Dual Delivery of bFGF- and NGF-Binding Coacervate Co Neuronal Proliferation

Cellular Physiology and Biochemistry 47, 948-956 DOI: 10.1159/000490139

Citation Report

#	Article	IF	CITATIONS
1	Development of Polymer Coacersome Structure with Enhanced Colloidal Stability for Therapeutic Protein Delivery. Macromolecular Bioscience, 2019, 19, 1900207.	4.1	9
2	bFCF promotes neurological recovery from neonatal hypoxic–ischemic encephalopathy by ILâ€1β signaling pathwayâ€mediated axon regeneration. Brain and Behavior, 2020, 10, e01696.	2.2	4
3	Protein Kinase Cα Promotes Proliferation and Migration of Schwann Cells by Activating ERK Signaling Pathway. Neuroscience, 2020, 433, 94-107.	2.3	6
4	Production and evaluation of biosynthesized cellulose tubes as promising nerve guides for spinal cord injury treatment. Journal of Biomedical Materials Research - Part A, 2020, 108, 1380-1389.	4.0	11
5	Heparinâ€hyaluronic acid nanofibers for growth factor sequestration in spinal cord repair. Journal of Biomedical Materials Research - Part A, 2020, 108, 2023-2031.	4.0	10
6	Neural-Induced Human Adipose Tissue-Derived Stem Cells Conditioned Medium Ameliorates Rotenone-Induced Toxicity in SH-SY5Y Cells. International Journal of Molecular Sciences, 2021, 22, 2322.	4.1	7
7	Claudin-15 overexpression inhibits proliferation and promotes apoptosis of Schwann cells in vitro. Neural Regeneration Research, 2020, 15, 169.	3.0	3
8	Gene Profiles in the Early Stage of Neuronal Differentiation of Mouse Bone Marrow Stromal Cells Induced by Basic Fibroblast Growth Factor. Stem Cells International, 2020, 2020, 1-17.	2.5	4
9	Tissue Engineering Scaffold Slowly Releasing Neurotrophic Factors to Bridge Long Peripheral Nerve Defect. Journal of Biomaterials and Tissue Engineering, 2022, 12, 329-334.	0.1	1
10	Coacervates: Recent developments as nanostructure delivery platforms for therapeutic biomolecules. International Journal of Pharmaceutics, 2022, 624, 122058.	5.2	13
11	Peptide-based coacervates in therapeutic applications. Frontiers in Bioengineering and Biotechnology, 0, 10, .	4.1	6
12	Biocompatible Macroion/Growth Factor Assemblies for Medical Applications. Biomolecules, 2023, 13, 609.	4.0	0
13	Biomaterial-Based bFGF Delivery for Nerve Repair. Oxidative Medicine and Cellular Longevity, 2023, 2023, 1-13.	4.0	0
14	Nanowired Delivery of Cerebrolysin with Mesenchymal Stem Cells Attenuates Heat Stress-Induced Exacerbation of Neuropathology Following Brain Blast Injury. Advances in Neurobiology, 2023, , 231-270.	1.8	0
15	Fabrication of water-dispersible and cell-stimulating calcium phosphate nanoparticles immobilizing basic fibroblast growth factor. Colloids and Surfaces B: Biointerfaces, 2023, 230, 113502.	5.0	0