Lifeâ€eycle analysis of integrated biorefineries with coa chemicals: coâ€product handling methods and implicat

Biofuels, Bioproducts and Biorefining 12, 815-833 DOI: 10.1002/bbb.1893

Citation Report

#	Article	IF	CITATIONS
1	Techno-Economic Analysis and Life-Cycle Analysis of Two Light-Duty Bioblendstocks: Isobutanol and Aromatic-Rich Hydrocarbons. ACS Sustainable Chemistry and Engineering, 2018, 6, 8790-8800.	3.2	18
2	A comprehensive review of life cycle assessment (LCA) of microalgal and lignocellulosic bioenergy products from thermochemical processes. Bioresource Technology, 2019, 291, 121837.	4.8	113
3	Production of biofuel precursors and value-added chemicals from hydrolysates resulting from hydrothermal processing of biomass: A review. Biomass and Bioenergy, 2019, 130, 105397.	2.9	62
4	Hierarchically Structured CeO2 Catalyst Particles From Nanocellulose/Alginate Templates for Upgrading of Fast Pyrolysis Vapors. Frontiers in Chemistry, 2019, 7, 730.	1.8	10
5	An integrated sustainability evaluation of highâ€octane gasoline production from lignocellulosic biomass. Biofuels, Bioproducts and Biorefining, 2019, 13, 1439-1453.	1.9	8
6	Challenges in Quantifying Greenhouse Gas Impacts of Waste-Based Biofuels in EU and US Biofuel Policies: Case Study of Butanol and Ethanol Production from Municipal Solid Waste. Environmental Science & Technology, 2019, 53, 12141-12149.	4.6	24
7	Effects of system design and Co-product treatment strategies on the life cycle performance of biofuels from microalgae. Journal of Cleaner Production, 2019, 230, 536-546.	4.6	13
8	Biofuel and bioproduct environmental sustainability analysis. Current Opinion in Biotechnology, 2019, 57, 88-93.	3.3	38
9	Performance-advantaged ether diesel bioblendstock production by a priori design. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26421-26430.	3.3	39
10	The Role of Biorefinery Co-Products, Market Proximity and Feedstock Environmental Footprint in Meeting Biofuel Policy Goals for Winter Barley-to-Ethanol. Energies, 2020, 13, 2236.	1.6	7
11	Utilization of lipid-extracted biomass (LEB) to improve the economic feasibility of biodiesel production from green microalgae. Environmental Reviews, 2020, 28, 325-338.	2.1	11
12	Sustainable utilization of crop residues for energy generation: A life cycle assessment (LCA) perspective. Bioresource Technology, 2020, 303, 122964.	4.8	132
13	Coproducts of algae and yeast-derived single cell oils: A critical review of their role in improving biorefinery sustainability. Bioresource Technology, 2020, 303, 122862.	4.8	51
14	The effect of functional unit and co-product handling methods on life cycle assessment of an algal biorefinery. Algal Research, 2020, 46, 101770.	2.4	42
15	Sustainability check for bio-based technologies: A review of process-based and life cycle approaches. Renewable and Sustainable Energy Reviews, 2021, 135, 110213.	8.2	67
16	Better management practices for environmentally sustainable production of microalgae and algal biofuels. Journal of Cleaner Production, 2021, 289, 125150.	4.6	22
17	Life cycle assessment: Blazing a trail for bioresources management. Energy Conversion and Management: X, 2021, 10, 100063.	0.9	14
18	Understanding Fundamental and Applied Aspects of Oxidative Pretreatment for Lignocellulosic Biomass and Lignin Valorization. , 2021, , 327-335.		1

#	Article	IF	CITATIONS
19	Consistent Metrics Needed for Quantifying Methane Emissions from Upstream Oil and Gas Operations. Environmental Science and Technology Letters, 2021, 8, 345-349.	3.9	15
20	Review of waste biorefinery development towards a circular economy: From the perspective of a life cycle assessment. Renewable and Sustainable Energy Reviews, 2021, 139, 110716.	8.2	71
21	Modeling life ycle inventory for multiâ€product biorefinery: tracking environmental burdens and evaluation of uncertainty caused by allocation procedure. Biofuels, Bioproducts and Biorefining, 2021, 15, 1281-1300.	1.9	7
22	From waste to sustainable industry: How can agro-industrial wastes help in the development of new products?. Resources, Conservation and Recycling, 2021, 169, 105466.	5.3	107
23	Enzyme catalysis coupled with artificial membranes towards process intensification in biorefinery- a review. Bioresource Technology, 2021, 335, 125248.	4.8	23
24	Life-cycle analysis of a hydrocarbon biorefinery. , 2022, , 387-408.		1
25	BioSTEAM-LCA: An Integrated Modeling Framework for Agile Life Cycle Assessment of Biorefineries under Uncertainty. ACS Sustainable Chemistry and Engineering, 2020, 8, 18903-18914.	3.2	26
28	Current State of the Problem of Probiotic Preparations. MikrobiolohichnyÄ-Zhurnal, 2019, 81, 114-140.	0.2	0
29	Lignin valorization: Status, challenges and opportunities. Bioresource Technology, 2022, 347, 126696.	4.8	136
31	Life Cycle Greenhouse Gas Emissions and Water and Fossil-Fuel Consumptions for Polyethylene Furanoate and Its Coproducts from Wheat Straw. ACS Sustainable Chemistry and Engineering, 2022, 10, 2830-2843.	3.2	14
32	Evaluation of environmental and economic hotspots and value creation in multi-product lignocellulosic biorefinery. Biomass and Bioenergy, 2022, 159, 106394.	2.9	6
33	Space, time, and sustainability: The status and future of life cycle assessment frameworks for novel biorefinery systems. Renewable and Sustainable Energy Reviews, 2022, 159, 112259.	8.2	26
34	A critical insight into the development, regulation and future prospects of biofuels in Canada. Bioengineered, 2021, 12, 9847-9859.	1.4	8
35	Integrated biopolymer and bioenergy production from organic wastes: Recent advances and future outlook. , 2022, , 261-283.		1
37	Life Cycle Assessment of Polymers and Their Recycling. ACS Symposium Series, 0, , 143-170.	0.5	4
38	Environmental and Economic Assessment of a Novel Solvolysis-Based Biorefinery Producing Lignin-Derived Marine Biofuel and Cellulosic Ethanol. Energies, 2022, 15, 5007.	1.6	3
39	Offsetting the environmental impacts of single or multi-product biorefineries from wheat straw. Bioresource Technology, 2022, 361, 127698.	4.8	2
40	Environmental Assessment of the Life Cycle of Electricity Generation from Biogas in Polish Conditions. Energies, 2022, 15, 5601.	1.6	1

#	Article	IF	CITATIONS
41	Co-Processing Agricultural Residues and Wet Organic Waste Can Produce Lower-Cost Carbon-Negative Fuels and Bioplastics. SSRN Electronic Journal, 0, , .	0.4	0
42	Effects of soybean varieties on lifeâ€cycle greenhouse gas emissions ofÂbiodiesel and renewable diesel. Biofuels, Bioproducts and Biorefining, 2023, 17, 449-462.	1.9	1
43	Life-Cycle Assessment of Biochemicals with Clear Near-Term Market Potential. ACS Sustainable Chemistry and Engineering, 2023, 11, 2773-2783.	3.2	6
44	Co-Processing Agricultural Residues and Wet Organic Waste Can Produce Lower-Cost Carbon-Negative Fuels and Bioplastics. Environmental Science & Technology, 2023, 57, 2958-2969.	4.6	4
45	Biomass as a Source of Energy, Fuels and Chemicals. , 2021, , 589-741.		0
50	Valorisation of Agro-industrial Waste: Recent Advances in the Recovery of Bioactive Compounds and Environmental Perspectives. , 2023, , 1-44.		0
53	Life Cycle Assessment applied to waste-to-energy technologies. , 2024, , 527-543.		0

CITATION REPORT