GM1 ganglioside-independent intoxication by Cholera t

PLoS Pathogens 14, e1006862 DOI: 10.1371/journal.ppat.1006862

Citation Report

#	Article	IF	CITATIONS
1	On the use of cholera toxin. Glycoconjugate Journal, 2018, 35, 161-163.	1.4	14
2	Fucosylated Molecules Competitively Interfere with Cholera Toxin Binding to Host Cells. ACS Infectious Diseases, 2018, 4, 758-770.	1.8	42
3	Human evolutionary loss of epithelial Neu5Gc expression and species-specific susceptibility to cholera. PLoS Pathogens, 2018, 14, e1007133.	2.1	33
4	Photocrosslinking probes for capture of carbohydrate interactions. Current Opinion in Chemical Biology, 2019, 53, 173-182.	2.8	32
5	Giardia duodenalis: Role of secreted molecules as virulent factors in the cytotoxic effect on epithelial cells. Advances in Parasitology, 2019, 106, 129-169.	1.4	14
6	Crystal structures of cholera toxin in complex with fucosylated receptors point to importance of secondary binding site. Scientific Reports, 2019, 9, 12243.	1.6	32
7	Lectin antagonists in infection, immunity, and inflammation. Current Opinion in Chemical Biology, 2019, 53, 51-67.	2.8	48
8	Outer Membrane Vesicle-Host Cell Interactions. Microbiology Spectrum, 2019, 7, .	1.2	120
9	The role of PS 18:0/18:1 in membrane function. Nature Communications, 2019, 10, 2752.	5.8	65
10	The influence of heteromultivalency on lectin–glycan binding behavior. Glycobiology, 2019, 29, 397-408.	1.3	17
12	Cell type and receptor identity regulate cholera toxin subunit B (CTB) internalization. Interface Focus, 2019, 9, 20180076.	1.5	25
13	The Role of Glycosphingolipids in Immune Cell Functions. Frontiers in Immunology, 2019, 10, 90.	2.2	101
14	Outer Membrane Vesicle-Host Cell Interactions. , 0, , 201-214.		7
15	Cytoplasmic glycoengineering enables biosynthesis of nanoscale glycoprotein assemblies. Nature Communications, 2019, 10, 5403.	5.8	36
16	Novel Cholera Toxin Variant and ToxT Regulon in Environmental <i>Vibrio mimicus</i> Isolates: Potential Resources for the Evolution of <i>Vibrio cholerae</i> Hybrid Strains. Applied and Environmental Microbiology, 2019, 85, .	1.4	18
17	A hybrid polymer to target blood group dependence of cholera toxin. Organic and Biomolecular Chemistry, 2020, 18, 52-55.	1.5	8
18	Targeting Multiple Binding Sites on Cholera Toxin B with Glycomimetic Polymers Promotes the Formation of Protein–Polymer Aggregates. Biomacromolecules, 2020, 21, 4878-4887.	2.6	2
19	Sphingolipids controlling ciliary and microvillar function. FEBS Letters, 2020, 594, 3652-3667.	1.3	16

TATION REPO

	Cı	CITATION REPORT	
#	ARTICLE	IF	CITATIONS
20	Engulfment by Porcine Alveolar Macrophages. AAPS PharmSciTech, 2020, 21, 134.	1.5	3
21	Fucose-Galactose Polymers Inhibit Cholera Toxin Binding to Fucosylated Structures and Galactose-Dependent Intoxication of Human Enteroids. ACS Infectious Diseases, 2020, 6, 1192-1203	. 1.8	11
22	Investigating Conformational Dynamics of Lewis Y Oligosaccharides and Elucidating Blood Group Dependency of Cholera Using Molecular Dynamics. ACS Omega, 2020, 5, 3932-3942.	1.6	33
23	Novel approaches to glycomimetic design: development of small molecular weight lectin antagonists. Expert Opinion on Drug Discovery, 2021, 16, 513-536.	2.5	5
24	Enteropathogenic Infections: Organoids Go Bacterial. Stem Cells International, 2021, 2021, 1-14.	1.2	7
25	Involvement of Nâ€glycans in binding of <i>Photorhabdus luminescens</i> Tc toxin. Cellular Microbiology, 2021, 23, e13326.	1.1	7
26	Anti-diarrheal therapeutic potential of diminazene aceturate stimulation of the ACE II/Ang-(1–7)/Ma receptor axis in mice: A trial study. Biochemical Pharmacology, 2021, 186, 114500.	is 2.0	3
28	Outer Membrane Vesicles of Vibrio cholerae Protect and Deliver Active Cholera Toxin to Host Cells via Porin-Dependent Uptake. MBio, 2021, 12, e0053421.	1.8	39
29	The Protein Toxins Ricin and Shiga Toxin as Tools to Explore Cellular Mechanisms of Internalization and Intracellular Transport. Toxins, 2021, 13, 377.	1.5	19
30	A photo-cross-linking GlcNAc analog enables covalent capture of N-linked glycoprotein-binding partners on the cell surface. Cell Chemical Biology, 2022, 29, 84-97.e8.	2.5	21
31	Blood group AB increases risk for surgical necrotizing enterocolitis and focal intestinal perforation in preterm infants with very low birth weight. Scientific Reports, 2021, 11, 13777.	1.6	4
32	Glycans in autophagy, endocytosis and lysosomal functions. Glycoconjugate Journal, 2021, 38, 625-6	47. 1.4	15
33	Cholera Toxin as a Probe for Membrane Biology. Toxins, 2021, 13, 543.	1.5	30
36	The Inhibitory Effect of Cholera Toxin B Subunit on <i>Clostridium Perfringens</i> Iota-Toxin-Induced Cytotoxicity. BPB Reports, 2020, 3, 146-149.	0.1	0
37	Nanocube-Based Fluidic Glycan Array. Methods in Molecular Biology, 2022, 2460, 45-63.	0.4	0
38	Impaired intestinal stem cell activity in ETEC infection: enterotoxins, cyclic nucleotides, and Wnt signaling. Archives of Toxicology, 2022, 96, 1213-1225.	1.9	8
39	From the Dish to the Real World: Modeling Interactions between the Gut and Microorganisms in Gut Organoids by Tailoring the Gut Milieu. International Journal of Stem Cells, 2022, 15, 70-84.	0.8	7
40	Intranasal delivery of inactivated PRRSV loaded cationic nanoparticles coupled with enterotoxin subunit B induces PRRSV-specific immune responses in pigs. Scientific Reports, 2022, 12, 3725.	1.6	4

CITATION REPORT

#	Article	IF	CITATIONS
41	Microbial carbohydrate-binding toxins – From etiology to biotechnological application. Biotechnology Advances, 2022, 59, 107951.	6.0	6
42	Characterization of the ganglioside recognition profile of <i>Escherichia coli</i> heat-labile enterotoxin LT-IIc. Glycobiology, 2022, 32, 391-403.	1.3	2
44	In-Depth Characterization of a Re-Engineered Cholera Toxin Manufacturing Process Using Growth-Decoupled Production in Escherichia coli. Toxins, 2022, 14, 396.	1.5	2
45	Metabolism of Dietary Carbohydrates by Intestinal Bacteria. Food Chemistry, Function and Analysis, 2022, , 18-47.	0.1	1
46	Bioorthogonal, Bifunctional Linker for Engineering Synthetic Glycoproteins. Jacs Au, 2022, 2, 2003 2038-2047.	3.6	3
47	Simple and practical sialoglycan encoding system reveals vast diversity in nature and identifies a universal sialoglycan-recognizing probe derived from AB5 toxin B subunits. Clycobiology, 2022, 32, 1101-1115.	1.3	1
50	Characterization and utility of two monoclonal antibodies to cholera toxin B subunit. Scientific Reports, 2023, 13, .	1.6	1
55	The glycobiology of microbial infectious disease. , 2024, , 285-322.		Ο