Bridging homogeneous and heterogeneous catalysis by catalysts

Nature Catalysis 1, 385-397 DOI: 10.1038/s41929-018-0090-9

Citation Report

#	Article	IF	CITATIONS
1	Single Atom Catalysts on Carbonâ€Based Materials. ChemCatChem, 2018, 10, 5058-5091.	1.8	148
2	Highly Stable Singleâ€Atom Catalyst with Ionic Pd Active Sites Supported on Nâ€Doped Carbon Nanotubes for Formic Acid Decomposition. ChemSusChem, 2018, 11, 3724-3727.	3.6	99
3	Single-Atom Iron as Lithiophilic Site To Minimize Lithium Nucleation Overpotential for Stable Lithium Metal Full Battery. ACS Applied Materials & Interfaces, 2019, 11, 32008-32014.	4.0	64
4	A versatile route to fabricate single atom catalysts with high chemoselectivity and regioselectivity in hydrogenation. Nature Communications, 2019, 10, 3663.	5.8	270
5	Enantioselective hydrogenation of αâ€ketoesters catalyzed by cinchona alkaloid stabilized Rh nanoparticles in ionic liquid. Chirality, 2019, 31, 818-823.	1.3	2
6	Theoretical insights into selective electrochemical conversion of carbon dioxide. Nano Convergence, 2019, 6, 8.	6.3	22
7	Catalytic CO Oxidation by Gas-Phase Metal Oxide Clusters. Journal of Physical Chemistry A, 2019, 123, 9257-9267.	1.1	45
8	Understanding the Nature and Activity of Supported Platinum Catalysts for the Water–Gas Shift Reaction: From Metallic Nanoclusters to Alkali-Stabilized Single-Atom Cations. ACS Catalysis, 2019, 9, 7721-7740.	5.5	48
9	Nanocatalytic Medicine. Advanced Materials, 2019, 31, e1901778.	11.1	396
10	Local Structure and Coordination Define Adsorption in a Model Ir ₁ /Fe ₃ O ₄ Singleâ€Atom Catalyst. Angewandte Chemie - International Edition, 2019, 58, 13961-13968.	7.2	93
11	The Role of Single-Atom Catalysis in Potentially Disruptive Technologies. , 2019, , 21-46.		0
12	Local Structure and Coordination Define Adsorption in a Model Ir ₁ /Fe ₃ O ₄ Singleâ€Atom Catalyst. Angewandte Chemie, 2019, 131, 14099-14106.	1.6	44
13	Atomically Dispersed Reduced Graphene Aerogel-Supported Iridium Catalyst with an Iridium Loading of 14.8 wt %. ACS Catalysis, 2019, 9, 9905-9913.	5.5	55
14	Ambient Synthesis of Singleâ€Atom Catalysts from Bulk Metal via Trapping of Atoms by Surface Dangling Bonds. Advanced Materials, 2019, 31, e1904496.	11.1	114
15	In‣itu Nanostructuring and Stabilization of Polycrystalline Copper by an Organic Salt Additive Promotes Electrocatalytic CO ₂ Reduction to Ethylene. Angewandte Chemie - International Edition, 2019, 58, 16952-16958.	7.2	103
16	Enhanced Electrocatalytic Performance through Body Enrichment of Coâ€Based Bimetallic Nanoparticles In Situ Embedded Porous Nâ€Doped Carbon Spheres. Small, 2019, 15, e1903395.	5.2	70
17	Computational Exploration of NO Single-Site Disproportionation on Fe-MOF-5. Chemistry of Materials, 2019, 31, 8875-8885.	3.2	20
18	Rapid, Highâ€Temperature, In Situ Microwave Synthesis of Bulk Nanocatalysts. Small, 2019, 15, e1904881.	5.2	28

ATION REDO

#	Article	IF	CITATIONS
19	Predicting Metal–Support Interactions in Oxide-Supported Single-Atom Catalysts. Industrial & Engineering Chemistry Research, 2019, 58, 20236-20246.	1.8	25
20	Singleâ€Atom Ru Doping Induced Phase Transition of MoS ₂ and S Vacancy for Hydrogen Evolution Reaction. Small Methods, 2019, 3, 1900653.	4.6	206
21	Standing Carbonâ€Supported Trace Levels of Metal Derived from Covalent Organic Framework for Electrocatalysis. Small, 2019, 15, e1905363.	5.2	32
22	Dualâ€lonically Bound Singleâ€6ite Rhodium on Porous Ionic Polymer Rivals Commercial Methanol Carbonylation Catalysts. Advanced Materials, 2019, 31, e1904976.	11.1	26
23	A MOF-templated approach for designing ruthenium–cesium catalysts for hydrogen generation from ammonia. International Journal of Hydrogen Energy, 2019, 44, 30108-30118.	3.8	22
24	High-Density Isolated Fe ₁ O ₃ Sites on a Single-Crystal Cu ₂ O(100) Surface. Journal of Physical Chemistry Letters, 2019, 10, 7318-7323.	2.1	8
25	Inâ€Situ Nanostructuring and Stabilization of Polycrystalline Copper by an Organic Salt Additive Promotes Electrocatalytic CO ₂ Reduction to Ethylene. Angewandte Chemie, 2019, 131, 17108-17114.	1.6	20
26	A sulfur-tethering synthesis strategy toward high-loading atomically dispersed noble metal catalysts. Science Advances, 2019, 5, eaax6322.	4.7	177
27	Unraveling the coordination structure-performance relationship in Pt1/Fe2O3 single-atom catalyst. Nature Communications, 2019, 10, 4500.	5.8	279
28	Single Metal Atom Photocatalysis. Small Methods, 2019, 3, 1800447.	4.6	140
29	Iridium Single-Atom Catalyst Performing a Quasi-homogeneous Hydrogenation Transformation of CO2 to Formate. CheM, 2019, 5, 693-705.	5.8	181
30	Controlling catalytic activity and selectivity for partial hydrogenation by tuning the environment around active sites in iridium complexes bonded to supports. Chemical Science, 2019, 10, 2623-2632.	3.7	40
31	A Singleâ€Atom Iridium Heterogeneous Catalyst in Oxygen Reduction Reaction. Angewandte Chemie, 2019, 131, 9742-9747.	1.6	59
32	Comprehensive review and future perspectives on the photocatalytic hydrogen production. Journal of Chemical Technology and Biotechnology, 2019, 94, 3049-3063.	1.6	136
33	Catalytic sites are finally in sight. Nature Materials, 2019, 18, 663-664.	13.3	6
34	Charting stability space. Nature Materials, 2019, 18, 664-665.	13.3	6
35	Metal-organic frameworks as emerging platform for supporting isolated single-site catalysts. Nano Today, 2019, 27, 178-197.	6.2	66
36	Acetylene-Selective Hydrogenation Catalyzed by Cationic Nickel Confined in Zeolite. Journal of the American Chemical Society, 2019, 141, 9920-9927.	6.6	112

#	Article	IF	CITATIONS
37	Ring-Opening Transformation of 5-Hydroxymethylfurfural Using a Golden Single-Atomic-Site Palladium Catalyst. ACS Catalysis, 2019, 9, 6212-6222.	5.5	60
38	A Singleâ€Atom Iridium Heterogeneous Catalyst in Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2019, 58, 9640-9645.	7.2	312
39	Carbonâ€Rich Nonprecious Metal Single Atom Electrocatalysts for CO ₂ Reduction and Hydrogen Evolution. Small Methods, 2019, 3, 1900210.	4.6	136
40	Design of atomically dispersed catalytic sites for photocatalytic CO ₂ reduction. Nanoscale, 2019, 11, 11064-11070.	2.8	57
41	Dynamics of Single Pt Atoms on Alumina during CO Oxidation Monitored by <i>Operando</i> X-ray and Infrared Spectroscopies. ACS Catalysis, 2019, 9, 5752-5759.	5.5	94
42	Electronic Metal–Support Interaction To Modulate MoS ₂ -Supported Pd Nanoparticles for the Degradation of Organic Dyes. ACS Applied Nano Materials, 2019, 2, 3385-3393.	2.4	43
43	Cobalt single atoms anchored on N-doped ultrathin carbon nanosheets for selective transfer hydrogenation of nitroarenes. Science China Materials, 2019, 62, 1306-1314.	3.5	44
44	Gas reactions under intrapore condensation regime within tailored metal–organic framework catalysts. Nature Communications, 2019, 10, 2076.	5.8	45
45	Supported organometallic palladium catalyst into mesoporous channels of magnetic MCM-41 nanoparticles for phosphine-free C C coupling reactions. Microporous and Mesoporous Materials, 2019, 284, 366-377.	2.2	56
46	Atomically Dispersed Supported Metal Catalysts: Seeing Is Believing. Trends in Chemistry, 2019, 1, 99-110.	4.4	55
47	Single-Atom Catalysis: How Structure Influences Catalytic Performance. Catalysis Letters, 2019, 149, 1137-1146.	1.4	85
48	Atomically dispersed Mo atoms on amorphous g-C3N4 promotes visible-light absorption and charge carriers transfer. Applied Catalysis B: Environmental, 2019, 250, 273-279.	10.8	92
49	Reactive Oxygen Species (ROS)-Based Nanomedicine. Chemical Reviews, 2019, 119, 4881-4985.	23.0	1,519
50	Optimising surface d charge of AuPd nanoalloy catalysts for enhanced catalytic activity. Nature Communications, 2019, 10, 1428.	5.8	149
51	Ultimate dispersion of metallic and ionic platinum on ceria. Journal of Materials Chemistry A, 2019, 7, 13019-13028.	5.2	21
52	Nanocatalysis by noble metal nanoparticles: controlled synthesis for the optimization and understanding of activities. Journal of Materials Chemistry A, 2019, 7, 5857-5874.	5.2	229
53	Insights into Singleâ€Atom Metal–Support Interactions in Electrocatalytic Water Splitting. Small Methods, 2019, 3, 1800481.	4.6	94
54	Bulky Calixarene Ligands Stabilize Supported Iridium Pair-Site Catalysts. Journal of the American Chemical Society, 2019, 141, 4010-4015.	6.6	34

#	Article	IF	CITATIONS
55	Mixedâ€Valence Singleâ€Atom Catalyst Derived from Functionalized Graphene. Advanced Materials, 2019, 31, e1900323.	11.1	129
56	Recent Advances for MOFâ€Derived Carbonâ€Supported Singleâ€Atom Catalysts. Small Methods, 2019, 3, 1800471.	4.6	315
57	Superparamagnetic nanoparticle-catalyzed coupling of 2-amino pyridines/pyrimidines with <i>trans</i> -chalcones. RSC Advances, 2019, 9, 5501-5511.	1.7	23
58	Electro- and Solar-Driven Fuel Synthesis with First Row Transition Metal Complexes. Chemical Reviews, 2019, 119, 2752-2875.	23.0	615
59	Oxiranes and Oxirenes: Monocyclic. , 2019, , 199-199.		0
60	Cobalt Single Atom Heterogeneous Catalyst: Method of Preparation, Characterization, Catalysis, and Mechanism. , 2019, , .		3
61	Facile synthesis of impurity-free iron single atom catalysts for highly efficient oxygen reduction reaction and active-site identification. Catalysis Science and Technology, 2019, 9, 6556-6560.	2.1	10
62	Atomic-level active sites of efficient imidazolate framework-derived nickel catalysts for CO ₂ reduction. Journal of Materials Chemistry A, 2019, 7, 26231-26237.	5.2	72
63	Platinum–copper single atom alloy catalysts with high performance towards glycerol hydrogenolysis. Nature Communications, 2019, 10, 5812.	5.8	277
64	Single atom electrocatalysts supported on graphene or graphene-like carbons. Chemical Society Reviews, 2019, 48, 5207-5241.	18.7	441
65	Revealing the Intrinsic Peroxidase-Like Catalytic Mechanism of Heterogeneous Single-Atom Co–MoS2. Nano-Micro Letters, 2019, 11, 102.	14.4	114
66	In situ formation of mononuclear complexes by reaction-induced atomic dispersion of supported noble metal nanoparticles. Nature Communications, 2019, 10, 5281.	5.8	57
67	Effect of the Size of Polyacrylamide-Stabilized Palladium Nanoparticles Supported on Î ³ -Fe2O3 on Their Catalytic Properties in the Hydrogenation of Phenylacetylene. Theoretical and Experimental Chemistry, 2019, 55, 331-336.	0.2	4
68	Expedient synthesis of <i>E</i> -hydrazone esters and 1 <i>H</i> -indazole scaffolds through heterogeneous single-atom platinum catalysis. Science Advances, 2019, 5, eaay1537.	4.7	31
69	Polymer-supported metal catalysts for the heterogeneous polymerisation of lactones. Polymer Chemistry, 2019, 10, 5894-5904.	1.9	14
70	Identification of the active complex for CO oxidation over single-atom Ir-on-MgAl2O4 catalysts. Nature Catalysis, 2019, 2, 149-156.	16.1	222
71	Static Regulation and Dynamic Evolution of Singleâ€Atom Catalysts in Thermal Catalytic Reactions. Advanced Science, 2019, 6, 1801471.	5.6	39
72	Metal Nanoclusters: New Paradigm in Catalysis for Water Splitting, Solar and Chemical Energy Conversion. ChemSusChem, 2019, 12, 1517-1548.	3.6	81

#	Article	IF	CITATIONS
73	Synthesis and Active Site Identification of Feâ^'Nâ^'C Singleâ€Atom Catalysts for the Oxygen Reduction Reaction. ChemElectroChem, 2019, 6, 304-315.	1.7	65
74	Single-Atom Catalysis toward Efficient CO ₂ Conversion to CO and Formate Products. Accounts of Chemical Research, 2019, 52, 656-664.	7.6	348
75	A new trick for an old support: Stabilizing gold single atoms on LaFeO3 perovskite. Applied Catalysis B: Environmental, 2020, 261, 118178.	10.8	31
76	First-row transition metal polypyridine complexes that catalyze proton to hydrogen reduction. Coordination Chemistry Reviews, 2020, 402, 213079.	9.5	66
77	The Comparison between Single Atom Catalysis and Surface Organometallic Catalysis. Chemical Reviews, 2020, 120, 734-813.	23.0	201
78	On the active sites for the oxygen reduction reaction catalyzed by graphene-based materials. Carbon, 2020, 156, 389-398.	5.4	15
79	Paths towards enhanced electrochemical CO2 reduction. National Science Review, 2020, 7, 7-9.	4.6	47
80	Carbon-Based Single-Atom Catalysts for Advanced Applications. ACS Catalysis, 2020, 10, 2231-2259.	5.5	426
81	Designing Atomic Active Centers for Hydrogen Evolution Electrocatalysts. Angewandte Chemie - International Edition, 2020, 59, 20794-20812.	7.2	257
82	Structural Regulation with Atomic-Level Precision: From Single-Atomic Site to Diatomic and Atomic Interface Catalysis. Matter, 2020, 2, 78-110.	5.0	221
83	Sequential immobilization of ansa-hafnocene complexes for propene polymerization. Journal of Organometallic Chemistry, 2020, 909, 121075.	0.8	2
84	Well-Defined Materials for Heterogeneous Catalysis: From Nanoparticles to Isolated Single-Atom Sites. Chemical Reviews, 2020, 120, 623-682.	23.0	794
85	Synthesis and characterization of size controlled alloy nanoparticles. Physical Sciences Reviews, 2020, 5, .	0.8	1
86	Copper-catalyzed [4 + 2] annulation reaction of β-enaminones and aryl diazonium salts without external oxidant: synthesis of highly functionalized 3 <i>H</i> -1,2,4-triazines <i>via</i> homogeneous or heterogeneous strategy. Organic Chemistry Frontiers, 2020, 7, 457-463.	2.3	17
87	Nickel-Catalyzed Direct Synthesis of Quinoxalines from 2-Nitroanilines and Vicinal Diols: Identifying Nature of the Active Catalyst. Journal of Organic Chemistry, 2020, 85, 2775-2784.	1.7	59
88	Oneâ€Pot Cooperation of Singleâ€Atom Rh and Ru Solid Catalysts for a Selective Tandem Olefin Isomerizationâ€Hydrosilylation Process. Angewandte Chemie - International Edition, 2020, 59, 5806-5815.	7.2	76
89	Mechanochemical Kilogram-Scale Synthesis of Noble Metal Single-Atom Catalysts. Cell Reports Physical Science, 2020, 1, 100004.	2.8	139
90	Catalysis of a Single Transition Metal Site for Water Oxidation: From Mononuclear Molecules to Single Atoms. Advanced Materials, 2020, 32, e1904037.	11.1	78

#	Article	IF	CITATIONS
91	Toward Efficient Carbon and Water Cycles: Emerging Opportunities with Singleâ€ s ite Catalysts Made of 3d Transition Metals. Advanced Materials, 2020, 32, e1905548.	11.1	23
92	Enhancement of photocatalytic H2 evolution from water splitting by construction of two dimensional gC3N4/NiAl layered double hydroxides. Applied Surface Science, 2020, 509, 144656.	3.1	59
93	The role of H2 on the stability of the single-metal-site Ir1/AC catalyst for heterogeneous methanol carbonylation. Journal of Catalysis, 2020, 381, 193-203.	3.1	21
94	Homogeneous and heterogeneous molecular catalysts for electrochemical reduction of carbon dioxide. RSC Advances, 2020, 10, 38013-38023.	1.7	24
95	Three-Dimensional Cathodes for Electrochemical Reduction of CO2: From Macro- to Nano-Engineering. Nanomaterials, 2020, 10, 1884.	1.9	23
96	Heterogeneous Single-Site Catalysts for C–H Activation Reactions: Pd(II)-Loaded S,O-Functionalized Metal Oxide-Bisphosphonates. ACS Applied Materials & Interfaces, 2020, 12, 47457-47466.	4.0	12
97	Transforming Hydroxide-Containing Metal–Organic Framework Nodes for Transition Metal Catalysis. Trends in Chemistry, 2020, 2, 965-979.	4.4	14
98	Electronic Structure of Atomically Dispersed Supported Iridium Catalyst Controls Iridium Aggregation. ACS Catalysis, 2020, 10, 12354-12358.	5.5	17
99	Valence and Structure Isomerism of Al2FeO4+: Synergy of Spectroscopy and Quantum Chemistry. Journal of the American Chemical Society, 2020, 142, 18050-18059.	6.6	14
100	Anchoring Positively Charged Pd Single Atoms in Ordered Porous Ceria to Boost Catalytic Activity and Stability in Suzuki Coupling Reactions. Small, 2020, 16, e2001782.	5.2	51
101	Thermal defect engineering of precious group metal–organic frameworks: impact on the catalytic cyclopropanation reaction. Catalysis Science and Technology, 2020, 10, 8077-8085.	2.1	4
102	Multiple catalytic sites in MOF-based hybrid catalysts for organic reactions. Organic and Biomolecular Chemistry, 2020, 18, 8508-8525.	1.5	11
103	Stabilization of atomically dispersed rhodium sites on ceria-based supports under reaction conditions probed by in situ infrared spectroscopy. Materials Letters, 2020, 277, 128354.	1.3	7
104	Recent advances in single-atom catalysts and single-atom alloys: opportunities for exploring the uncharted phase space in-between. Current Opinion in Chemical Engineering, 2020, 29, 67-73.	3.8	32
105	PtN ₃ -Embedded graphene as an efficient catalyst for electrochemical reduction of nitrobenzene to aniline: a theoretical study. Physical Chemistry Chemical Physics, 2020, 22, 17639-17645.	1.3	11
106	Gramâ€Scale Synthesis of Highâ€Loading Singleâ€Atomicâ€Site Fe Catalysts for Effective Epoxidation of Styrene. Advanced Materials, 2020, 32, e2000896.	11.1	181
107	Structural Regulation and Support Coupling Effect of Singleâ€Atom Catalysts for Heterogeneous Catalysis. Advanced Energy Materials, 2020, 10, 2001482.	10.2	172
108	Direct Synthesis of Atomically Dispersed Palladium Atoms Supported on Graphitic Carbon Nitride for Efficient Selective Hydrogenation Reactions. ACS Applied Materials & Interfaces, 2020, 12, 54146-54154.	4.0	31

#	Article	IF	CITATIONS
109	Multilayer stabilization for fabricating high-loading single-atom catalysts. Nature Communications, 2020, 11, 5892.	5.8	195
110	Ligand Stabilized Ni 1 Catalyst for Efficient CO Oxidation. ChemPhysChem, 2020, 21, 2417-2425.	1.0	4
111	Single-Site Heterogeneous Catalysts and Photocatalysts for Emerging Applications. ACS Symposium Series, 2020, , 151-188.	0.5	3
112	Seamlessly conductive Co(OH) ₂ tailored atomically dispersed Pt electrocatalyst with a hierarchical nanostructure for an efficient hydrogen evolution reaction. Energy and Environmental Science, 2020, 13, 3082-3092.	15.6	123
113	Construction of highly accessible single Co site catalyst for glucose detection. Science Bulletin, 2020, 65, 2100-2106.	4.3	32
114	Active Sites of Single-Atom Iron Catalyst for Electrochemical Hydrogen Evolution. Journal of Physical Chemistry Letters, 2020, 11, 6691-6696.	2.1	37
115	Single atom is not alone: Metal–support interactions in single-atom catalysis. Materials Today, 2020, 40, 173-192.	8.3	174
116	Fundamentals of Electrochemical CO ₂ Reduction on Single-Metal-Atom Catalysts. ACS Catalysis, 2020, 10, 10068-10095.	5.5	161
117	Synergetic role of charge transfer and strain engineering in improving the catalysis of Pd single-atom-thick motifs stabilized on a defect-free MoS ₂ /Ag(Au)(111) heterostructure. Journal of Materials Chemistry A, 2020, 8, 17238-17247.	5.2	13
118	Phenoxide-Modified Half-Titanocenes Supported on Star-Shaped ROMP Polymers as Catalyst Precursors for Ethylene Copolymerization. Organometallics, 2020, 39, 2998-3009.	1.1	8
119	Highâ€Density and Thermally Stable Palladium Singleâ€Atom Catalysts for Chemoselective Hydrogenations. Angewandte Chemie - International Edition, 2020, 59, 21613-21619.	7.2	103
120	Metal-Specific Reactivity in Single-Atom Catalysts: CO Oxidation on 4d and 5d Transition Metals Atomically Dispersed on MgO. Journal of the American Chemical Society, 2020, 142, 14890-14902.	6.6	75
121	Graphitic phosphorus coordinated single Fe atoms for hydrogenative transformations. Nature Communications, 2020, 11, 4074.	5.8	122
122	Recent Advances in MOFâ€Derived Single Atom Catalysts for Electrochemical Applications. Advanced Energy Materials, 2020, 10, 2001561.	10.2	265
123	Highâ€Density and Thermally Stable Palladium Singleâ€Atom Catalysts for Chemoselective Hydrogenations. Angewandte Chemie, 2020, 132, 21797-21803.	1.6	19
124	Surface Coordination Chemistry of Atomically Dispersed Metal Catalysts. Chemical Reviews, 2020, 120, 11810-11899.	23.0	325
125	Metallic single-atoms confined in carbon nanomaterials for the electrocatalysis of oxygen reduction, oxygen evolution, and hydrogen evolution reactions. Catalysis Science and Technology, 2020, 10, 6420-6448.	2.1	33
126	Advanced Electrocatalysts with Single-Metal-Atom Active Sites. Chemical Reviews, 2020, 120, 12217-12314.	23.0	563

	CITATION R	CITATION REPORT	
#	Article	IF	CITATIONS
127	Single-Atom Catalysts Based on the Metal–Oxide Interaction. Chemical Reviews, 2020, 120, 11986-12043.	23.0	486
128	The Structure of Molecular and Surface Platinum Sites Determined by DNP-SENS and Fast MAS ¹⁹⁵ Pt Solid-State NMR Spectroscopy. Journal of the American Chemical Society, 2020, 142, 18936-18945.	6.6	35
129	Theoretical insights into single-atom catalysts. Chemical Society Reviews, 2020, 49, 8156-8178.	18.7	231
130	Microenvironment modulation of single-atom catalysts and their roles in electrochemical energy conversion. Science Advances, 2020, 6, .	4.7	214
131	Controlling Hydrocarbon (De)Hydrogenation Pathways with Bifunctional PtCu Single-Atom Alloys. Journal of Physical Chemistry Letters, 2020, 11, 8751-8757.	2.1	20
132	A perspective on oxide-supported single-atom catalysts. Nanoscale Advances, 2020, 2, 3624-3631.	2.2	12
133	Activation of Copper Species on Carbon Nitride for Enhanced Activity in the Arylation of Amines. ACS Catalysis, 2020, 10, 11069-11080.	5.5	29
134	A Ni/Fe complex incorporated into a covalent organic framework as a single-site heterogeneous catalyst for efficient oxygen evolution reaction. Inorganic Chemistry Frontiers, 2020, 7, 3925-3931.	3.0	25
135	Chemical and Laser Ablation Synthesis of Monometallic and Bimetallic Ni-Based Nanoparticles. Catalysts, 2020, 10, 1453.	1.6	17
136	Nanostructured Catalysts in the Protection and Deprotection of Hydroxyl and Thiol Groups. ACS Symposium Series, 2020, , 129-150.	0.5	0
137	Selective Hydrogenation on a Highly Active Single-Atom Catalyst of Palladium Dispersed on Ceria Nanorods by Defect Engineering. ACS Applied Materials & Interfaces, 2020, 12, 57569-57577.	4.0	34
138	Single-Atom Catalysis: An Analogy between Heterogeneous and Homogeneous Catalysts. ACS Symposium Series, 2020, , 1-15.	0.5	1
139	Recent Advances in the Development of Singleâ€Atom Catalysts for Oxygen Electrocatalysis and Zinc–Air Batteries. Advanced Energy Materials, 2020, 10, 2003018.	10.2	181
140	Rare-Earth Single-Atom La–N Charge-Transfer Bridge on Carbon Nitride for Highly Efficient and Selective Photocatalytic CO ₂ Reduction. ACS Nano, 2020, 14, 15841-15852.	7.3	283
141	Coordination structure dominated performance of single-atomic Pt catalyst for anti-Markovnikov hydroboration of alkenes. Science China Materials, 2020, 63, 972-981.	3.5	74
142	Advanced Functional Hierarchical Nanoporous Structures with Tunable Microporous Coatings Formed via an Interfacial Reaction Processing. ACS Applied Materials & Interfaces, 2020, 12, 26360-26366.	4.0	5
143	The Dynamic Structure of Au ₃₈ (SR) ₂₄ Nanoclusters Supported on CeO ₂ upon Pretreatment and CO Oxidation. ACS Catalysis, 2020, 10, 6144-6148.	5.5	35
144	Room-Temperature Synthesis of Single Iron Site by Electrofiltration for Photoreduction of CO ₂ into Tunable Syngas. ACS Nano, 2020, 14, 6164-6172.	7.3	71

#	Article	IF	CITATIONS
145	Enhancement of Alkyne Semi-Hydrogenation Selectivity by Electronic Modification of Platinum. ACS Catalysis, 2020, 10, 6763-6770.	5.5	24
146	Recent Advances in Electrochemical Oxygen Reduction to H ₂ O ₂ : Catalyst and Cell Design. ACS Energy Letters, 2020, 5, 1881-1892.	8.8	185
147	Activation strategies of water-splitting electrocatalysts. Journal of Materials Chemistry A, 2020, 8, 10096-10129.	5.2	67
148	Controllable synthesis of ultrasmall Pd nanocatalysts templated by supramolecular coordination cages for highly efficient reductive dehalogenation. Journal of Materials Chemistry A, 2020, 8, 12097-12105.	5.2	16
149	Engineering Nanoscale Interfaces of Metal/Oxide Nanowires to Control Catalytic Activity. ACS Nano, 2020, 14, 8335-8342.	7.3	22
150	Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nature Communications, 2020, 11, 3049.	5.8	537
151	Fabricating Dualâ€Atom Iron Catalysts for Efficient Oxygen Evolution Reaction: A Heteroatom Modulator Approach. Angewandte Chemie - International Edition, 2020, 59, 16013-16022.	7.2	151
152	Recent Progress in Singleâ€Atom Catalysts for Photocatalytic Water Splitting. Solar Rrl, 2020, 4, 2000283.	3.1	59
153	Dopamine polymer derived isolated single-atom site metals/N-doped porous carbon for benzene oxidation. Chemical Communications, 2020, 56, 8916-8919.	2.2	18
154	CO2 electrochemical reduction using single-atom catalysts.ÂPreparation, characterization and anchoring strategies: a review. Environmental Chemistry Letters, 2020, 18, 1593-1623.	8.3	19
155	A palladium single-atom catalyst toward efficient activation of molecular oxygen for cinnamyl alcohol oxidation. Chinese Journal of Catalysis, 2020, 41, 1812-1817.	6.9	31
156	Heterogeneous Single-Atom Photocatalysts: Fundamentals and Applications. Chemical Reviews, 2020, 120, 12175-12216.	23.0	620
157	High-loading and thermally stable Pt1/MgAl1.2Fe0.8O4 single-atom catalysts for high-temperature applications. Science China Materials, 2020, 63, 949-958.	3.5	31
158	General Strategy to Fabricate Metal-Incorporated Pyrolysis-Free Covalent Organic Framework for Efficient Oxygen Evolution Reaction. Inorganic Chemistry, 2020, 59, 4995-5003.	1.9	49
159	Supported and coordinated single metal site electrocatalysts. Materials Today, 2020, 37, 93-111.	8.3	71
160	Chemical Synthesis of Single Atomic Site Catalysts. Chemical Reviews, 2020, 120, 11900-11955.	23.0	806
161	Carbon-Supported Raney Nickel Catalyst for Acetone Hydrogenation with High Selectivity. Molecules, 2020, 25, 803.	1.7	7
162	Edgeâ€Rich Feâ^'N ₄ Active Sites in Defective Carbon for Oxygen Reduction Catalysis. Advanced Materials, 2020, 32, e2000966.	11.1	215

#	Article	IF	CITATIONS
163	Electrochemical deposition as a universal route for fabricating single-atom catalysts. Nature Communications, 2020, 11, 1215.	5.8	254
164	Single-atom Pd dispersed on nanoscale anatase TiO2 for the selective hydrogenation of phenylacetylene. Science China Materials, 2020, 63, 982-992.	3.5	65
165	In-situ polymerization induced atomically dispersed manganese sites as cocatalyst for CO2 photoreduction into synthesis gas. Nano Energy, 2020, 76, 105059.	8.2	60
166	The big effect of a small change: formation of CuO nanoparticles instead of covalently bound Cu(<scp>ii</scp>) over functionalized mesoporous silica and its impact on catalytic efficiency. Dalton Transactions, 2020, 49, 10138-10155.	1.6	3
167	Single atom alloy: An emerging atomic site material for catalytic applications. Nano Today, 2020, 34, 100917.	6.2	91
168	Inâ€Situ Dispersion of Palladium on TiO ₂ During Reverse Water–Gas Shift Reaction: Formation of Atomically Dispersed Palladium. Angewandte Chemie, 2020, 132, 17810-17816.	1.6	18
169	Emerging Multifunctional Single-Atom Catalysts/Nanozymes. ACS Central Science, 2020, 6, 1288-1301.	5.3	159
170	Metal-support interaction for heterogeneous catalysis: from nanoparticles to single atoms. Materials Today Nano, 2020, 12, 100093.	2.3	89
171	Hemoglobin-derived Fe-Nx-S species supported by bamboo-shaped carbon nanotubes as efficient electrocatalysts for the oxygen evolution reaction. Carbon, 2020, 168, 588-596.	5.4	12
172	Inâ€Situ Dispersion of Palladium on TiO ₂ During Reverse Water–Gas Shift Reaction: Formation of Atomically Dispersed Palladium. Angewandte Chemie - International Edition, 2020, 59, 17657-17663.	7.2	51
173	Single-Atom Alloy Catalysis. Chemical Reviews, 2020, 120, 12044-12088.	23.0	553
174	Fabricating Dualâ€Atom Iron Catalysts for Efficient Oxygen Evolution Reaction: A Heteroatom Modulator Approach. Angewandte Chemie, 2020, 132, 16147-16156.	1.6	19
175	Progress of Electrochemical Hydrogen Peroxide Synthesis over Single Atom Catalysts. , 2020, 2, 1008-1024.		129
176	Single transition metal atoms anchored on a C ₂ N monolayer as efficient catalysts for hydrazine electrooxidation. Physical Chemistry Chemical Physics, 2020, 22, 16691-16700.	1.3	12
177	Molecular enhancement of heterogeneous CO2 reduction. Nature Materials, 2020, 19, 266-276.	13.3	416
178	A general method to construct single-atom catalysts supported on N-doped graphene for energy applications. Journal of Materials Chemistry A, 2020, 8, 6190-6195.	5.2	41
179	Oneâ€Pot Cooperation of Singleâ€Atom Rh and Ru Solid Catalysts for a Selective Tandem Olefin Isomerizationâ€Hydrosilylation Process. Angewandte Chemie, 2020, 132, 5855-5864.	1.6	21
180	Review of heterogeneous methanol carbonylation to acetyl species. Applied Catalysis A: General, 2020, 595, 117488.	2.2	32

#	Article	IF	CITATIONS
181	Probing structural changes upon carbon monoxide coordination to single metal adatoms. Journal of Chemical Physics, 2020, 152, 051102.	1.2	4
182	Enabling Direct H2O2 Production in Acidic Media through Rational Design of Transition Metal Single Atom Catalyst. CheM, 2020, 6, 658-674.	5.8	418
183	Tuning Polarity of Cu-O Bond in Heterogeneous Cu Catalyst to Promote Additive-free Hydroboration of Alkynes. CheM, 2020, 6, 725-737.	5.8	87
184	The effect of coordination environment on the kinetic and thermodynamic stability of single-atom iron catalysts. Physical Chemistry Chemical Physics, 2020, 22, 3983-3989.	1.3	45
185	Single-atom catalysis for a sustainable and greener future. Current Opinion in Green and Sustainable Chemistry, 2020, 22, 54-64.	3.2	33
186	Preparation and regeneration of supported single-Ir-site catalysts by nanoparticle dispersion via CO and nascent I radicals. Journal of Catalysis, 2020, 382, 347-357.	3.1	13
187	Single-chromophore single-molecule photocatalyst for the production of dihydrogen using low-energy light. Nature Chemistry, 2020, 12, 180-185.	6.6	62
188	Design aktiver atomarer Zentren für HERâ€Elektrokatalysatoren. Angewandte Chemie, 2020, 132, 20978-20998.	1.6	18
189	Process optimization for biosynthesis of mono and bimetallic alloy nanoparticle catalysts for degradation of dyes in individual and ternary mixture. Scientific Reports, 2020, 10, 277.	1.6	29
190	Designing Synergistic Nanocatalysts for Multiple Substrate Activation: Interlattice Ag–Fe ₃ O ₄ Hybrid Materials for CO ₂ -Inserted Lactones. ACS Catalysis, 2020, 10, 3349-3359.	5.5	11
191	Atomic-dispersed platinum anchored on porous alumina sheets as an efficient catalyst for diboration of alkynes. Chemical Communications, 2020, 56, 3127-3130.	2.2	17
192	Enhancing regioselectivity via tuning the microenvironment in heterogeneous hydroformylation of olefins. Journal of Catalysis, 2020, 387, 196-206.	3.1	46
193	S,O-Functionalized Metal–Organic Frameworks as Heterogeneous Single-Site Catalysts for the Oxidative Alkenylation of Arenes via C–H activation. ACS Catalysis, 2020, 10, 5077-5085.	5.5	45
194	Atomically dispersed palladium catalyses Suzuki–Miyaura reactions under phosphine-free conditions. Communications Chemistry, 2020, 3, .	2.0	34
195	A Stateâ€ofâ€theâ€Art Heterogeneous Catalyst for Efficient and General Nitrile Hydrogenation. Chemistry - A European Journal, 2020, 26, 15589-15595.	1.7	20
196	Immiscible bi-metal single-atoms driven synthesis of electrocatalysts having superb mass-activity and durability. Applied Catalysis B: Environmental, 2020, 270, 118896.	10.8	102
197	CO Oxidation Catalyzed by the Neutral Cluster IrAl ₂ O ₈ with Iridium in a High Oxidation State of VI. Journal of Physical Chemistry C, 2020, 124, 8869-8875.	1.5	10
198	In Situ Phosphatizing of Triphenylphosphine Encapsulated within Metal–Organic Frameworks to Design Atomic Co ₁ –P ₁ N ₃ Interfacial Structure for Promoting Catalytic Performance. Journal of the American Chemical Society, 2020, 142, 8431-8439.	6.6	259

#	Article	IF	CITATIONS
199	Synthesis and characterization of a supported Pd complex on carbon nanofibers for the selective decarbonylation of stearic acid to 1-heptadecene: the importance of subnanometric Pd dispersion. Catalysis Science and Technology, 2020, 10, 2970-2985.	2.1	6
200	Heterogeneously Catalysed Hydroamination. ChemCatChem, 2021, 13, 1089-1104.	1.8	19
201	High-temperature flame spray pyrolysis induced stabilization of Pt single-atom catalysts. Applied Catalysis B: Environmental, 2021, 281, 119471.	10.8	85
202	"More is Different:―Synergistic Effect and Structural Engineering in Doubleâ€Atom Catalysts. Advanced Functional Materials, 2021, 31, 2007423.	7.8	179
203	New aspects of covalent triazine frameworks in heterogeneous catalysis. , 2021, , 1-32.		1
204	Observing Singleâ€Atom Catalytic Sites During Reactions with Electrospray Ionization Mass Spectrometry. Angewandte Chemie, 2021, 133, 4814-4823.	1.6	11
205	Cobalt Single Atoms on Tetrapyridomacrocyclic Support for Efficient Peroxymonosulfate Activation. Environmental Science & Technology, 2021, 55, 1242-1250.	4.6	185
206	Observing Singleâ€Atom Catalytic Sites During Reactions with Electrospray Ionization Mass Spectrometry. Angewandte Chemie - International Edition, 2021, 60, 4764-4773.	7.2	38
207	Coordination Number Regulation of Molybdenum Single-Atom Nanozyme Peroxidase-like Specificity. CheM, 2021, 7, 436-449.	5.8	216
208	Electrocatalytic and photocatalytic applications of atomically precise gold-based nanoclusters. Science China Chemistry, 2021, 64, 1065-1075.	4.2	18
209	Morphology effect of CeO2 on Ni/CeO2 catalysts for selective hydrogenation of cinnamaldehyde. Chemical Physics, 2021, 542, 111079.	0.9	20
210	Insights on the dual role of two-dimensional materials as catalysts and supports for energy and environmental catalysis. Journal of Materials Chemistry A, 2021, 9, 2018-2042.	5.2	34
211	Atomically Dispersed Reactive Centers for Electrocatalytic CO ₂ Reduction and Water Splitting. Angewandte Chemie - International Edition, 2021, 60, 13177-13196.	7.2	143
212	Understanding the Activity of Carbon-Based Single-Atom Electrocatalysts from <i>Ab Initio</i> Simulations. , 2021, 3, 110-120.		19
213	Atomically Dispersed Reactive Centers for Electrocatalytic CO ₂ Reduction and Water Splitting. Angewandte Chemie, 2021, 133, 13285-13304.	1.6	20
214	Chemical reactivity of the ionic liquid tris(2-amino-1,3-thiazolium) hydrogen sulfate sulfate monohydrate (TAHSSM) and surface effects in the TAHSSM/α-Al2O3 system. Journal of Molecular Liquids, 2021, 323, 114634.	2.3	5
215	Dirhodium Complexes as Panchromatic Sensitizers, Electrocatalysts, and Photocatalysts. Chemistry - A European Journal, 2021, 27, 5379-5387.	1.7	15
216	Quaternary phosphonium polymer-supported dual-ionically bound [Rh(CO)I3]2– catalyst for heterogeneous ethanol carbonylation. Chinese Journal of Catalysis, 2021, 42, 606-617.	6.9	8

ARTICLE IF CITATIONS # Ultrathin Amorphous/Crystalline Heterophase Rh and Rh Alloy Nanosheets as Tandem Catalysts for 217 11.1 68 Direct Indole Synthesis. Advanced Materials, 2021, 33, e2006711. Synthesis Strategies, Catalytic Applications, and Performance Regulation of Singleâ€Atom Catalysts. Advanced Functional Materials, 2021, 31, 2008318. 133 Homogeneous and heterogeneous catalysts for hydrogenation of CO₂ to methanol under 219 18.7 167 mild conditions. Chemical Society Reviews, 2021, 50, 4259-4298. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of 5.8 248 ethylbenzene. Nano Research, 2021, 14, 2418-2423. Single-atom catalysis in advanced oxidation processes for environmental remediation. Chemical 221 18.7 502 Society Reviews, 2021, 50, 5281-5322. Highly Active and Stable Palladium Single-Atom Catalyst Achieved by a Thermal Atomization Strategy on an SBA-15 Molecular Sieve for Semi-Hydrogenation Reactions. ACS Applied Materials & amp; 4.0 Interfaces, 2021, 13, 2530-2537. Designing the electronic and geometric structures of single-atom and nanocluster catalysts. Journal 223 5.2 9 of Materials Chemistry A, 2021, 9, 18773-18784. Selective electrochemical hydrogenation of furfural to 2-methylfuran over a single atom Cu catalyst 4.6 under mild pH conditions. Green Chemistry, 2021, 23, 3028-3038. Selective synthesis of <i>N</i>-monomethyl amines with primary amines and nitro compounds. 225 2.1 10 Catalysis Science and Technology, 2021, 11, 7239-7254. Encapsulating Ultrastable Metal Nanoparticles within Reticular Schiff Base Nanospaces for Enhanced 2.8 Catalytic Performance. Cell Reports Physical Science, 2021, 2, 100289. The loading effect of Pt clusters on Pt/graphene nano sheets catalysts. Scientific Reports, 2021, 11, 227 13 1.6 2532. Cooperativity in supported metal single atom catalysis. Nanoscale, 2021, 13, 5985-6004. 2.8 29 Structure Sensitivity in Single-Atom Catalysis toward CO₂ Electroreduction. ACS Energy 229 8.8 149 Letters, 2021, 6, 713-727. Active metal single-sites based on metal–organic frameworks: construction and chemical prospects. 1.4 New Journal of Chemistry, 2021, 45, 1137-1162. On the limit of proton-coupled electronic doping in a Ti(<scp>iv</scp>)-containing MOF. Chemical 231 3.7 6 Science, 2021, 12, 11779-11785. Surface engineering of a Cu-based heterogeneous catalyst for efficient azide–alkyne click 1.9 cycloaddition. Reaction Chemistry and Engineering, 2021, 6, 1878-1883. Rational design of an Fe cluster catalyst for robust nitrogen activation. Journal of Materials 233 5.224 Chemistry A, 2021, 9, 21219-21227. 234 Unraveling CO adsorption on model single-atom catalysts. Science, 2021, 371, 375-379. 179

#	ARTICLE Surface Reduction State Determines Stabilization and Incorporation of Rh on	IF	CITATIONS
235	αâ€Fe ₂ O ₃ (11Â ⁻ 02). Advanced Materials Interfaces, 2021, 8, 2001908. Recent development of high-performance photocatalysts for N2 fixation: A review. Journal of Environmental Chemical Engineering, 2021, 9, 104997.	3.3	33
237	Single-Atom-Based Heterojunction Coupling with Ion-Exchange Reaction for Sensitive Photoelectrochemical Immunoassay. Nano Letters, 2021, 21, 1879-1887.	4.5	86
238	Catalysts with single metal atoms for the hydrogen production from formic acid. Catalysis Reviews - Science and Engineering, 2022, 64, 835-874.	5.7	33
239	Pd single-atom monolithic catalyst: Functional 3D structure and unique chemical selectivity in hydrogenation reaction. Science China Materials, 2021, 64, 1919-1929.	3.5	75
240	3D Porous Polymeric-Foam-Supported Pd Nanocrystal as a Highly Efficient and Recyclable Catalyst for Organic Transformations. ACS Applied Materials & Interfaces, 2021, 13, 10120-10130.	4.0	14
241	Isolation Strategy towards Earth-Abundant Single-Site Co-Catalysts for Photocatalytic Hydrogen Evolution Reaction. Catalysts, 2021, 11, 417.	1.6	12
242	Precisely Constructed Silver Active Sites in Gold Nanoclusters for Chemical Fixation of CO ₂ . Angewandte Chemie - International Edition, 2021, 60, 10573-10576.	7.2	60
243	Precisely Constructed Silver Active Sites in Gold Nanoclusters for Chemical Fixation of CO ₂ . Angewandte Chemie, 2021, 133, 10667-10670.	1.6	21
244	Manipulating Electrocatalysis using Mosaic Catalysts. Small Science, 2021, 1, 2000059.	5.8	15
245	Selective construction of fused heterocycles by mild oxidative C-H functionalization using non-metallic catalysis. Cell Reports Physical Science, 2021, 2, 100383.	2.8	8
246	Surface Functionalization of a γâ€Graphyneâ€like Carbon Material via Click Chemistry. Chemistry - an Asian Journal, 2021, 16, 922-925.	1.7	6
247	Atomic Design and Fine-Tuning of Subnanometric Pt Catalysts to Tame Hydrogen Generation. ACS Catalysis, 2021, 11, 4146-4156.	5.5	52
248	Modulating electronic structure of metal-organic frameworks by introducing atomically dispersed Ru for efficient hydrogen evolution. Nature Communications, 2021, 12, 1369.	5.8	360
249	Insight into Acetic Acid Synthesis from the Reaction of CH ₄ and CO ₂ . ACS Catalysis, 2021, 11, 3384-3401.	5.5	53
250	Oneâ€pot Synthesis of Pd/Azoâ€polymer as an Efficient Catalyst for 4â€Nitrophenol Reduction and Suzukiâ€Miyaura Coupling Reaction. Chemistry - an Asian Journal, 2021, 16, 837-844.	1.7	14
251	Metal Atom-Decorated Carbon Nanomaterials for Enhancing Li-S/Se Batteries Performances: A Mini Review. Frontiers in Energy Research, 2021, 9, .	1.2	12
252	Estimation of the number of active sites through kinetic analysis on MWCNTâ€supported nanocatalysts. International Journal of Chemical Kinetics, 2021, 53, 954-963.	1.0	2

#	Article	IF	CITATIONS
253	Carbon Nitrideâ€Based Ruthenium Single Atom Photocatalyst for CO ₂ Reduction to Methanol. Small, 2021, 17, e2006478.	5.2	124
254	Facile Synthesis of Bimetallic Fluoride Heterojunctions on Defect-Enriched Porous Carbon Nanofibers for Efficient ORR Catalysts. Nano Letters, 2021, 21, 2618-2624.	4.5	73
255	Dual catalysis by homogeneous/heterogeneous ruthenium species. CheM, 2021, 7, 834-835.	5.8	9
256	Anchoring single Pt atoms and black phosphorene dual co-catalysts on CdS nanospheres to boost visible-light photocatalytic H2 evolution. Nano Today, 2021, 37, 101080.	6.2	105
257	Site-Isolated Azobenzene-Containing Metal–Organic Framework for Cyclopalladated Catalyzed Suzuki-Miyuara Coupling in Flow. ACS Applied Materials & Interfaces, 2021, 13, 51849-51854.	4.0	21
258	A review of synthesis strategies for MOF-derived single atom catalysts. Korean Journal of Chemical Engineering, 2021, 38, 1104-1116.	1.2	22
259	Stable Pt atomic clusters on carbon nanotubes grafted with carbon quantum dots as electrocatalyst for H ₂ evolution in acidic electrolyte. Nano Select, 2021, 2, 2126-2134.	1.9	7
260	Environment of Metal–O–Fe Bonds Enabling High Activity in CO ₂ Reduction on Single Metal Atoms and on Supported Nanoparticles. Journal of the American Chemical Society, 2021, 143, 5540-5549.	6.6	54
261	How increasing proton and electron conduction benefits electrocatalytic CO2 reduction. Matter, 2021, 4, 1555-1577.	5.0	22
262	Atomic cale Designing of Zeolite Based Catalysts by Atomic Layer Deposition. ChemPhysChem, 2021, 22, 1287-1301.	1.0	6
263	Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nature Catalysis, 2021, 4, 407-417.	16.1	517
264	Cooperative Single-Atom Active Centers for Attenuating the Linear Scaling Effect in the Nitrogen Reduction Reaction. Journal of Physical Chemistry Letters, 2021, 12, 5233-5240.	2.1	25
265	Preparation of Cu single atoms on N-doped carbon materials with supercritical CO2 deposition. Journal of Supercritical Fluids, 2021, 171, 105202.	1.6	11
266	A heterogeneous iridium single-atom-site catalyst for highly regioselective carbenoid O–H bond insertion. Nature Catalysis, 2021, 4, 523-531.	16.1	103
267	Ionic Liquid-Stabilized Single-Atom Rh Catalyst Against Leaching. CCS Chemistry, 2021, 3, 1814-1822.	4.6	30
268	Flash Bottomâ€Up Arc Synthesis of Nanocarbons as a Universal Route for Fabricating Singleâ€Atom Electrocatalysts. Small Methods, 2021, 5, 2100239.	4.6	6
269	Room-Temperature Methane Activation Mediated by Free Tantalum Cluster Cations: Size-by-Size Reactivity. Journal of Physical Chemistry A, 2021, 125, 5289-5302.	1.1	9
270	On-board methanol catalytic reforming for hydrogen Production-A review. International Journal of Hydrogen Energy, 2021, 46, 22303-22327.	3.8	64

#	Article	IF	CITATIONS
271	Construction of Functional Superhydrophobic Biochars as Hydrogen Transfer Catalysts for Dehydrogenation of <i>N</i> -Heterocycles. ACS Sustainable Chemistry and Engineering, 2021, 9, 9062-9077.	3.2	7
272	Progress of Nonpreciousâ€Metalâ€Based Electrocatalysts for Oxygen Evolution in Acidic Media. Advanced Materials, 2021, 33, e2003786.	11.1	166
273	Unlocking the Catalytic Potential of TiO ₂ -Supported Pt Single Atoms for the Reverse Water–Gas Shift Reaction by Altering Their Chemical Environment. Jacs Au, 2021, 1, 977-986.	3.6	46
274	Single‧ite vs. Cluster Catalysis in High Temperature Oxidations. Angewandte Chemie, 2021, 133, 16090-16098.	1.6	5
275	Autocatalytic Surface Explosion Chemistry of 2D Metal–Organic Frameworks. Journal of Physical Chemistry C, 2021, 125, 13343-13349.	1.5	3
276	Highly selective and robust single-atom catalyst Ru1/NC for reductive amination of aldehydes/ketones. Nature Communications, 2021, 12, 3295.	5.8	152
277	Single‣ite vs. Cluster Catalysis in High Temperature Oxidations. Angewandte Chemie - International Edition, 2021, 60, 15954-15962.	7.2	21
278	Combining Machine Learning and Computational Chemistry for Predictive Insights Into Chemical Systems. Chemical Reviews, 2021, 121, 9816-9872.	23.0	287
279	A cobalt coordination polymer from bulk to nanoscale crystals as heterogeneous catalysts for tandem reactions. Journal of Solid State Chemistry, 2021, 299, 122174.	1.4	0
280	Reusable Manganese Catalyst for Siteâ€Selective Pyridine Câ^'H Arylations and Alkylations. Chemistry - A European Journal, 2021, 27, 12737-12741.	1.7	13
281	Engineering the Electronic Interaction between Metals and Carbon Supports for Oxygen/Hydrogen Electrocatalysis. , 2021, 3, 1197-1212.		27
282	Carbon-based single atom catalyst: Synthesis, characterization, DFT calculations. Chinese Chemical Letters, 2022, 33, 663-673.	4.8	126
283	Pd Nanoparticles Embedded Into MOF-808: Synthesis, Structural Characteristics, and Catalyst Properties for the Suzuki–Miyaura Coupling Reaction. Catalysis Letters, 2022, 152, 1545-1554.	1.4	11
284	Recent Advances on Heteroatomâ€Doped Porous Carbon/Metal Materials: Fascinating Heterogeneous Catalysts for Organic Transformations. Chemical Record, 2021, 21, 1985-2073.	2.9	31
285	Unraveling the Intermediate Reaction Complexes and Critical Role of Support-Derived Oxygen Atoms in CO Oxidation on Single-Atom Pt/CeO ₂ . ACS Catalysis, 2021, 11, 8701-8715.	5.5	51
286	Surface Density Dependent Catalytic Activity of Single Palladium Atoms Supported on Ceria**. Angewandte Chemie - International Edition, 2021, 60, 22769-22775.	7.2	34
287	Surface Density Dependent Catalytic Activity of Single Palladium Atoms Supported on Ceria**. Angewandte Chemie, 2021, 133, 22951.	1.6	0
288	Two Types of Single-Atom FeN ₄ and FeN ₅ Electrocatalytic Active Centers on N-Doped Carbon Driving High Performance of the SA-Fe-NC Oxygen Reduction Reaction Catalyst. Chemistry of Materials, 2021, 33, 5542-5554.	3.2	59

		CITATION REPO	ORT	
#	Article	I	F	CITATIONS
289	Iron Single Atom Catalyzed Quinoline Synthesis. Advanced Materials, 2021, 33, e2101382.	I	11.1	39
290	General Design Concept for Singleâ€Atom Catalysts toward Heterogeneous Catalysis. Advance Materials, 2021, 33, e2004287.	d	11.1	170
291	Phosphorus coordinated Rh single-atom sites on nanodiamond as highly regioselective catalyst hydroformylation of olefins. Nature Communications, 2021, 12, 4698.	for g	5.8	78
292	Decarboxylationâ€Induced Defects in MOFâ€Derived Single Cobalt Atom@Carbon Electrocatal Efficient Oxygen Reduction. Angewandte Chemie, 2021, 133, 21853-21858.	ysts for 1	1.6	16
293	CeO2 supported Pd dimers boosting CO2 hydrogenation to ethanol. Applied Catalysis B: Environmental, 2021, 291, 120122.	I	10.8	88
294	Engineering Single Atom Catalysts to Tune Properties for Electrochemical Reduction and Evolu Reactions. Advanced Energy Materials, 2021, 11, 2101670.	tion 1	10.2	42
295	Decarboxylationâ€Induced Defects in MOFâ€Derived Single Cobalt Atom@Carbon Electrocatal Efficient Oxygen Reduction. Angewandte Chemie - International Edition, 2021, 60, 21685-2169	ysts for 90.	7.2	94
296	Reversible Ligand Exchange in Atomically Dispersed Catalysts for Modulating the Activity and Selectivity of the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 202 20528-20534.	1, 60, 7	7.2	27
297	Fine-tuning inverse metal-support interaction boosts electrochemical transformation of methan into formaldehyde based on density functional theory. Chinese Chemical Letters, 2021, 32, 24	10l 39-2494.	4.8	15
298	Reversible Ligand Exchange in Atomically Dispersed Catalysts for Modulating the Activity and Selectivity of the Oxygen Reduction Reaction. Angewandte Chemie, 2021, 133, 20691-20697.		1.6	3
299	Molecular Design of 3D Porous Carbon Framework via One‣tep Organic Synthesis. ChemSus 2021, 14, 3806-3809.	SChem, s	3.6	0
300	Singleâ€Atom Catalysis: From Simple Reactions to the Synthesis of Complex Molecules. Advan Materials, 2022, 34, e2103882.	ced 1	11.1	38
301	Development and Characterization of a One-Pot Synthesized Fe–Au–Pd Surface Alloy Cata Highly Selective Conversion of Castor Oil to Octadecane via Hydrodeoxygenation. Energy &am 0, , .	lyst for p; Fuels, 2	2.5	4
302	Single-atom Bi-anchored Au hydrogels with specifically boosted peroxidase-like activity for casc catalysis and sensing. Sensors and Actuators B: Chemical, 2021, 343, 130108.	ade 🛛 🕹	4.0	29
303	Decoration of Active Sites in Covalent–Organic Framework: An Effective Strategy of Building Efficient Photocatalysis for CO ₂ Reduction. ACS Sustainable Chemistry and Engin 2021, 9, 13376-13384.	eering, s	3.2	34
304	Catalytic Materials: Concepts to Understand the Pathway to Implementation. Industrial & Engineering Chemistry Research, 2021, 60, 18545-18559.		1.8	25
305	Preparation of thermal stable supported metal (Cu, Au, Pd) nanoparticles via cross-linking cellu gel confinement strategy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2 624, 126809.	ose 021, 2	2.3	10
306	Fe-based single-atom catalysis for oxidizing contaminants of emerging concern by activating peroxides. Journal of Hazardous Materials, 2021, 418, 126294.		6.5	34

#	Article	IF	CITATIONS
307	Highly Efficient and Recyclable Porous Organic Polymer Supported Iridium Catalysts for Dehydrogenation and Borrowing Hydrogen Reactions in Water. ChemCatChem, 2021, 13, 4751-4758.	1.8	23
308	Dual-Metal Hetero-Single-Atoms with Different Coordination for Efficient Synergistic Catalysis. Journal of the American Chemical Society, 2021, 143, 16068-16077.	6.6	110
309	Toward efficient single-atom catalysts for renewable fuels and chemicals production from biomass and CO2. Applied Catalysis B: Environmental, 2021, 292, 120162.	10.8	114
310	Creating High Regioselectivity by Electronic Metal–Support Interaction of a Single-Atomic-Site Catalyst. Journal of the American Chemical Society, 2021, 143, 15453-15461.	6.6	88
311	Anchoring single platinum atoms onto nickel nanoparticles affords highly selective catalysts for lignin conversion. Cell Reports Physical Science, 2021, 2, 100567.	2.8	13
312	New insight of tailor-made graphene oxide for the formation of atomic Co-N sites toward hydrogen evolution reaction. Applied Surface Science, 2021, 563, 150254.	3.1	13
313	Salt-templated strategy for well dispersed multi-component composites with morphologies ranging from millimeter to nano-scale. Composites Communications, 2021, 27, 100862.	3.3	1
314	MgO doped magnetic graphene derivative as a competent heterogeneous catalyst producing biofuels via transesterification: Process optimization through Response Surface Methodology (RSM). Journal of Environmental Chemical Engineering, 2021, 9, 106009.	3.3	29
315	Two-dimensional pyrite supported transition metal for highly-efficient electrochemical CO2 reduction: A theoretical screening study. Chemical Engineering Journal, 2021, 424, 130541.	6.6	31
316	Environmental remediation potentialities of metal and metal oxide nanoparticles: Mechanistic biosynthesis, influencing factors, and application standpoint. Environmental Technology and Innovation, 2021, 24, 101851.	3.0	30
317	Towards a library of atomically dispersed catalysts. Materials and Design, 2021, 210, 110080.	3.3	6
318	Stone-Wales defect-rich carbon-supported dual-metal single atom sites for Zn-air batteries. Nano Energy, 2021, 90, 106488.	8.2	55
319	Advanced opportunities and insights on the influence of nitrogen incorporation on the physico-/electro-chemical properties of robust electrocatalysts for electrocatalytic energy conversion. Coordination Chemistry Reviews, 2021, 449, 214209.	9.5	28
320	Electrocatalytic H2O2 generation for disinfection. Chinese Journal of Catalysis, 2021, 42, 2149-2163.	6.9	39
321	High-loading single-atom tungsten anchored on graphitic carbon nitride (melon) for efficient oxidation of emerging contaminants. Chemical Engineering Journal, 2022, 427, 131973.	6.6	11
322	Thermo-photo coupled catalytic CO2 reforming of methane: A review. Chemical Engineering Journal, 2022, 428, 131222.	6.6	24
323	Synergistic effects for boosted persulfate activation in a designed Fe–Cu dual-atom site catalyst. Chemical Engineering Journal, 2022, 428, 132611.	6.6	67
324	Nuclearity and Host Effects of Carbonâ€Supported Platinum Catalysts for Dibromomethane Hydrodebromination. Small, 2021, 17, 2005234.	5.2	8

#	Article	IF	CITATIONS
325	Embedding Single Platinum Atoms Into Nickel Nanoparticles Affords Highly Selective Catalysts for Lignin Conversion. SSRN Electronic Journal, 0, , .	0.4	0
326	Tuning metal single atoms embedded in N _x C _y moieties toward high-performance electrocatalysis. Energy and Environmental Science, 2021, 14, 3455-3468.	15.6	176
327	The catalytic dehydrogenation of ethanol by heterogeneous catalysts. Catalysis Science and Technology, 2021, 11, 1652-1664.	2.1	31
328	Non-carbon-supported single-atom site catalysts for electrocatalysis. Energy and Environmental Science, 2021, 14, 2809-2858.	15.6	198
329	Single-atom-catalyst with abundant Co–S ₄ sites for use as a counter electrode in photovoltaics. Chemical Communications, 2021, 57, 5302-5305.	2.2	11
330	Selective oxidation by mixed metal nanoparticles. , 2021, , .		0
331	Electrophilicity in heterogeneous catalysis: role of surface and sub-surface modification. Catalysis Science and Technology, 2021, 11, 4315-4326.	2.1	9
332	Singleâ€Atom Catalysts for Nanocatalytic Tumor Therapy. Small, 2021, 17, e2004467.	5.2	72
333	Three-dimensional hierarchical Co(OH)F nanosheet arrays decorated by single-atom Ru for boosting oxygen evolution reaction. Science China Materials, 2021, 64, 1408-1417.	3.5	25
334	Highly Efficient Zeolite-Supported Pd Catalyst Activated in C–C Cross-Coupling Reaction. Industrial & Engineering Chemistry Research, 2020, 59, 11241-11249.	1.8	14
335	Single-Iron Supported on Defective Graphene as Efficient Catalysts for Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2020, 124, 13283-13290.	1.5	28
336	Isolated Palladium Atoms Dispersed on Silicoaluminophosphate-31 (SAPO-31) for the Semihydrogenation of Alkynes. ACS Applied Nano Materials, 2021, 4, 861-868.	2.4	11
337	Constructing Efficient Single Rh Sites on Activated Carbon via Surface Carbonyl Groups for Methanol Carbonylation. ACS Catalysis, 2021, 11, 682-690.	5.5	19
338	Mechanism of Methanol Decomposition over Single-Site Pt ₁ /CeO ₂ Catalyst: A DRIFTS Study. Journal of the American Chemical Society, 2021, 143, 60-64.	6.6	41
339	Insight into dynamic and steady-state active sites for nitrogen activation to ammonia by cobalt-based catalyst. Nature Communications, 2020, 11, 653.	5.8	72
340	Iridium Single-Atom Catalyst Laboring a Quasi-Homogeneous Hydrogenation Transformation of CO2 to Formate. SSRN Electronic Journal, 0, , .	0.4	1
341	One-Step High-Temperature-Synthesized Single-Atom Platinum Catalyst for Efficient Selective Hydrogenation. Research, 2020, 2020, 9140841.	2.8	23
342	Decreasing the coordinated N atoms in a single-atom Cu catalyst to achieve selective transfer hydrogenation of alkynes. Chemical Science, 2021, 12, 14599-14605.	3.7	20

#	Article	IF	CITATIONS
343	Recent advances in the design of a high performance metal–nitrogen–carbon catalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2021, 9, 22218-22247.	5.2	66
344	Single-Atom (Iron-Based) Catalysts: Synthesis and Applications. Chemical Reviews, 2021, 121, 13620-13697.	23.0	136
345	Single-Atom Catalysts: Advances and Challenges in Metal-Support Interactions for Enhanced Electrocatalysis. Electrochemical Energy Reviews, 2022, 5, 145-186.	13.1	86
346	Highly Selective Hydrogenation of Phenols to Cyclohexanone Derivatives Using a Palladium@N-Doped Carbon/SiO ₂ Catalyst. Organic Process Research and Development, 2021, 25, 2425-2431.	1.3	3
347	Toward Multicomponent Single-Atom Catalysis for Efficient Electrochemical Energy Conversion. ACS Materials Au, 2022, 2, 1-20.	2.6	20
348	Acidic hierarchical porous ZSM-5 assembled palladium catalyst: A green substitute to transform primary amides to nitriles. Applied Catalysis B: Environmental, 2022, 302, 120835.	10.8	15
349	Nanozyme Catalytic Turnover and Self-Limited Reactions. ACS Nano, 2021, 15, 15645-15655.	7.3	91
350	Structure sensitivity of nitrogen–doped carbon–supported metal catalysts in dihalomethane hydrodehalogenation. Journal of Catalysis, 2021, 404, 291-305.	3.1	5
351	Roles of Coordination Geometry in Single-Atom Catalysts. ACS Symposium Series, 2020, , 37-76.	0.5	4
352	Recent advances in selective catalytic hydrogenation of nitriles to primary amines. Journal of Catalysis, 2021, 404, 475-492.	3.1	34
353	Catalase-like properties of multilayer graphene oxides and their modified forms. Surface, 2020, 12(27), 251-262.	0.4	0
354	Water Purification Using Subnanostructured Photocatalysts. ACS Symposium Series, 2020, , 189-225.	0.5	0
355	Thermal Atomization of Platinum Nanoparticles into Single Atoms: An Effective Strategy for Engineering High-Performance Nanozymes. Journal of the American Chemical Society, 2021, 143, 18643-18651.	6.6	174
356	Surface reducibility, reactivity, and stability induced by noble metal modifications on the <i> γ </i> -Fe ₂ O ₃ maghemite (001) surfaces. Journal of Physics Condensed Matter, 2020, 32, 425004.	0.7	0
357	Single-atom-based catalysts for photoelectrocatalysis: challenges and opportunities. Journal of Materials Chemistry A, 2022, 10, 5878-5888.	5.2	17
358	Functional role of single-atom catalysts in electrocatalytic hydrogen evolution: Current developments and future challenges. Coordination Chemistry Reviews, 2022, 452, 214289.	9.5	54
359	Reversing sintering effect of Ni particles on Î ³ -Mo2N via strong metal support interaction. Nature Communications, 2021, 12, 6978.	5.8	58
360	Race on Highâ€loading Metal Single Atoms and Successful Preparation Strategies. ChemCatChem, 2022, 14, .	1.8	14

#	Article	IF	Citations
361	Tuning the Product Selectivity of Single-Atom Alloys by Active Site Modification. Surface Science, 2021, 717, 121990.	0.8	1
362	Atomic-level insights into the steric hindrance effect of single-atom Pd catalyst to boost the synthesis of dimethyl carbonate. Applied Catalysis B: Environmental, 2022, 304, 120922.	10.8	22
363	CaO nanoparticles incorporated metal organic framework (NH2-MIL-101) for Knoevenagel condensation reaction. Arabian Journal of Chemistry, 2022, 15, 103588.	2.3	12
364	Carbonâ€5upported Bimetallic Rutheniumâ€ŀridium Catalysts for Selective and Stable Hydrodebromination of Dibromomethane. ChemCatChem, 0, , .	1.8	5
365	Photocatalytic HER Performance of TiO2-supported Single Atom Catalyst Based on Electronic Regulation: A DFT Study. Chemical Research in Chinese Universities, 0, , 1.	1.3	8
366	Atomically dispersed iridium on MgO(111) nanosheets catalyses benzene–ethylene coupling towards styrene. Nature Catalysis, 2021, 4, 968-975.	16.1	35
367	Asymmetric Full Saturation of Vinylarenes with Cooperative Homogeneous and Heterogeneous Rhodium Catalysis. Journal of the American Chemical Society, 2021, 143, 20377-20383.	6.6	19
368	Metalâ€Organicâ€Frameworkâ€Based Singleâ€Atomic Catalysts for Energy Conversion and Storage: Principles, Advances, and Theoretical Understandings. Advanced Sustainable Systems, 2022, 6, .	2.7	7
369	Role of Dihydride and Dihydrogen Complexes in Hydrogen Evolution Reaction on Single-Atom Catalysts. Journal of the American Chemical Society, 2021, 143, 20431-20441.	6.6	77
370	Sacrificial Templateâ€Assisted Synthesis of Inorganic Nanosheets with Highâ€Loading Singleâ€Atom Catalysts: A General Approach. Advanced Functional Materials, 2022, 32, 2110485.	7.8	18
371	Potential of MXene-Based Heterostructures for Energy Conversion and Storage. ACS Energy Letters, 2022, 7, 78-96.	8.8	69
372	Spatially Resolved and Quantitatively Revealed Charge Transfer between Single Atoms and Catalyst Supports. Journal of Materials Chemistry A, 0, , .	5.2	2
373	Electron-rich/poor reaction sites enable ultrafast confining Fenton-like processes in facet-engineered BiOI membranes for water purification. Applied Catalysis B: Environmental, 2022, 304, 120970.	10.8	34
374	Immobilization of molecular catalysts on solid supports via atomic layer deposition for chemical synthesis in sustainable solvents. Green Chemistry, 2021, 23, 9523-9533.	4.6	6
375	Cobalt single-atom catalysts for domino reductive amination and amidation of levulinic acid and related molecules to N-heterocycles. Chem Catalysis, 2022, 2, 178-194.	2.9	30
376	Unraveling the Function of Metal–Amorphous Support Interactions in Singleâ€Atom Electrocatalytic Hydrogen Evolution. Angewandte Chemie, 2022, 134, .	1.6	4
377	Unraveling the Function of Metal–Amorphous Support Interactions in Singleâ€Atom Electrocatalytic Hydrogen Evolution. Angewandte Chemie - International Edition, 2022, 61, .	7.2	62
378	Adsorption and photocatalytic properties of porphyrin loaded MIL-101 (Cr) in methylene blue degradation. Environmental Science and Pollution Research, 2022, 29, 34406-34418.	2.7	6

#	Article	IF	CITATIONS
380	Advances on catalytic reduction of 4-nitrophenol by nanostructured materials as benchmark reaction. International Nano Letters, 2022, 12, 223-242.	2.3	46
381	Nurturing the marriages of single atoms with atomic clusters and nanoparticles for better heterogeneous electrocatalysis. , 2022, 1, 51-87.		114
382	Guanidyl-implanted UiO-66 as an efficient catalyst for the enhanced conversion of carbon dioxide into cyclic carbonates. Dalton Transactions, 2022, 51, 2567-2576.	1.6	15
383	The mechanism of MOF as a heterogeneous catalyst for propene hydroformylation: a DFT study. Reaction Chemistry and Engineering, 2022, 7, 1156-1167.	1.9	8
384	Diverse Mechanistic Pathways in Single-Site Heterogeneous Catalysis: Alcohol Conversions Mediated by a High-Valent Carbon-Supported Molybdenum-Dioxo Catalyst. ACS Catalysis, 2022, 12, 1247-1257.	5.5	8
385	CO ₂ reduction on single-atom Ir catalysts with chemical functionalization. Physical Chemistry Chemical Physics, 2022, 24, 3733-3740.	1.3	3
386	Ferroelectric-enhanced BiVO4-BiFeO3 photoelectrocatalysis for efficient, stable and large-current-density oxygen evolution. Applied Materials Today, 2022, 26, 101374.	2.3	4
387	Synthetic strategies of single-atoms catalysts and applications in electrocatalysis. Electrochimica Acta, 2022, 409, 139835.	2.6	8
388	Covalent triazine-based frameworks confining cobalt single atoms for photocatalytic CO2 reduction and hydrogen production. Journal of Materials Science and Technology, 2022, 116, 41-49.	5.6	41
389	Complex Nanomaterials in Catalysis for Chemically Significant Applications: From Synthesis and Hydrocarbon Processing to Renewable Energy Applications. Advances in Materials Science and Engineering, 2022, 2022, 1-72.	1.0	25
390	Degradation of bisphenol a using peroxymonosulfate activated by single-atomic cobalt catalysts: Different reactive species at acidic and alkaline pH. Chemical Engineering Journal, 2022, 439, 135002.	6.6	33
391	Pt-O4 moiety induced electron localization toward In2O-Triggered acetylene Semi-Hydrogenation. Journal of Catalysis, 2022, 407, 290-299.	3.1	9
392	Ultrahigh-permeance functionalized boron nitride membrane for nanoconfined heterogeneous catalysis. Chem Catalysis, 2022, 2, 550-562.	2.9	23
393	Abrading bulk metal into single atoms. Nature Nanotechnology, 2022, 17, 403-407.	15.6	102
394	Degradation of Bisphenol a Using Peroxymonosulfate Activated by Single-Atomic Cobalt Catalysts: Different Reactive Species at Acidic and Alkaline Ph. SSRN Electronic Journal, 0, , .	0.4	0
395	Boosting the Fenton-Like Catalytic Degradation Activities on Single Atomic Fe-Catalysts by Acid Etching. SSRN Electronic Journal, 0, , .	0.4	0
396	<scp>Singleâ€atom</scp> catalysts supported on ordered porous materials: Synthetic strategies and applications. InformaÄnÄ-MateriÄily, 2022, 4, .	8.5	32
397	Elucidating the Formation and Structural Evolution of Platinum Single-Site Catalysts for the Hydrogen Evolution Reaction. ACS Catalysis, 2022, 12, 3173-3180.	5.5	18

#	ARTICLE	IF	Citations
398	Metal-Coordinating Single-Boron Sites Confined in Antiperovskite Borides for	5.5	11
399	Anchoring Copper Single Atoms on Porous Boron Nitride Nanofiber to Boost Selective Reduction of Nitroaromatics. ACS Nano, 2022, 16, 4152-4161.	7.3	47
400	Bridging oxidase catalysis and oxygen reduction electrocatalysis by model single-atom catalysts. National Science Review, 2022, 9, .	4.6	19
402	Rhodium-Based Metal–Organic Polyhedra Assemblies for Selective CO ₂ Photoreduction. Journal of the American Chemical Society, 2022, 144, 3626-3636.	6.6	57
403	Graphene oxide-derived single-atom catalysts for electrochemical energy conversion. Rare Metals, 2022, 41, 1703-1726.	3.6	37
406	Al ³⁺ Dopants Induced Mg ²⁺ Vacancies Stabilizing Single-Atom Cu Catalyst for Efficient Free-Radical Hydrophosphinylation of Alkenes. Journal of the American Chemical Society, 2022, 144, 4321-4326.	6.6	32
407	Heterogeneous Advanced Oxidation Processes: Current Approaches for Wastewater Treatment. Catalysts, 2022, 12, 344.	1.6	35
408	Singleâ€Atom Fe Catalysts for Fenton‣ike Reactions: Roles of Different N Species. Advanced Materials, 2022, 34, e2110653.	11.1	158
409	Towards singleâ€atom photocatalysts for future carbonâ€neutral application. SmartMat, 2022, 3, 417-446.	6.4	35
410	Sulfur-Promoted Hydrocarboxylation of Olefins on Heterogeneous Single-Rh-Site Catalysts. ACS Catalysis, 2022, 12, 4203-4215.	5.5	13
411	What Insights Can the Development of Single-Atom Photocatalysts Provide for Water and Air Disinfection?. ACS ES&T Engineering, 2022, 2, 1053-1067.	3.7	4
412	PO ₄ ^{3â^'} Coordinated Robust Singleâ€Atom Platinum Catalyst for Selective Polyol Oxidation**. Angewandte Chemie, 2022, 134, .	1.6	21
413	Top-down synthetic strategies toward single atoms on the rise. Matter, 2022, 5, 788-807.	5.0	28
414	Guided Synthesis of a Mo/Zn Dual Singleâ€Atom Nanozyme with Synergistic Effect and Peroxidaseâ€like Activity. Angewandte Chemie - International Edition, 2022, 61, .	7.2	72
415	Guided Synthesis of a Mo/Zn Dual Singleâ€Atom Nanozyme with Synergistic Effect and Peroxidaseâ€like Activity. Angewandte Chemie, 2022, 134, .	1.6	11
416	PO ₄ ^{3â^'} Coordinated Robust Singleâ€Atom Platinum Catalyst for Selective Polyol Oxidation**. Angewandte Chemie - International Edition, 2022, 61, .	7.2	51
417	DABCO-based ionic liquid-modified magnetic nanoparticles supported gold as an efficient catalyst for A3 coupling reaction in water. Journal of the Iranian Chemical Society, 0, , 1.	1.2	1
418	Metal–nitrogen–carbon-based nanozymes: advances and perspectives. Journal Physics D: Applied Physics, 2022, 55, 323001.	1.3	6

#	Article	IF	CITATIONS
419	Single-atom heterogeneous catalysts for sustainable organic synthesis. Trends in Chemistry, 2022, 4, 264-276.	4.4	27
420	Near-infrared light photocatalysis enabled by a ruthenium complex-integrated metal–organic framework via two-photon absorption. IScience, 2022, 25, 104064.	1.9	7
421	Rational synthesis of ruthenium-based metallo-supramolecular polymers as heterogeneous catalysts for catalytic transfer hydrogenation of carbonyl compounds. Applied Catalysis B: Environmental, 2022, 312, 121383.	10.8	10
422	CO oxidation by Pt ₂ /Fe ₃ O ₄ : Metastable dimer and support configurations facilitate lattice oxygen extraction. Science Advances, 2022, 8, eabn4580.	4.7	14
423	The effect of coordination environment on the activity and selectivity of single-atom catalysts. Coordination Chemistry Reviews, 2022, 461, 214493.	9.5	91
424	Hierarchical porous single-wall carbon nanohorns with atomic-level designed single-atom Co sites toward oxygen reduction reaction. Nano Energy, 2022, 97, 107206.	8.2	17
425	In Situ Synthesis of CuN ₄ /Mesoporous Nâ€Đoped Carbon for Selective Oxidative Crosscoupling of Terminal Alkynes under Mild Conditions. Small, 2022, 18, e2105178.	5.2	11
426	Review of CO2 Reduction on Supported Metals (Alloys) and Single-Atom Catalysts (SACs) for the Use of Green Hydrogen in Power-to-Gas Concepts. Catalysts, 2022, 12, 16.	1.6	15
427	Improved electrochemical conversion of CO2 to multicarbon products by using molecular doping. Nature Communications, 2021, 12, 7210.	5.8	60
428	Highly Active Atomically Dispersed Co–N _{<i>x</i>} Sites Anchored on Ultrathin N-Doped Carbon Nanosheets with Durability Oxygen Reduction Reaction of Zinc–Air Batteries. ACS Sustainable Chemistry and Engineering, 2021, 9, 16956-16964.	3.2	11
429	A Bispidine Based Cu ^{II} /Zn ^{II} Heterobimetallic Coordination Polymer. European Journal of Inorganic Chemistry, 2022, 2022, .	1.0	2
430	Gasâ€Phase Mechanism of O ^{.â^'} /Ni ²⁺ â€Mediated Methane Conversion to Formaldehyde. Angewandte Chemie - International Edition, 2022, 61, .	7.2	6
431	Interfacing single-atom catalysis with continuous-flow organic electrosynthesis. Chemical Society Reviews, 2022, 51, 3898-3925.	18.7	50
432	Regulation of Sub-Nanometric Platinum on Bakl Zeolite for Boosting N-Heptane Aromatization. SSRN Electronic Journal, 0, , .	0.4	0
433	Atomically dispersed Ru catalysts for polychlorinated aromatic hydrocarbon oxidation. Nanoscale, 2022, 14, 7849-7855.	2.8	4
434	Gas Phase Mechanism of O•â^'/Ni2+â€mediated Methane Conversion to Formaldehyde. Angewandte Chemie, 0, , .	1.6	0
435	Nanopores of a Covalent Organic Framework: A Customizable Vessel for Organocatalysis. ACS Omega, 2022, 7, 15275-15295.	1.6	14
436	Exploring Stability of Transition-Metal Single Atoms on Cu ₂ O Surfaces. Journal of Physical Chemistry C, 2022, 126, 8065-8078.	1.5	5

#	Article	IF	CITATIONS
437	Chemo- and regioselective benzylic C(sp3)–H oxidation bridging the gap between hetero- and homogeneous copper catalysis. IScience, 2022, 25, 104341.	1.9	4
438	Selectively anchoring single atoms on specific sites of supports for improved oxygen evolution. Nature Communications, 2022, 13, 2473.	5.8	73
439	Pd Nanoparticles Embedded Into MOF‑808: An efficient and reusable catalyst for Sonogashira and Heck cross-coupling reactions. Tetrahedron Letters, 2022, , 153849.	0.7	3
440	Reduction-Controlled Atomic Migration for Single Atom Alloy Library. Nano Letters, 2022, 22, 4232-4239.	4.5	20
441	Direct Visualization of the Evolution of a Singleâ€Atomic Cobalt Catalyst from Melting Nanoparticles with Carbon Dissolution. Advanced Science, 2022, 9, e2200592.	5.6	15
442	Advances of atomically dispersed catalysts from single-atom to clusters in energy storage and conversion applications. Progress in Materials Science, 2022, 128, 100964.	16.0	40
443	Revealing the Structure of Single Cobalt Sites in Carbon Nitride for Photocatalytic CO ₂ Reduction. Journal of Physical Chemistry C, 2022, 126, 8596-8604.	1.5	11
444	Oligo-layer graphene stabilized fully exposed Fe-sites for ultra-sensitivity electrochemical detection of dopamine. Biosensors and Bioelectronics, 2022, 211, 114367.	5.3	18
445	Catalytic oxidative dehydrogenation of N-heterocycles with nitrogen/phosphorus co-doped porous carbon materials. Chemical Science, 2022, 13, 6865-6872.	3.7	22
446	Synergy between homogeneous and heterogeneous catalysis. Catalysis Science and Technology, 2022, 12, 6623-6649.	2.1	29
447	Boosting Thermal Stability of Volatile Os Catalysts by Downsizing to Atomically Dispersed Species. Jacs Au, 2022, 2, 1811-1817.	3.6	4
448	Reconstructing the coordination environment of single atomic Fe-catalysts for boosting the Fenton-like degradation activities. Applied Catalysis B: Environmental, 2022, 315, 121536.	10.8	39
449	A single-atom library for guided monometallic and concentration-complex multimetallic designs. Nature Materials, 2022, 21, 681-688.	13.3	145
450	Evaluating acid and metallic site proximity in Pt/γ-Al ₂ O ₃ –Cl bifunctional catalysts through an atomic scale geometrical model. Nanoscale, 2022, 14, 8753-8765.	2.8	6
451	Future of SMNs catalysts for industry applications. , 2022, , 319-346.		0
452	Nanoengineering of Catalysts for Enhanced Hydrogen Production. Hydrogen, 2022, 3, 218-254.	1.7	11
453	Machine-Learning-Assisted Catalytic Performance Predictions of Single-Atom Alloys for Acetylene Semihydrogenation. ACS Applied Materials & Interfaces, 2022, 14, 25288-25296.	4.0	9
454	Heterogenized manganese catalyst for C-, and N-alkylation of ketones and amines with alcohols by pyrolysis of molecularly defined complexes. Molecular Catalysis, 2022, 526, 112390.	1.0	2

#	Article	IF	CITATIONS
455	Singleâ€Atom Catalysts for Hydrogen Generation: Rational Design, Recent Advances, and Perspectives. Advanced Energy Materials, 2022, 12, .	10.2	42
456	Coadsorption Interfered CO Oxidation over Atomically Dispersed Au on h-BN. Molecules, 2022, 27, 3627.	1.7	4
457	A Site Distance Effect Induced by Reactant Molecule Matchup in Singleâ€Atom Catalysts for Fentonâ€Like Reactions. Angewandte Chemie, 2022, 134, .	1.6	24
458	A Site Distance Effect Induced by Reactant Molecule Matchup in Singleâ€Atom Catalysts for Fentonâ€Like Reactions. Angewandte Chemie - International Edition, 2022, 61, .	7.2	105
459	Reaction-Mediated Transformation of Working Catalysts. ACS Catalysis, 2022, 12, 8007-8018.	5.5	6
460	Single-Atom Iron Enables Strong Low-Triggering-Potential Luminol Cathodic Electrochemiluminescence. Analytical Chemistry, 2022, 94, 9459-9465.	3.2	37
461	Promoting Dinuclearâ€Type Catalysis in Cu ₁ –C ₃ N ₄ Singleâ€Atom Catalysts. Advanced Materials, 2022, 34, .	11.1	42
462	Porous Silica Support for Immobilizing Chiral Metal Catalyst: Unravelling the Activity of Catalyst on Asymmetric Organic Transformations. ChemistrySelect, 2022, 7, .	0.7	4
463	A Heterogeneous Iridium Catalyst for the Hydroboration of Pyridines. Organic Letters, 2022, 24, 4680-4683.	2.4	5
464	Single atoms meet metal–organic frameworks: collaborative efforts for efficient photocatalysis. Energy and Environmental Science, 2022, 15, 3722-3749.	15.6	107
464 465	Single atoms meet metal–organic frameworks: collaborative efforts for efficient photocatalysis. Energy and Environmental Science, 2022, 15, 3722-3749. Recent development towards alkene hydroformylation catalysts integrating traditional homo- and heterogeneous catalysis. Catalysis Science and Technology, 2022, 12, 4962-4982.	15.6 2.1	107 8
464 465 466	Single atoms meet metal–organic frameworks: collaborative efforts for efficient photocatalysis. Energy and Environmental Science, 2022, 15, 3722-3749. Recent development towards alkene hydroformylation catalysts integrating traditional homo- and heterogeneous catalysis. Catalysis Science and Technology, 2022, 12, 4962-4982. Theoretical Advances in Understanding and Designing the Active Sites for Hydrogen Evolution Reaction. ACS Catalysis, 2022, 12, 8404-8433.	15.6 2.1 5.5	107 8 72
464 465 466 467	Single atoms meet metal–organic frameworks: collaborative efforts for efficient photocatalysis. Energy and Environmental Science, 2022, 15, 3722-3749. Recent development towards alkene hydroformylation catalysts integrating traditional homo- and heterogeneous catalysis. Catalysis Science and Technology, 2022, 12, 4962-4982. Theoretical Advances in Understanding and Designing the Active Sites for Hydrogen Evolution Reaction. ACS Catalysis, 2022, 12, 8404-8433. Biogenic Synthesis of Magnetic Palladium Nanoparticles Decorated Over Reduced Graphene Oxide Using Piper Betle Petiole Extract (Pd-rGO@Fe3O4 NPs) as Heterogeneous Hybrid Nanocatalyst for Applications in Suzuki-Miyaura Coupling Reactions of Biphenyl Compounds. Topics in Catalysis, 0, , .	15.6 2.1 5.5 1.3	107 8 72 12
464 465 466 467	Single atoms meet metal–organic frameworks: collaborative efforts for efficient photocatalysis. Energy and Environmental Science, 2022, 15, 3722-3749. Recent development towards alkene hydroformylation catalysts integrating traditional homo- and heterogeneous catalysis. Catalysis Science and Technology, 2022, 12, 4962-4982. Theoretical Advances in Understanding and Designing the Active Sites for Hydrogen Evolution Reaction. ACS Catalysis, 2022, 12, 8404-8433. Biogenic Synthesis of Magnetic Palladium Nanoparticles Decorated Over Reduced Graphene Oxide Using Piper Betle Petiole Extract (Pd-rGO@Fe3O4 NPs) as Heterogeneous Hybrid Nanocatalyst for Applications in Suzuki-Miyaura Coupling Reactions of Biphenyl Compounds. Topics in Catalysis, 0, , . Homogeneity of Supported Singleâ€Atom Active Sites Boosting the Selective Catalytic Transformations. Advanced Science, 2022, 9, .	15.6 2.1 5.5 1.3 5.6	107 8 72 12 47
464 465 466 467 468	Single atoms meet metal–organic frameworks: collaborative efforts for efficient photocatalysis. Energy and Environmental Science, 2022, 15, 3722-3749. Recent development towards alkene hydroformylation catalysts integrating traditional homo- and heterogeneous catalysis. Catalysis Science and Technology, 2022, 12, 4962-4982. Theoretical Advances in Understanding and Designing the Active Sites for Hydrogen Evolution Reaction. ACS Catalysis, 2022, 12, 8404-8433. Biogenic Synthesis of Magnetic Palladium Nanoparticles Decorated Over Reduced Graphene Oxide Using Piper Betle Petiole Extract (Pd-rCO@Fe3O4 NPs) as Heterogeneous Hybrid Nanocatalyst for Applications in Suzuki-Miyaura Coupling Reactions of Biphenyl Compounds. Topics in Catalysis, 0, , . Homogeneity of Supported Singleâ€Atom Active Sites Boosting the Selective Catalytic Transformations. Advanced Science, 2022, 9, . Ultrahigh Loading Copper Single Atom Catalyst for Palladium-free Wacker Oxidation. Chemical Research in Chinese Universities, 2022, 38, 1239-1242.	15.6 2.1 5.5 1.3 5.6 1.3	107 8 72 12 47 3
464 465 466 467 468 469	Single atoms meet metalàC"organic frameworks: collaborative efforts for efficient photocatalysis. Energy and Environmental Science, 2022, 15, 3722-3749. Recent development towards alkene hydroformylation catalysts integrating traditional homo- and heterogeneous catalysis. Catalysis Science and Technology, 2022, 12, 4962-4982. Theoretical Advances in Understanding and Designing the Active Sites for Hydrogen Evolution Reaction. ACS Catalysis, 2022, 12, 8404-8433. Biogenic Synthesis of Magnetic Palladium Nanoparticles Decorated Over Reduced Graphene Oxide Using Piper Betle Petiole Extract (Pd-rGO@Fe3O4 NPs) as Heterogeneous Hybrid Nanocatalyst for Applications in Suzuki-Miyaura Coupling Reactions of Biphenyl Compounds. Topics in Catalysis, 0, , . Homogeneity of Supported SingleâCAtom Active Sites Boosting the Selective Catalytic Transformations. Advanced Science, 2022, 9, . Ultrahigh Loading Copper Single Atom Catalyst for Palladium-free Wacker Oxidation. Chemical Research in Chinese Universities, 2022, 38, 1239-1242. Synergetic Catalysis of Magnetic Single-Atom Catalysts Confined in Graphitic-Crsub > 3 Graphitic-Crsub > 3 Auburstion of Physical Chemistry Letters, 2022, 13, 6367-6375.	15.6 2.1 5.5 1.3 5.6 1.3 2.1	 107 8 72 12 47 3 16
464 465 466 467 468 469 470	Single atoms meet metalâC"organic frameworks: collaborative efforts for efficient photocatalysis. Energy and Environmental Science, 2022, 15, 3722-3749. Recent development towards alkene hydroformylation catalysts integrating traditional homo- and heterogeneous catalysis. Catalysis Science and Technology, 2022, 12, 4962-4982. Theoretical Advances in Understanding and Designing the Active Sites for Hydrogen Evolution Reaction. ACS Catalysis, 2022, 12, 8404-8433. Biogenic Synthesis of Magnetic Palladium Nanoparticles Decorated Over Reduced Graphene Oxide Using Piper Betle Petiole Extract (Pd-rGO@Fe3O4 NPs) as Heterogeneous Hybrid Nanocatalyst for Applications in Suzuki-Miyaura Coupling Reactions of Biphenyl Compounds. Topics in Catalysis, 0, . Homogeneity of Supported SingleaChtom Active Sites Boosting the Selective Catalytic Transformations. Advanced Science, 2022, 9, . Ultrahigh Loading Copper Single Atom Catalyst for Palladium-free Wacker Oxidation. Chemical Research in Chinese Universities, 2022, 13, 6367-6375. Synergetic Catalysis of Magnetic Single-Atom Catalysts Confined in Graphitic-C (subs 3 (sub > N (sub > 4 (sub > N (sub > 2 (sub	15.6 2.1 5.5 1.3 5.6 1.3 2.1 2.1	107 8 72 12 47 3 16 7

#	Article	IF	CITATIONS
473	Regulation of sub-nanometric platinum on BaKL zeolite for boosting n-heptane aromatization. Fuel, 2022, 328, 125281.	3.4	4
474	Recent Advances in Photocatalytic Removal of Microplastics: Mechanisms, Kinetic Degradation, and Reactor Design. Frontiers in Marine Science, 0, 9, .	1.2	15
475	A general synthesis of single atom catalysts with controllable atomic and mesoporous structures. , 2022, 1, 658-667.		62
476	A pilot lab trial for enhanced oxidative transformation of procymidone fungicide and its aniline metabolite using heterogeneous MnO2 catalysts. Environmental Science and Pollution Research, 2023, 30, 3783-3794.	2.7	2
477	Rational design and structural engineering of heterogeneous single-atom nanozyme for biosensing. Biosensors and Bioelectronics, 2022, 216, 114662.	5.3	19
478	Recent advances in catalytic synthesis of pyridine derivatives. , 2023, , 503-580.		3
479	Single–atom catalysts based on Fenton-like/peroxymonosulfate system for water purification: design and synthesis principle, performance regulation and catalytic mechanism. Nanoscale, 2022, 14, 13861-13889.	2.8	18
480	Atomically Fe doped hollow mesoporous carbon spheres for peroxymonosulfate mediated advanced oxidation processes with a dual activation pathway. Journal of Materials Chemistry A, 2022, 10, 20535-20544.	5.2	13
481	The development of a lead-free replacement for the Lindlar catalyst for alkyne semi-hydrogenation using silica supported, N-doped carbon modified cobalt nanoparticles. Green Chemistry, 2022, 24, 6912-6922.	4.6	5
482	Facile synthesis of a Mo-based TiO2 catalyst via a redox strategy for high value-added conversion of olefin. Fuel, 2023, 332, 126172.	3.4	8
483	Movable type printing method to synthesize high-entropy single-atom catalysts. Nature Communications, 2022, 13, .	5.8	70
484	Synergistic Hybrid Electrocatalysts of Platinum Alloy and Single-Atom Platinum for an Efficient and Durable Oxygen Reduction Reaction. ACS Nano, 2022, 16, 14121-14133.	7.3	55
485	CuNi bimetallic nanocatalyst enables sustainable direct carboxylation reactions. Molecular Catalysis, 2022, 530, 112620.	1.0	2
486	Singleâ€Atom Catalysts on Covalent Triazine Frameworks: at the Crossroad between Homogenous and Heterogeneous Catalysis. Angewandte Chemie, 0, , .	1.6	0
487	Promising approach for preparing metallic single-atom catalysts: electrochemical deposition. Frontiers in Energy, 2022, 16, 537-541.	1.2	1
488	Photocatalytic Reactions on the Single-Site Heterogeneous Catalysts. Catalysis Letters, 0, , .	1.4	0
489	Surface Organometallic Chemistry for Single-site Catalysis and Single-atom Catalysis. Chemical Research in Chinese Universities, 2022, 38, 1139-1145.	1.3	4
490	Electrocatalytic Oxygen Reduction to Produce Hydrogen Peroxide: Rational Design from Single-Atom Catalysts to Devices. Electrochemical Energy Reviews, 2022, 5, .	13.1	24

#	Article	IF	CITATIONS
491	Singleâ€Atom Catalysts on Covalent Triazine Frameworks: at the Crossroad between Homogeneous and Heterogeneous Catalysis. Angewandte Chemie - International Edition, 2023, 62, .	7.2	23
492	Environment Molecules Boost the Chemoselective Hydrogenation of Nitroarenes on Cobalt Single-Atom Catalysts. ACS Catalysis, 2022, 12, 11960-11973.	5.5	22
493	Steering Catalytic Selectivity with Atomically Dispersed Metal Electrocatalysts for Renewable Energy Conversion and Commodity Chemical Production. Accounts of Chemical Research, 2022, 55, 2672-2684.	7.6	18
494	Synergy of metal nanoparticles and organometallic complex in NAD(P)H regeneration via relay hydrogenation. Nature Communications, 2022, 13, .	5.8	8
495	Single-Atom Catalysis: Insights from Model Systems. Chemical Reviews, 2022, 122, 14911-14939.	23.0	26
496	Engineering Semiconductor Quantum Dots for Selectivity Switch on High-Performance Heterogeneous Coupling Photosynthesis. ACS Nano, 2022, 16, 17444-17453.	7.3	60
497	Building up libraries and production line for single atom catalysts with precursor-atomization strategy. Nature Communications, 2022, 13, .	5.8	14
498	Heterogeneous M-N-C Catalysts for Aerobic Oxidation Reactions: Lessons from Oxygen Reduction Electrocatalysts. Chemical Reviews, 2023, 123, 6233-6256.	23.0	31
499	Volcano-type relationship between oxidation states and catalytic activity of single-atom catalysts towards hydrogen evolution. Nature Communications, 2022, 13, .	5.8	48
500	How do CuO sheets (sh-CuO) enable efficient chlorinated hydrocarbon removal?. Journal of Water Process Engineering, 2022, 50, 103204.	2.6	2
501	Recent advances in non-noble metal-based oxide materials as heterogeneous catalysts for C–H activation. Dalton Transactions, 2022, 51, 17527-17542.	1.6	2
502	Photosynthesis of hydrogen peroxide in water: a promising on-site strategy for water remediation. Environmental Science: Water Research and Technology, 2022, 8, 2819-2842.	1.2	2
503	Recent Advances on Singleâ€Atom Catalysts for CO ₂ Reduction. Small Structures, 2023, 4, .	6.9	65
504	Looking beyond Adsorption Energies to Understand Interactions at Surface using Machine Learning. ChemistrySelect, 2022, 7, .	0.7	1
505	Recent Advances in Design and Fabrication of Highly Active Nanozymes. ACS Symposium Series, 0, , 37-65.	0.5	1
506	Comprehensive activity evaluation of single-atom catalysts. Chem Catalysis, 2023, 3, 100424.	2.9	3
507	New Folding 2Dâ€Layered Nitroâ€Oxygenated Carbon Containing Ultra Highâ€Loading Copper Single Atoms. Small, 2022, 18, .	5.2	5
508	Copper Schiff base complex immobilized on magnetic graphene oxide: Efficient heterogeneous nanocatalyst for treating environmental pollutants and synthesis of chromenes. Applied Organometallic Chemistry, 2023, 37	1.7	2

#	Article	IF	CITATIONS
509	Atomization driven crystalline nanocarbon based single-atom catalysts for superior oxygen electroreduction. Applied Catalysis B: Environmental, 2023, 323, 122172.	10.8	3
510	Catalytically stable potassium singleâ \in atom solid superbases. Angewandte Chemie, 0, , .	1.6	0
511	Advances in Graphene-Supported Single-Atom Catalysts for Clean Energy Conversion. Electrochemical Energy Reviews, 2022, 5, .	13.1	17
512	Catalytically Stable Potassium Singleâ€Atom Solid Superbases. Angewandte Chemie - International Edition, 2022, 61, .	7.2	9
513	Coordination assembly enables highly selective catalytic hydroaminomethylation of olefins. Green Chemistry, 2023, 25, 1368-1379.	4.6	8
514	A macro library for monatomic catalysts. Chinese Journal of Catalysis, 2023, 44, 1-3.	6.9	8
515	Hydroperoxyl-mediated C-H bond activation on Cr single atom catalyst: An alternative to the Fenton mechanism. Journal of Catalysis, 2023, 417, 323-333.	3.1	4
516	Key materials and structural design in flexible and stretchable zinc-air batteries. Nano Energy, 2023, 106, 108039.	8.2	10
517	Modelling single atom catalysts for water splitting and fuel cells: A tutorial review. Journal of Power Sources, 2023, 556, 232492.	4.0	19
518	When nitrogen reduction meets single-atom catalysts. Progress in Materials Science, 2023, 132, 101044.	16.0	14
519	New approach forÂdesigning wrinkled and porous ZnO thin films for photocatalytic applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 658, 130628.	2.3	8
520	Complexes of terpyridine scaffold as efficient photocatalysts for the degradation of methylene blue pollutant in wastewater effluents. Inorganica Chimica Acta, 2023, 546, 121329.	1.2	7
521	Configuration regulation of active sites by accurate doping inducing self-adapting defect for enhanced photocatalytic applications: A review. Coordination Chemistry Reviews, 2023, 478, 214970.	9.5	28
522	Efficient preparation of nanocatalysts. Case study: green synthesis of supported Pt nanoparticles by using microemulsions and mangosteen peel extract. RSC Advances, 2022, 12, 34346-34358.	1.7	1
523	Highly Efficient Fabrication of Kilogram-Scale Palladium Single-Atom Catalysts for the Suzuki–Miyaura Cross-Coupling Reaction. ACS Applied Materials & Interfaces, 2022, 14, 53755-53760.	4.0	5
524	Design of Single-Atom Catalysts and Tracking Their Fate Using <i>Operando</i> and Advanced X-ray Spectroscopic Tools. Chemical Reviews, 2023, 123, 379-444.	23.0	50
525	Bimetallic Catalysts for Sustainable Chemistry: Surface Redox Reactions For Tuning The Catalytic Surface Composition. ChemCatChem, 2023, 15, .	1.8	3
526	Single-atom nanozymes towards central nervous system diseases. Nano Research, 2023, 16, 5121-5139.	5.8	4

#	Article	IF	CITATIONS
527	Reactivity and Recyclability of Ligandâ€Protected Metal Cluster Catalysts for CO ₂ Transformation. Angewandte Chemie - International Edition, 2023, 62, .	7.2	11
528	Electronic Perturbation of Cu Singleâ€Atom CO2 Reduction Catalysts in a Molecular Way. Angewandte Chemie, 0, , .	1.6	1
529	Crystal Phase Sensitivity of 5-Hydroxymethylfurfural Hydrodeoxygenation over a Pt ₁ Co Single-Atom Alloy Catalyst. Journal of Physical Chemistry C, 2022, 126, 20807-20815.	1.5	5
530	Atomic Dispersion of Zn ²⁺ on N-Doped Carbon Materials: From Non-Activity to High Activity for Catalyzing Luminol-H ₂ O ₂ Chemiluminescence. Analytical Chemistry, 2022, 94, 17559-17566.	3.2	12
531	Selective Hydrogenation of CO ₂ to CH ₃ OH on a Dynamically Magic Single-Cluster Catalyst: Cu ₃ /MoS ₂ /Ag(111). ACS Catalysis, 2023, 13, 714-724.	5.5	9
532	Reactivity and Recyclability of Ligandâ€Protected Metal Cluster Catalysts for CO ₂ Transformation. Angewandte Chemie, 2023, 135, .	1.6	1
533	Preparation and characterization of M1-Nx-Cy based single atom catalysts for environmental applications. Chinese Chemical Letters, 2023, 34, 108050.	4.8	3
534	Single atom alloy clusters Ag <i>n</i> â^'1Xâ^' (X = Cu, Au; <i>n</i> = 7–20) reacting with O2: Symmetry-adapted orbital model. Journal of Chemical Physics, 2023, 158, .	1.2	3
535	The superiority and perspectives in single-atom site and multi-atom site catalysts for energy conversion. APL Materials, 2022, 10, .	2.2	1
536	Nitrogen and Phosphorus Dual-Coordinated Single-Atom Mn: MnN ₂ P Active Sites for Catalytic Transfer Hydrogenation of Nitroarenes. ACS Applied Materials & Interfaces, 2022, 14, 55568-55576.	4.0	7
537	Electronic Perturbation of Copper Singleâ€Atom CO ₂ Reduction Catalysts in a Molecular Way. Angewandte Chemie - International Edition, 2023, 62, .	7.2	24
538	Atomic design of dual-metal hetero-single-atoms for high-efficiency synthesis of natural flavones. Nature Communications, 2022, 13, .	5.8	15
539	Collagen and Silk Fibroin as Promising Candidates for Constructing Catalysts. Polymers, 2023, 15, 375.	2.0	2
540	Electrocatalysis Mechanism and Structure–Activity Relationship of Atomically Dispersed Metalâ€Nitrogenâ€Carbon Catalysts for Electrocatalytic Reactions. Small Methods, 2023, 7, .	4.6	7
542	Ultrafast materials synthesis and manufacturing techniques for emerging energy and environmental applications. Chemical Society Reviews, 2023, 52, 1103-1128.	18.7	30
543	Hydrogenation of Carboxylic Acids, Esters, and Related Compounds over Heterogeneous Catalysts: A Step toward Sustainable and Carbon-Neutral Processes. Chemical Reviews, 2023, 123, 1103-1165.	23.0	27
544	Facile fabrication of atomically dispersed Ru-P-Ru ensembles for efficient hydrogenations beyond isolated single atoms. Chinese Journal of Catalysis, 2023, 45, 107-119.	6.9	3
545	Surface and Interface Coordination Chemistry Learned from Model Heterogeneous Metal Nanocatalysts: From Atomically Dispersed Catalysts to Atomically Precise Clusters. Chemical Reviews, 2023, 123, 5948-6002.	23.0	50

	CITATION	LPORT	
#	Article	IF	CITATIONS
546	Biofuels and Nanocatalysts: Python Boosting Visualization of Similarities. Materials, 2023, 16, 1175.	1.3	2
547	Recent Progress of Non-Pt Catalysts for Oxygen Reduction Reaction in Fuel Cells. Processes, 2023, 11, 361.	1.3	8
548	Single-atom catalysis enabled by high-energy metastable structures. Chemical Science, 2023, 14, 2631-2639.	3.7	5
549	Local chemical environment effect in single-atom catalysis. Chem Catalysis, 2023, 3, 100492.	2.9	8
550	Rational Design of Atomically Dispersed Metal Site Electrocatalysts for Oxygen Reduction Reaction. Advanced Science, 2023, 10, .	5.6	14
551	Tracking and Understanding Dynamics of Atoms and Clusters of Late Transition Metals with <i>In-Situ</i> DRIFT and XAS Spectroscopy Assisted by DFT. Journal of Physical Chemistry C, 2023, 127, 3032-3046.	1.5	6
552	Semiconductor Nanomaterial Photocatalysts for Water-Splitting Hydrogen Production: The Holy Grail of Converting Solar Energy to Fuel. Nanomaterials, 2023, 13, 546.	1.9	21
553	Probing gas phase catalysis by atomic metal cations with flow tube mass spectrometry. Mass Spectrometry Reviews, 0, , .	2.8	2
554	Recent progress of theoretical studies on electro- and photo-chemical conversion of CO ₂ with single-atom catalysts. RSC Advances, 2023, 13, 5833-5850.	1.7	7
555	Deducing subnanometer cluster size and shape distributions of heterogeneous supported catalysts. Nature Communications, 2023, 14, .	5.8	5
556	Cobalt metal-organic framework and its composite membranes as heterogeneous catalysts for cyanosilylation and strecker reactions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 666, 131272.	2.3	0
557	Ligand-assisted heterogeneous catalytic H2O2 activation for pollutant degradation: The trade-off between coordination site passivation and adjacent site activation. Applied Catalysis B: Environmental, 2023, 330, 122592.	10.8	5
558	Hierarchically ordered porous superstructure embedded with readily accessible atomic pair sites for enhanced CO2 electroreduction. Applied Catalysis B: Environmental, 2023, 330, 122638.	10.8	7
559	Geometric and Electronic Structural Engineering of Isolated Ni Single Atoms for a Highly Efficient CO ₂ Electroreduction. Small, 2023, 19, .	5.2	7
560	Reactive Separations of CO/CO ₂ mixtures over Ru–Co Single Atom Alloys. ACS Catalysis, 2023, 13, 2449-2461.	5.5	3
561	Electrochemical transformation of biomass-derived oxygenates. Science China Chemistry, 2023, 66, 1011-1031.	4.2	3
562	Atomically Dispersed Co-N/C Catalyst for Divergent Synthesis of Nitrogen-Containing Compounds from Alkenes. Journal of the American Chemical Society, 2023, 145, 4142-4149.	6.6	19
563	Structural heterogeneity of single-atom catalysts and true active site generation via ligand exchange during electrochemical H2O2 production. Journal of Catalysis, 2023, 419, 49-57.	3.1	1

#	Article	IF	CITATIONS
564	Challenges and Opportunities in Engineering the Electronic Structure of Single-Atom Catalysts. ACS Catalysis, 2023, 13, 2981-2997.	5.5	46
565	General Synthesis of a Diatomic Catalyst Library via a Macrocyclic Precursor-Mediated Approach. Journal of the American Chemical Society, 2023, 145, 4819-4827.	6.6	50
566	Ambient Electrosynthesis toward Singleâ€Atom Sites for Electrocatalytic Green Hydrogen Cycling. Advanced Materials, 2023, 35, .	11.1	26
567	Controlling Activity of Heterogeneous Cu Singleâ€Atom Catalysts by Fineâ€Tuning the Redox Properties of CeO ₂ â€TiO ₂ Supports. ChemCatChem, 2023, 15, .	1.8	1
568	Polystyrene Resins: Versatile and Economical Support for Heterogeneous Nanocatalysts in Sustainable Organic Reactions**. ChemCatChem, 2023, 15, .	1.8	1
569	Heterogeneous Iridium Single-Atom Molecular-like Catalysis for Epoxidation of Ethylene. Journal of the American Chemical Society, 2023, 145, 6658-6670.	6.6	13
570	Recent advances in the single-atom catalysts for persulfate activation and pollutant oxidation: A review. Journal of Cleaner Production, 2023, 397, 136576.	4.6	6
571	Dual-Bioorthogonal Catalysis by a Palladium Peptide Complex. Journal of Medicinal Chemistry, 2023, 66, 3301-3311.	2.9	4
572	2D carbon nitride as a support with single Cu, Ag, and Au atoms for carbon dioxide reduction reaction. Physical Chemistry Chemical Physics, 2023, 25, 8574-8582.	1.3	11
573	Modulating the electronic structure of atomically dispersed Fe–Pt dual-site catalysts for efficient oxygen reduction reactions. Chemical Science, 2023, 14, 3277-3285.	3.7	3
574	Transition Metal Single Atoms Constructed by Using Inherent Confined Space. ACS Nano, 2023, 17, 5025-5032.	7.3	9
575	Atomically dispersed metals as potential coke-resistant catalysts for dry reforming of methane. Cell Reports Physical Science, 2023, 4, 101310.	2.8	6
576	Singleâ€atom catalyst application in distributed renewable energy conversion and storage. SusMat, 2023, 3, 160-179.	7.8	15
577	Near Field Scattering Optical Model-Based Catalyst Design for Artificial Photoredox Transformation. ACS Catalysis, 2023, 13, 3971-3982.	5.5	32
578	Highâ€Throughput Screening of Electrocatalysts for Nitrogen Reduction Reactions Accelerated by Interpretable Intrinsic Descriptor. Angewandte Chemie - International Edition, 2023, 62, .	7.2	16
579	Highâ€Throughput Screening of Electrocatalysts for Nitrogen Reduction Reactions Accelerated by Interpretable Intrinsic Descriptor. Angewandte Chemie, 2023, 135, .	1.6	0
580	Nickel–palladium bimetallic nanoparticles supported on multi-walled carbon nanotubes; versatile catalyst for Sonogashira cross-coupling reactions. RSC Advances, 2023, 13, 7818-7827.	1.7	3
581	Viability of <scp>nonâ€edible</scp> oilseed plants and agricultural wastes as feedstock for biofuels production: a technoâ€economic review from an African perspective. Biofuels, Bioproducts and Biorefining, 2023, 17, 1382-1410.	1.9	2

#	Article	IF	CITATIONS
582	A comprehensive review on synthesis of dihydropyrimidione via Biginelli reaction catalyzed by reusable magnetic nanocatalyst (from 2020–till date). Applied Organometallic Chemistry, 2023, 37, .	1.7	5
583	Recent Progress of Singleâ€Atom Alloys in Heterogeneous Catalytic Reactions. European Journal of Inorganic Chemistry, 2023, 26, .	1.0	2
584	Green nanoparticles for protection and deprotection reactions in organic synthesis. , 2023, , 173-193.		0
585	Oxygen Evolution/Reduction Reaction Catalysts: From <i>In Situ</i> Monitoring and Reaction Mechanisms to Rational Design. Chemical Reviews, 2023, 123, 6257-6358.	23.0	81
586	Utilizing Nitroarenes and HCHO to Directly Construct Functional Nâ€Heterocycles by Supported Cobalt/Amino Acid Relay Catalysis. Angewandte Chemie, 0, , .	1.6	0
587	Utilizing Nitroarenes and HCHO to Directly Construct Functional Nâ€Heterocycles by Supported Cobalt/Amino Acid Relay Catalysis. Angewandte Chemie - International Edition, 2023, 62, .	7.2	12
588	MOF-Derived Ru ₁ Zr ₁ /Co Dual-Atomic-Site Catalyst with Promoted Performance for Fischer–Tropsch Synthesis. Journal of the American Chemical Society, 2023, 145, 7113-7122.	6.6	14
589	Pushing the limit of atomically dispersed Au catalysts for electrochemical H2O2 production by precise electronic perturbation of the active site. Chem Catalysis, 2023, 3, 100583.	2.9	3
590	Atomic design of carbon-based dual-metal site catalysts for energy applications. Nano Research, 2023, 16, 6477-6506.	5.8	25
591	Recent advances in regulating the local environment of M-N4 structure for tailored chemical reactions. Nano Research, 2023, 16, 8596-8613.	5.8	2
592	Cu–Co Dual-Atom Catalysts Supported on Hierarchical USY Zeolites for an Efficient Cross-Dehydrogenative C(sp ²)–N Coupling Reaction. Journal of the American Chemical Society, 0, , .	6.6	1
593	Oxidation State Dependent Conjugation Controls Electrocatalytic Activity in a Two-Dimensional Di-Copper Metal–Organic Framework. Journal of Physical Chemistry C, 2023, 127, 7299-7307.	1.5	1
594	In-situ observation of structural evolution of single-atom catalysts: From synthesis to catalysis. ChemPhysMater, 2024, 3, 24-35.	1.4	1
595	Electronic perturbation of atomically dispersed Au for optimal H2O2 production. Chem Catalysis, 2023, 3, 100617.	2.9	0
596	Review of Carbon Support Coordination Environments for Single Metal Atom Electrocatalysts (SACS). Advanced Materials, 2024, 36, .	11.1	13
597	Oxidation mechanism of HCHO on copper-manganese composite oxides catalyst. Chemosphere, 2023, 330, 138754.	4.2	2
598	Advanced dual-atom catalysts for efficient oxygen evolution reaction. , 2023, 1, 665-676.		2
627	Progress in photocatalytic CO ₂ reduction based on single-atom catalysts. RSC Advances, 2023. 13. 20889-20908.	1.7	3

#	Article	IF	CITATIONS
671	Recent Advances of Group 10 Transition Metal Hydrosilylation Catalysts. Topics in Organometallic Chemistry, 2023, , 13-93.	0.7	0
674	An emerging direction for nanozyme design: from single-atom to dual-atomic-site catalysts. Nanoscale, 2023, 15, 18173-18183.	2.8	2
688	A review on the photochemical synthesis of atomically dispersed catalysts. Materials Chemistry Frontiers, 2024, 8, 1334-1348.	3.2	0
706	Free-Standing Single-Atom Catalyst-Based Electrodes for CO2 Reduction. Electrochemical Energy Reviews, 2024, 7, .	13.1	0
713	Naturally Inspired Heme-Like Chemistries for the Oxygen Reduction Reaction: Going Beyond Platinum Group Metals in Proton Exchange Membrane Fuel Cell Catalysis. , 2024, , 325-351.		0
715	Graphitic carbon nitride as a metal free photocatalyst for solar water splitting. , 2024, , 347-380.		0