Antibiotic resistance genes and intI1 prevalence in a sw correlation with metal resistance, bacterial community

Ecotoxicology and Environmental Safety 161, 251-259 DOI: 10.1016/j.ecoenv.2018.05.049

Citation Report

#	Article	IF	CITATIONS
1	Antibiotic resistance genes and intl1 prevalence in a swine wastewater treatment plant and correlation with metal resistance, bacterial community and wastewater parameters. Ecotoxicology and Environmental Safety, 2018, 161, 251-259.	6.0	67
2	Development of Antibiotic Resistance in Wastewater Treatment Plants. , 0, , .		8
3	Class 1 integrons as predominant carriers in Escherichia coli isolates from waterfowls in Hainan, China. Ecotoxicology and Environmental Safety, 2019, 183, 109514.	6.0	20
4	Deciphering the microbial and genetic responses of anammox biogranules to the single and joint stress of zinc and tetracycline. Environment International, 2019, 132, 105097.	10.0	51
5	The correlation between antibiotic resistance gene abundance and microbial community resistance in pig farm wastewater and surrounding rivers. Ecotoxicology and Environmental Safety, 2019, 182, 109452.	6.0	34
6	Fates of antibiotic resistance genes in a distributed swine wastewater treatment plant. Water Environment Research, 2019, 91, 1565-1575.	2.7	20
7	Housefly larvae (Musca domestica) significantly accelerates degradation of monensin by altering the structure and abundance of the associated bacterial community. Ecotoxicology and Environmental Safety, 2019, 170, 418-426.	6.0	13
8	Effect of the coexposure of sulfadiazine, ciprofloxacin and zinc on the fate of antibiotic resistance genes, bacterial communities and functions in three-dimensional biofilm-electrode reactors. Bioresource Technology, 2020, 296, 122290.	9.6	37
9	Contribution of antibiotics to the fate of antibiotic resistance genes in anaerobic treatment processes of swine wastewater: A review. Bioresource Technology, 2020, 299, 122654.	9.6	57
10	Evolution and distribution of resistance genes and bacterial community in water and biofilm of a simulated fish-duck integrated pond with stress. Chemosphere, 2020, 245, 125549.	8.2	13
11	Mitigation of antibiotic resistance in a pilot-scale system treating wastewater from high-speed railway trains. Chemosphere, 2020, 245, 125484.	8.2	13
12	Occurrence and distribution of antibiotic resistance genes in the coastal sediments of effluent-receiving areas of WWTPs, China. Bioresource Technology Reports, 2020, 11, 100511.	2.7	16
13	Comparison of the elimination effectiveness of tetracycline and AmpC β-lactamase resistance genes in a municipal wastewater treatment plant using four parallel processes. Ecotoxicology, 2021, 30, 1586-1597.	2.4	9
14	Struvite crystallization induced the discrepant transports of antibiotics and antibiotic resistance genes in phosphorus recovery from swine wastewater. Environmental Pollution, 2020, 266, 115361.	7.5	8
15	The relationship between culturable doxycycline-resistant bacterial communities and antibiotic resistance gene hosts in pig farm wastewater treatment plants. Ecotoxicology and Environmental Safety, 2020, 206, 111164.	6.0	19
16	Hospital Wastewater as a Reservoir for Antibiotic Resistance Genes: A Meta-Analysis. Frontiers in Public Health, 2020, 8, 574968.	2.7	55
17	Spread of resistance genes from duck manure to fish intestine in simulated fish-duck pond and the promotion of cefotaxime and As. Science of the Total Environment, 2020, 731, 138693.	8.0	8
18	Antibiotic resistance genes, bacterial communities, and functions in constructed wetland-microbial fuel cells: Responses to the co-stresses of antibiotics and zinc. Environmental Pollution, 2020, 265, 115084	7.5	44

#	Article	IF	CITATIONS
19	Insight into effect of high-level cephalexin on fate and driver mechanism of antibiotics resistance genes in antibiotic wastewater treatment system. Ecotoxicology and Environmental Safety, 2020, 201, 110739.	6.0	20
20	Monensin biodegradation pathway and role of epoxide hydrolase in Stenotrophomonas maltophilia DMâ€2. Journal of Chemical Technology and Biotechnology, 2020, 95, 1825-1833.	3.2	1
21	Temporal dynamics of antibiotic resistant genes and their association with the bacterial community in a water-sediment mesocosm under selection by 14 antibiotics. Environment International, 2020, 137, 105554.	10.0	39
22	Reduction of erythromycin resistance gene <i>erm</i> (F) and class 1 integronâ€integrase genes in wastewater by Bardenpho treatment. Water Environment Research, 2020, 92, 1042-1050.	2.7	9
23	Fate and driving factors of antibiotic resistance genes in an integrated swine wastewater treatment system: From wastewater to soil. Science of the Total Environment, 2020, 721, 137654.	8.0	36
24	Mitigation via physiochemically enhanced primary treatment of antibiotic resistance genes in influent from a municipal wastewater treatment plant. Separation and Purification Technology, 2020, 247, 116946.	7.9	14
25	Antibiotic resistance genes might serve as new indicators for wastewater contamination of coastal waters: Spatial distribution and source apportionment of antibiotic resistance genes in a coastal bay. Ecological Indicators, 2020, 114, 106299.	6.3	37
26	Family livestock waste: An ignored pollutant resource of antibiotic resistance genes. Ecotoxicology and Environmental Safety, 2020, 197, 110567.	6.0	48
27	Antibiotic resistance development and human health risks during wastewater reuse and biosolids application in agriculture. Chemosphere, 2021, 265, 129032.	8.2	64
28	Genotypic and phenotypic situation of antimicrobial drug resistance of Escherichia coli in water and manure between biogas and non-biogas swine farms in central Thailand. Journal of Environmental Management, 2021, 279, 111659.	7.8	15
29	Effects of wastewater treatment and manure application on the dissemination of antimicrobial resistance around swine feedlots. Journal of Cleaner Production, 2021, 280, 123794.	9.3	28
30	Reduction of antibiotic resistance genes under different conditions during composting process of aerobic combined with anaerobic. Bioresource Technology, 2021, 325, 124710.	9.6	22
31	Sewage sludge in agriculture – the effects of selected chemical pollutants and emerging genetic resistance determinants on the quality of soil and crops – a review. Ecotoxicology and Environmental Safety, 2021, 214, 112070.	6.0	115
32	Dynamics of antibiotic resistance and its association with bacterial community in a drinking water treatment plant and the residential area. Environmental Science and Pollution Research, 2021, 28, 55690-55699.	5.3	10
33	Impacts of COVID-19 pandemic on the wastewater pathway into surface water: A review. Science of the Total Environment, 2021, 774, 145586.	8.0	54
34	Fate of antibiotics and antibiotic resistance genes during aerobic co-composting of food waste with sewage sludge. Science of the Total Environment, 2021, 784, 146950.	8.0	40
35	Performance of full scale constructed wetlands in removing antibiotics and antibiotic resistance genes. Science of the Total Environment, 2021, 786, 147368.	8.0	48
36	Co-occurrence of antimicrobial and metal resistance genes in pig feces and agricultural fields fertilized with slurry. Science of the Total Environment, 2021, 792, 148259.	8.0	21

#	ARTICLE Advancements in detection and removal of antibiotic resistance genes in sludge digestion: A	IF	CITATIONS
37 38	state-of-art review. Bioresource Technology, 2022, 344, 126197. Impact of Hospital Wastewater on the Occurrence and Diversity of Beta-Lactamase Genes During Wastewater Treatment with an Emphasis on Carbapenemase Genes: A Metagenomic Approach. Frontiers in Environmental Science, 2021, 9, .	9.6 3.3	9
39	Fates of intracellular and extracellular antibiotic resistance genes during the cattle farm wastewater treatment process. Bioresource Technology, 2022, 344, 126272.	9.6	23
40	Metagenomics-Guided Assessment of Water Quality and Predicting Pathogenic Load. Impact of Meat Consumption on Health and Environmental Sustainability, 2022, , 71-91.	0.4	1
41	Impact of pharmaceuticals and antibiotics waste on the river ecosystem: a growing threat. , 2022, , 15-36.		2
42	Occurrence and distribution of Carbapenem-resistant Enterobacterales and carbapenemase genes along a highly polluted hydrographic basin. Environmental Pollution, 2022, 300, 118958.	7.5	7
43	Multidrug resistance problems targeting piglets and environmental health by Escherichia coli in intensive swine farms. Emerging Contaminants, 2022, 8, 123-133.	4.9	8
44	Dissimilatory microbial sulfur and methane metabolism in the water column of a shallow meromictic lake. Systematic and Applied Microbiology, 2022, 45, 126320.	2.8	7
45	The reduction and fate of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in microbial fuel cell (MFC) during treatment of livestock wastewater. Journal of Contaminant Hydrology, 2022, 247, 103981.	3.3	13
46	Antibiotics and microbial community-induced antibiotic-resistant genes distribution in soil and sediment in the eastern coastline of China. Environmental Monitoring and Assessment, 2022, 194, .	2.7	2
47	Heavy Metal and Antibiotic Resistance in Four Indian and UK Rivers with Different Levels and Types of Water Pollution. SSRN Electronic Journal, 0, , .	0.4	0
48	Response of performance, antibiotic resistance genes and bacterial community exposure to compound antibiotics stress: Full nitrification to shortcut nitrification and denitrification. Chemical Engineering Journal, 2023, 451, 138750.	12.7	4
49	Arsenic resistance and horizontal gene transfer are associated with carbon and nitrogen enrichment in bacteria. Environmental Pollution, 2022, 311, 119937.	7.5	1
50	Coastal mudflats as reservoirs of extracellular antibiotic resistance genes: Studies in Eastern China. Journal of Environmental Sciences, 2023, 129, 58-68.	6.1	3
51	Targeting current and future threats: recent methodological trends in environmental antimicrobial resistance research and their relationships to risk assessment. Environmental Science: Water Research and Technology, 2022, 8, 1787-1802.	2.4	4
52	Heavy metal and antibiotic resistance in four Indian and UK rivers with different levels and types of water pollution. Science of the Total Environment, 2023, 857, 159059.	8.0	26
53	Effect of graphene and graphene oxide on antibiotic resistance genes during copper-contained swine manure anaerobic digestion. Environmental Science and Pollution Research, 0, , .	5.3	2
54	Removal of antibiotic resistance genes during livestock wastewater treatment processes: Review and prospects. Frontiers in Veterinary Science, 0, 9, .	2.2	4

CITATION REPORT

#	Article	IF	CITATIONS
55	Removal of Antibiotic Resistance Genes from Animal Wastewater by Ecological Treatment Technology Based on Plant Absorption. International Journal of Environmental Research and Public Health, 2023, 20, 4357.	2.6	0
56	Antibiotic and heavy metal resistance genes in hospital effluents and streams in Benin. African Journal of Microbiology Research, 2023, 17, 94-101.	0.4	0
57	Enrichment of antibiotic resistance genes in roots is related to specific bacterial hosts and soil properties in two soil–plant systems. Science of the Total Environment, 2023, 886, 163933.	8.0	4
58	Distribution and transmission of β-lactamase resistance genes in meal-to-milk chain on dairy farm. Environmental Pollution, 2023, 331, 121831.	7.5	1
59	Insights into antibiotic resistance gene abundances and regulatory mechanisms induced by ionic liquids during composting. Journal of Environmental Management, 2023, 345, 118652.	7.8	0
60	The factors controlling antibiotic resistance genes in different treatment processes of mainstream full-scale wastewater treatment plants. Science of the Total Environment, 2023, 900, 165815.	8.0	3
61	Structure of the Microbial Community of the Biological Wastewater Treatment Plant of a Pig Farm and Storage Pond. Nanobiotechnology Reports, 2023, 18, 506-514.	0.6	0
62	Deciphering antibiotic resistome variations during nitrogen removal process transition under mixed antibiotics stress: Assembly process and driving factors. Bioresource Technology, 2024, 391, 129943.	9.6	1
63	Effects of plasticizer on removal of antibiotics and antibiotic resistance genes from agricultural soils via soil microbial fuel cells. Pedosphere, 2023, , .	4.0	0
64	Reorganizing heterogeneous information from host–microbe interaction reveals innate associations among samples. Quantitative Biology, 2023, 11, 451-470.	0.5	0
65	A systematic review of antibiotic resistance driven by metal-based nanoparticles: Mechanisms and a call for risk mitigation. Science of the Total Environment, 2024, 916, 170080.	8.0	0
66	Impacts of irrigation with treated livestock wastewater on the accumulation characteristic of ARGs in the farmland soil: a case study in Hohhot, China. Environmental Geochemistry and Health, 2024, 46, .	3.4	Ο
67	Revealing the differences in metabolisms and nitrogen removal mechanisms of the full and shortcut nitrification-denitrification processes for the treatment of livestock wastewater. Journal of Environmental Chemical Engineering, 2024, 12, 112381.	6.7	0

CITATION REPORT