel Immunotherapies and Novel Combinations of Immunotherapy. , 2019, , 1-22.		0
70	Adjuvant Systemic Therapy for High-Risk Melanoma Patients. , 2020, , 747-766.		Ο
71	Melanoma Vaccines. , 2020, , 1243-1265.		0
72	Novel Immunotherapies and Novel Combinations of Immunotherapy for Metastatic Melanoma. 1165-1186.	, 2020, ,	0
73	Cellular Therapy for Melanoma. , 2020, , 1267-1299.		0
75	Impact of Value Frameworks on the Magnitude of Clinical Benefit: Evaluating a Decade of Rand Trials for Systemic Therapy in Solid Malignancies. Current Oncology, 2021, 28, 4894-4928.	omized 2.2	0

#	Article	IF	CITATIONS
76	Clinical Significance of Distant Metastasis-Free Survival (DMFS) in Melanoma: A Narrative Review from Adjuvant Clinical Trials. Journal of Clinical Medicine, 2021, 10, 5475.	2.4	8
77	Functional nanomaterials and nanocomposite in cancer vaccines. , 2022, , 241-258.		0
78	When Onco-Immunotherapy Meets Cold Atmospheric Plasma: Implications on CAR-T Therapies. Frontiers in Oncology, 2022, 12, 837995.	2.8	2
80	Adjuvants: Engineering Protective Immune Responses in Human and Veterinary Vaccines. Methods in Molecular Biology, 2022, 2412, 179-231.	0.9	7
81	Head and Neck Squamous Cell Carcinoma: Risk Factors, Molecular Alterations, Immunology and Peptide Vaccines. International Journal of Peptide Research and Therapeutics, 2022, 28, 19.	1.9	28
82	Comprehensive Analysis to Identify MAGEA3 Expression Correlated With Immune Infiltrates and Lymph Node Metastasis in Gastric Cancer. Frontiers in Oncology, 2021, 11, 784925.	2.8	2
85	Volume doubling time and radiomic features predict tumor behavior of screen-detected lung cancers. Cancer Biomarkers, 2022, 33, 489-501.	1.7	4
86	Melanoma-specific antigen-associated antitumor antibody reactivity as an immune-related biomarker for targeted immunotherapies. Communications Medicine, 2022, 2, .	4.2	1
87	Adoptive Cell Transfer and Vaccines in Melanoma: The Horizon Comes Into View. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2022, 42, 730-737.	3.8	1
88	Hypofractionated or Conventionally Fractionated Adjuvant Radiotherapy After Regional Lymph Node Dissection for High-Risk Stage III Melanoma. Clinical Oncology, 2023, 35, e85-e93.	1.4	1
89	Toll-like receptor 9 agonists and combination therapies: strategies to modulate the tumour immune microenvironment for systemic anti-tumour immunity. British Journal of Cancer, 2022, 127, 1584-1594.	6.4	21
90	Cancer vaccines: the next immunotherapy frontier. Nature Cancer, 2022, 3, 911-926.	13.2	207
91	Driving neoantigen-based cancer vaccines for personalized immunotherapy into clinic: A burdensome journey to promising land. Biomedicine and Pharmacotherapy, 2022, 153, 113464.	5.6	4
92	Chemical complementarity between tumor resident, T-cell receptor CDR3s and MAGEA3/6 correlates with increased melanoma survival: Potential relevance to MAGE vaccine auto-reactivity. Molecular Immunology, 2022, 150, 58-66.	2.2	12
93	lcaritin and intratumoral injection of CpG treatment synergistically promote T cell infiltration and antitumor immune response in mice. International Immunopharmacology, 2022, 111, 109093.	3.8	6
94	Comprehensive characterization of immune landscape of Indian and Western triple negative breast cancers. Translational Oncology, 2022, 25, 101511.	3.7	2
95	Peptide emulsions in incomplete Freund's adjuvant create effective nurseries promoting egress of systemic CD4 ⁺ and CD8 ⁺ T cells for immunotherapy of cancer. , 2022, 10, e004709.		7
96	Integrative pan-cancer landscape of MMS22L and its potential role in hepatocellular carcinoma. Frontiers in Genetics, 0, 13, .	2.3	0

#	Article	IF	Citations
97	Small-cell lung cancer brain metastasis: From molecular mechanisms to diagnosis and treatment. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2022, 1868, 166557.	3.8	17
98	Targeted Cancer Immunotherapy: Nanoformulation Engineering and Clinical Translation. Advanced Science, 2022, 9, .	11.2	20
99	Protein Informatics and Vaccine Development: Cancer Case Study. Current Topics in Medicinal Chemistry, 2022, 22, 2207-2220.	2.1	1
100	New strategy for antimetastatic treatment of lung cancer: a hypothesis based on circulating tumour cells. Cancer Cell International, 2022, 22, .	4.1	2
101	Recurrence Patterns for Regionally Metastatic Melanoma Treated in the Era of Adjuvant Therapy: A Systematic Review and Meta-Analysis. Annals of Surgical Oncology, 0, , .	1.5	0
102	Regulatory Landscapes in Approval of Cancer Vaccines. , 2022, , 325-347.		0
103	A Brief Overview of Cancer Vaccines. Cancer Journal (Sudbury, Mass), 2023, 29, 34-37.	2.0	0
104	Ex Vivo Model of Neuroblastoma Plasticity. Cancers, 2023, 15, 1274.	3.7	0
105	Cancer-testis non-coding RNA LEF1-AS1 regulates the nuclear translocation of PDCD5 and suppresses its interaction with p53 signaling: a novel target for immunotherapy in esophageal squamous cell carcinoma. Carcinogenesis, 0, , .	2.8	0
106	Adjuvants approved for human use: What do we know and what do we need to know for designing good adjuvants?. European Journal of Pharmacology, 2023, 945, 175632.	3.5	4
107	The Melanoma-Associated Antigen Family A (MAGE-A): A Promising Target for Cancer Immunotherapy?. Cancers, 2023, 15, 1779.	3.7	7
108	Clinical Trials for Personalized Medicine: Design and Data Analysis. Japanese Journal of Biometrics, 2022, 43, 97-119.	0.0	0
109	Adjuvant radiotherapy after salvage surgery for melanoma recurrence in a node field following a previous lymph node dissection. Journal of Surgical Oncology, 2023, 128, 97-104.	1.7	0
110	Clinical and molecular overview of immunotherapeutic approaches for malignant skin melanoma: Past, present and future. Critical Reviews in Oncology/Hematology, 2023, 186, 103988.	4.4	2
112	Pathology and Molecular Biology of Melanoma. Current Issues in Molecular Biology, 2023, 45, 5575-5597.	2.4	2
113	Nanovaccine Showing Potent Immunotherapy to Tumor by Activating Γ <i>δ</i> T Cells. Advanced Functional Materials, 2023, 33, .	14.9	1
114	Advances in adoptive T-cell therapy for metastatic melanoma. Current Research in Translational Medicine, 2023, 71, 103404.	1.8	3
115	Cancer Vaccines. , 2023, , 191-210.e9.		0

#	Article	IF	CITATIONS
116	Novel affibody molecules as potential agents in molecular imaging for MAGE-A3-positive tumor diagnosis. Environmental Research, 2023, 237, 116895.	7.5	0
117	BamQuery: a proteogenomic tool to explore the immunopeptidome and prioritize actionable tumor antigens. Genome Biology, 2023, 24, .	8.8	4
118	Circular RNA vaccine in disease prevention and treatment. Signal Transduction and Targeted Therapy, 2023, 8, .	17.1	3
119	Heterogeneity of the tumor immune microenvironment and clinical interventions. Frontiers of Medicine, 2023, 17, 617-648.	3.4	0
120	Immunotherapy in Melanoma: Recent Advancements and Future Directions. Cancers, 2023, 15, 4176.	3.7	1
121	Exploring alternative approaches to precision medicine through genomics and artificial intelligence – a systematic review. Frontiers in Medicine, 0, 10, .	2.6	0
122	Canadine inhibits epithelial mesenchymal transformation of HPV-negative cervical cancer. Tissue Barriers, 0, , .	3.2	0
123	Advances, opportunities and challenges in developing therapeutic cancer vaccines. Critical Reviews in Oncology/Hematology, 2024, 193, 104198.	4.4	0
124	Therapeutic cancer vaccines: advancements, challenges, and prospects. Signal Transduction and Targeted Therapy, 2023, 8, .	17.1	6
125	Immunotherapy for mucosal melanoma. , 2023, 9, 254-264.		0
126	Identification of pan-cancer/testis genes and validation of therapeutic targeting in triple-negative breast cancer: Lin28a-based and Siglece-based vaccination induces antitumor immunity and inhibits metastasis. , 2023, 11, e007935.		0
127	Utilising high-dimensional data in randomised clinical trials: A review of methods and practice. Research Methods in Medicine & Health Sciences, 0, , .	1.2	0
128	DUB3 is a MAGEA3 deubiquitinase and a potential therapeutic target in hepatocellular carcinoma. IScience, 2024, 27, 109181.	4.1	0
129	Cancer neoepitopes viewed through negative selection and peripheral tolerance: a new path to cancer vaccines. Journal of Clinical Investigation, 2024, 134, .	8.2	0
130	Radiotherapy Combined with Intralesional Immunostimulatory Agents for Soft Tissue Sarcomas. Seminars in Radiation Oncology, 2024, 34, 243-257.	2.2	0
131	Multipeptide vaccines for melanoma in the adjuvant setting: long-term survival outcomes and post-hoc analysis of a randomized phase II trial. Nature Communications, 2024, 15, .	12.8	0