A Landscape Study of Computer Science Education in N

DOI: 10.1145/3159450.3159467

Citation Report

#	Article	IF	CITATIONS
1	Successes and challenges in implementing a progressive K-8 computer science curriculum. , 2018, , .		0
2	AP Computer Science Principles' Impact on the Landscape of High School Computer Science using Maryland as a Model. , 2019, , .		3
3	A Systems Change Approach to CS Education. , 2019, , .		9
4	An Analysis through an Equity Lens of the Implementation of Computer Science in K-8 Classrooms in a Large, Urban School District. , 2019, , .		7
5	Equity in the Who, How and What of Computer Science Education: K12 School District Conceptualizations of Equity in †CS for All' Initiatives. , 2019, , .		26
6	Developing a Systemic, Scalable Model to Broaden Participation in Middle School Computer Science. , 2019, , .		1
7	Negotiating Equity Priorities Within Systems Change: A Case Study of a District-Level Initiative to Implement K12 Computer Science Education. Computing in Science and Engineering, 2020, 22, 7-19.	1.2	5
8	Changing Teacher Perceptions about Computational Thinking in Grades 1-6, through a National Training Program. , 2021, , .		1
9	The Design and Implementation of a Method for Evaluating and Building Research Practice Partnerships. , 2021, , .		2
10	What about the gatekeepers? School principals' and school guidance counsellors' attitudes towards computer science in secondary schools. Computer Science Education, 2023, 33, 168-185.	2.7	3
11	Investigating the Role of Cognitive Abilities in Computational Thinking for Young Learners. , 2021, , .		0
12	An International Study Piloting the MEasuring TeacheR Enacted Computing Curriculum (METRECC) Instrument. , 2019, , .		24
13	Introducing Computer Science into K-8 Classrooms. , 2020, , .		0
14	Evaluating A Systems Approach to District CS Education Implementation. , 2020, , .		9
15	SWOT Analysis of Two Different Designs of Summer Professional Development Institutes for K-8 CS Teachers. , 2021, , .		0
16	Capacity-related factors associated with computer science access and participation in Georgia public high schools. Policy Futures in Education, 0, , 147821032210819.	1.2	2
17	How a Research-Practice Partnership Refined its Strategy for Integrating CS/CT into K-5 Curricula. , 2022, , .		3
18	Debugging inequities: Data use, "gumshoe work,―and problem identification in district-wide computer science education initiatives. Policy Futures in Education, 0, , 147821032211263.	1.2	1

ATION RED

#	Article	IF	CITATIONS
19	Barriers and Supports to Offering Computer Science in High Schools: A Case Study of Structures and Agents. ACM Transactions on Computing Education, 2023, 23, 1-27.	2.9	1
20	Environmental design as a component of blockâ€based programming. Computer Applications in Engineering Education, 2023, 31, 408-420.	2.2	1
21	Learner Ideas and Interests Expressed in Open-ended Projects in a Middle School Computer Science Curriculum. , 2023, , .		1
23	Introducing Computational Thinking at Vocational High Schools. , 2023, , .		0
24	Small Steps, Big Progress: Analyzing District Led Goals to Advance CS Education. , 2024, , .		0

CITATION REPORT