Opportunities and Challenges for Big Data in Agricultur

Annual Review of Resource Economics 10, 19-37

DOI: 10.1146/annurev-resource-100516-053654

Citation Report

#	Article	IF	CITATIONS
1	Adoption of Labor-Saving Technologies in Agriculture. Annual Review of Resource Economics, 2018, 10, 185-206.	1.5	29
2	Adoption of precision agriculture technologies in Ontario crop production. Canadian Journal of Plant Science, 2018, 98, 1384-1388.	0.3	34
3	Fault Analysis System for Agricultural Machinery Based on Big Data. IEEE Access, 2019, 7, 99136-99151.	2.6	22
4	Data-Driven Decision Making in Precision Agriculture: The Rise of Big Data in Agricultural Systems. Journal of Agricultural and Food Information, 2019, 20, 344-380.	1.1	102
5	Sustainable Crop Production Systems and Human Nutrition. Frontiers in Sustainable Food Systems, 2019, 3, .	1.8	24
6	Revolution 4.0: Industry vs. Agriculture in a Future Development for SMEs. Processes, 2019, 7, 36.	1.3	227
7	How flat is flat? Measuring payoff functions and the implications for site-specific crop management. Computers and Electronics in Agriculture, 2019, 162, 459-465.	3.7	9
8	Looking through a responsible innovation lens at uneven engagements with digital farming. Njas - Wageningen Journal of Life Sciences, 2019, 90-91, 1-6.	7.9	102
9	Precision Farming at the Nexus of Agricultural Production and the Environment. Annual Review of Resource Economics, 2019, 11, 313-335.	1.5	213
10	Configuring the new digital landscape in western Canadian agriculture. Njas - Wageningen Journal of Life Sciences, 2019, 90-91, 1-11.	7.9	33
11	The Digital Divide and How It Matters for Canadian Food System Equity. Canadian Journal of Communication, 2019, 44, PP-63-PP-68.	0.1	34
12	A Vision for Development and Utilization of High-Throughput Phenotyping and Big Data Analytics in Livestock. Frontiers in Genetics, 2019, 10, 1197.	1.1	64
13	A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda. Njas - Wageningen Journal of Life Sciences, 2019, 90-91, 1-16.	7.9	389
14	Farmers' willingness to participate in a big data platform. Agribusiness, 2020, 36, 20-36.	1.9	15
15	Adaptation and development pathways for different types of farmers. Environmental Science and Policy, 2020, 104, 174-189.	2.4	125
16	Development of Online Egg Grading Information Management System with Data Warehouse Technique. Applied Engineering in Agriculture, 2020, 36, 589-604.	0.3	O
17	The future(s) of digital agriculture and sustainable food systems: An analysis of high-level policy documents. Ecosystem Services, 2020, 45, 101183.	2.3	138
18	Managing the drone revolution: A systematic literature review into the current use of airborne drones and future strategic directions for their effective control. Journal of Air Transport Management, 2020, 89, 101929.	2.4	111

#	ARTICLE	IF	CITATIONS
19	Twenty Key Challenges in Environmental and Resource Economics. Environmental and Resource Economics, 2020, 77, 725-750.	1.5	30
20	Big Data Processing Architecture for Smart Farming. Procedia Computer Science, 2020, 177, 78-85.	1.2	17
21	Toward a Big Data Knowledge-Base Management System for Precision Livestock Farming. Procedia Computer Science, 2020, 177, 136-142.	1.2	13
22	Digitalization in the agri-food industry: the relationship between technology and sustainable development. Management Decision, 2020, 58, 1737-1757.	2.2	56
23	Harnessing Advances in Agricultural Technologies to Optimize Resource Utilization in the Food-Energy-Water Nexus. Annual Review of Resource Economics, 2020, 12, 65-85.	1.5	27
24	Agrarian Vision, Industrial Vision, and Rent-Seeking: A Viewpoint. Journal of Agricultural and Environmental Ethics, 2020, 33, 391-400.	0.9	3
25	Precision Technologies for Agriculture: Digital Farming, Gene-Edited Crops, and the Politics of Sustainability. Global Environmental Politics, 2020, 20, 49-69.	1.7	100
26	Analysis of the impact of state support on the efficiency of agricultural production in the context of digitalization in the Volgograd region. IOP Conference Series: Earth and Environmental Science, 2020, 548, 082062.	0.2	1
27	How climatic and sociotechnical factors influence crop production: a case study of canola production. SN Applied Sciences, 2020, 2, 1.	1.5	3
28	Translation of Irrigation, Drainage, and Electrical Conductivity Data in a Soilless Culture System into Plant Growth Information for the Development of an Online Indicator Related to Plant Nutritional Aspects. Agronomy, 2020, 10, 1306.	1.3	3
29	Barriers to the adoption of a fish health data integration initiative in the Chilean salmonid production. Computers and Electronics in Agriculture, 2020, 179, 105853.	3.7	2
30	Spatially and temporally disparate data in systems agriculture: Issues and prospective solutions. Agronomy Journal, 2020, 112, 4498-4510.	0.9	19
31	What Are the Implications of Digitalisation for Agricultural Knowledge?. Frontiers in Sustainable Food Systems, 2020, 4, .	1.8	71
32	Modelling food security: Bridging the gap between the micro and the macro scale. Global Environmental Change, 2020, 63, 102085.	3.6	47
33	The Importance of Social Norm on Adopting Sustainable Digital Fertilisation Methods. Organization and Environment, 2022, 35, 79-102.	2.5	14
34	Edge Computing-Enabled Wireless Sensor Networks for Multiple Data Collection Tasks in Smart Agriculture. Journal of Sensors, 2020, 2020, 1-9.	0.6	22
35	Deep Neural Networks and Transfer Learning for Food Crop Identification in UAV Images. Drones, 2020, 4, 7.	2.7	54
36	Limits to Profit Maximization as a Guide to Behavior Change. Applied Economic Perspectives and Policy, 2020, 42, 67-79.	3.1	66

#	Article	IF	Citations
37	The challenge of feeding a diverse and growing population. Physiology and Behavior, 2020, 221, 112908.	1.0	15
38	From Industry 4.0 to Agriculture 4.0: Current Status, Enabling Technologies, and Research Challenges. IEEE Transactions on Industrial Informatics, 2021, 17, 4322-4334.	7.2	306
39	Spatiotemporal evolution characteristics of China's cold chain logistics resources and agricultural product using remote sensing perspective. European Journal of Remote Sensing, 2021, 54, 275-283.	1.7	5
40	Insect pest monitoring with camera-equipped traps: strengths and limitations. Journal of Pest Science, 2021, 94, 203-217.	1.9	92
41	Understanding the public attitudinal acceptance of digital farming technologies: a nationwide survey in Germany. Agriculture and Human Values, 2021, 38, 107-128.	1.7	60
42	Digital technology dilemma: on unlocking the soil quality index conundrum. Bioresources and Bioprocessing, 2021, 8, 6.	2.0	8
43	Big Data and AI Revolution in Precision Agriculture: Survey and Challenges. IEEE Access, 2021, 9, 110209-110222.	2.6	105
44	Expert Insights on the Impacts of, and Potential for, Agricultural Big Data. Sustainability, 2021, 13, 2521.	1.6	12
45	Digital Transformation and Environmental Sustainability: A Review and Research Agenda. Sustainability, 2021, 13, 1530.	1.6	202
46	Economic and environmental consequences of nitrogen application rates, timing and methods on corn in Ontario. Agricultural Systems, 2021, 188, 103018.	3.2	13
47	Payments by modelled results: A novel design for agri-environmental schemes. Land Use Policy, 2021, 102, 105230.	2.5	44
48	The analysis of the factors influence on stock breeding in Volgograd Oblast during the pandemic. IOP Conference Series: Earth and Environmental Science, 2021, 677, 032048.	0.2	0
49	Fertilizers and nitrate pollution of surface and ground water: an increasingly pervasive global problem. SN Applied Sciences, 2021, 3, 1.	1.5	154
50	Digitalization and AI in European Agriculture: A Strategy for Achieving Climate and Biodiversity Targets?. Sustainability, 2021, 13, 4652.	1.6	53
51	Agricultural policy in the era of digitalisation. Food Policy, 2021, 100, 102019.	2.8	80
52	Development of Technological Capabilities through the Internet of Things (IoT): Survey of Opportunities and Barriers for IoT Implementation in Portugal's Agro-Industry. Applied Sciences (Switzerland), 2021, 11, 3454.	1.3	17
53	Big data for sustainable agriâ€food supply chains: a review and future research perspectives. Journal of Data Information and Management, 2021, 3, 167-182.	1.6	28
54	Understanding the farm data lifecycle: collection, use, and impact of farm data on U.S. commercial corn and soybean farms. Precision Agriculture, 2021, 22, 1685-1710.	3.1	5

#	Article	IF	CITATIONS
55	Big Data Impacting Dynamic Food Safety Risk Management in the Food Chain. Frontiers in Microbiology, 2021, 12, 668196.	1.5	24
56	Crop Diversification for Improved Weed Management: A Review. Agriculture (Switzerland), 2021, 11, 461.	1.4	35
57	Adoption barriers for precision agriculture technologies in Canadian crop production. Canadian Journal of Plant Science, 2021, 101, 412-416.	0.3	11
58	BIG DATA TECHNOLOGY APPLICATIONS IN AGRICULTURE: A SYSTEMATIC LITERATURE REVIEW. Exacta, 0, , .	0.1	1
59	Food Systems for Human and Planetary Health: Economic Perspectives and Challenges. Annual Review of Resource Economics, 2021, 13, 131-156.	1.5	20
60	New but for whom? Discourses of innovation in precision agriculture. Agriculture and Human Values, 2021, 38, 1181-1199.	1.7	51
61	Who will benefit from big data? Farmers' perspective on willingness to share farm data. Journal of Rural Studies, 2021, 88, 346-353.	2.1	16
62	Employee domain and non-financial performance: the moderating effect of digital reputation. Meditari Accountancy Research, 2022, 30, 893-913.	2.4	6
63	Fermatean Fuzzy CRITIC-COPRAS Method for Evaluating the Challenges to Industry 4.0 Adoption for a Sustainable Digital Transformation. Sustainability, 2021, 13, 9577.	1.6	65
64	Lettuce Growth Pattern Analysis Using U-Net Pre-Trained with Arabidopsis. Agriculture (Switzerland), 2021, 11, 890.	1.4	4
65	Digitalization of agriculture: A way to solve the food problem or a trolley dilemma?. Technology in Society, 2021, 67, 101744.	4.8	73
66	The Digital Agricultural Revolution: A Bibliometric Analysis Literature Review. IEEE Access, 2021, 9, 134762-134782.	2.6	34
67	The environmental and economic efficacy of on-farm beneficial management practices for mitigating soil-related greenhouse gas emissions in Ontario, Canada. Renewable Agriculture and Food Systems, 2021, 36, 307-320.	0.8	10
68	Predictive Counterfactuals for Event Studies with Staggered Adoption: Recovering Heterogeneous Effects from a Residential Energy Efficiency Program. SSRN Electronic Journal, 0, , .	0.4	3
69	Strategic Actions for a Sustainable Internationalization of Agri-Food Supply Chains: The Case of the Dairy Industries from Brazil and Germany. Sustainability, 2021, 13, 10873.	1.6	11
70	Farmers' action space to adopt sustainable practices: a study of arable farming in Saxony. Regional Environmental Change, 2021, 21, 1.	1.4	7
71	Science, Data, and the Struggle for Standing in Environmental Governance. Society and Natural Resources, 2021, 34, 1584-1601.	0.9	5
72	Towards a New Data Economy for EU Agriculture. European Studies, 2019, 23, 91-107.	0.1	6

#	Article	IF	CITATIONS
73	Digital Transformation and Convergence toward the 2030 Agenda's Sustainability Development Goals: Evidence from Italian Listed Firms. Sustainability, 2021, 13, 11831.	1.6	50
74	Evaluating the roles of the farmer's cooperative for fostering environmentally friendly production technologies-a case of kiwi-fruit farmers in Meixian, China. Journal of Environmental Management, 2022, 301, 113858.	3.8	41
75	Digital Technologies, Big Data, and Agricultural Innovation., 2021, , 207-226.		4
76	Smart Plant Disease Management Using Agrometeorological Big Data. Research in Plant Disease, 2020, 26, 121-133.	0.3	3
77	Bridging the gap between models and users: A lightweight mobile interface for optimized farming decisions in interactive modeling sessions. Agricultural Systems, 2022, 195, 103315.	3.2	8
78	Scenarios for European agricultural policymaking in the era of digitalisation. Agricultural Systems, 2022, 196, 103318.	3.2	28
79	Middlemen versus middlemen in agri-food supply chains in Bengaluru, India: Big data takes a byte. Geoforum, 2021, 127, 293-302.	1.4	2
80	Challenges and Opportunities of Digital Technology in Soil Quality and Land Management Research., 2022,, 285-317.		1
81	Indicators of Complexity and Over-Complexification in Global Food Systems. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	2
82	"We're out, so wtf do we do now?― Brexit and rural identity in the era of online agricultural communities. Sociologia Ruralis, 0, , .	1.8	3
83	Farm advisors amid the transition to Agriculture 4.0: Professional identity, conceptions of the future and futureâ€specific competencies. Sociologia Ruralis, 2022, 62, 335-362.	1.8	21
84	Time-Series Growth Prediction Model Based on U-Net and Machine Learning in Arabidopsis. Frontiers in Plant Science, 2021, 12, 721512.	1.7	9
85	Inducing the adoption of emerging technologies for sustainable intensification of food and renewable energy production: insights from applied economics*. Australian Journal of Agricultural and Resource Economics, 2022, 66, 1-23.	1.3	9
86	Managing Canada's land- and seascapes for multiple ecosystem services in the Anthropocene: introduction to the Food, Fiber, Fuel, and Function collection. Facets, 2021, 6, 1986-1992.	1.1	0
87	What are the priority research questions for digital agriculture?. Land Use Policy, 2022, 114, 105962.	2.5	42
88	A scoping review of the digital agricultural revolution and ecosystem services: implications for Canadian policy and research agendas. Facets, 2021, 6, 1955-1985.	1.1	17
89	UAV-Based Mapping of Banana Land Area for Village-Level Decision-Support in Rwanda. Remote Sensing, 2021, 13, 4985.	1.8	3
90	Digital In Situ Data Collection in Earth Observation, Monitoring and Agriculture—Progress towards Digital Agriculture. Remote Sensing, 2022, 14, 393.	1.8	5

#	Article	IF	CITATIONS
91	Intelligent edge based smart farming with LoRa and IoT. International Journal of Systems Assurance Engineering and Management, 2024, 15, 21-27.	1.5	2
92	The role of contractors in the uptake of precision farmingâ€"A spatial economic analysis. Q Open, 2022, 2, .	0.7	2
93	Managing the risks of artificial intelligence in agriculture. NJAS Impact in Agricultural and Life Sciences, 2021, 93, 172-196.	0.4	3
94	Effects of digital public services on trades in green goods: Does institutional quality matter?. Journal of Innovation & Knowledge, 2022, 7, 100168.	7.3	46
95	Approaches to Plant Nutrient Management Through Fertilization in India: Then, Now and the Future. Reviews in Agricultural Science, 2022, 10, 1-13.	0.9	0
96	The Role of FAIR Data towards Sustainable Agricultural Performance: A Systematic Literature Review. Agriculture (Switzerland), 2022, 12, 309.	1.4	19
97	Roles of Selective Agriculture Practices in Sustainable Agricultural Performance: A Systematic Review. Sustainability, 2022, 14, 3185.	1.6	1
98	Challenges to Use Machine Learning in Agricultural Big Data: A Systematic Literature Review. Agronomy, 2022, 12, 748.	1.3	39
99	A New Green Revolution (GR) or Neoliberal Entrenchment in Agri-food Systems? Exploring Narratives Around Digital Agriculture (DA), Food Systems, and Development in Sub-Sahara Africa. Journal of Development Studies, 2022, 58, 1588-1604.	1.2	11
100	Data analytics platforms for agricultural systems: A systematic literature review. Computers and Electronics in Agriculture, 2022, 195, 106813.	3.7	12
101	Arrays and algorithms: Emerging regimes of dispossession at the frontiers of agrarian technological governance. Earth System Governance, 2022, 12, 100137.	2.1	6
102	Is digitalization a driver to enhance environmental performance? An empirical investigation of European countries. Sustainable Production and Consumption, 2022, 32, 230-247.	5.7	67
103	Challenges and opportunities related to the use of innovative modelling approaches and tools for microbiological food safety management. Current Opinion in Food Science, 2022, 45, 100839.	4.1	7
104	Precision Agroecology. Sustainability, 2022, 14, 106.	1.6	13
106	A Case Study of a Digital Data Platform for the Agricultural Sector: A Valuable Decision Support System for Small Farmers. Agriculture (Switzerland), 2022, 12, 767.	1.4	14
107	A Residual LSTM and Seq2Seq Neural Network Based on GPT for Chinese Rice-Related Question and Answer System. Agriculture (Switzerland), 2022, 12, 813.	1.4	1
108	How many gigabytes per hectare are available in the digital agriculture era? A digitization footprint estimation. Computers and Electronics in Agriculture, 2022, 198, 107080.	3.7	40
110	Crop rotation and management tools for every farmer?. Smart Agricultural Technology, 2023, 3, 100086.	3.1	4

#	Article	IF	CITATIONS
111	Will Changes in the Common Agricultural Policy Bring a Respectful Approach to Environment in EU Countries?. Visegrad Journal on Bioeconomy and Sustainable Development, 2022, 11, 21-25.	0.3	2
112	Socioeconomic and resource efficiency impacts of digital public services. Environmental Science and Pollution Research, 2022, 29, 83839-83859.	2.7	19
113	Precision livestock agriculture and productive efficiency: The case of milk recording in Ireland. Agricultural Economics (United Kingdom), 2022, 53, 109-120.	2.0	3
114	Digital Divide and Digital Inequality in Global Food Systems. Vestnik RUDN International Relations, 2022, 22, 372-384.	0.3	0
115	Industry 4.0 and supply chain performance: A systematic literature review of the benefits, challenges, and critical success factors of 11 core technologies. Industrial Marketing Management, 2022, 105 , $268-293$.	3.7	64
116	Future agricultural systems and the role of digitalization for achieving sustainability goals. A review. Agronomy for Sustainable Development, 2022, 42, .	2.2	39
117	An overview of smart irrigation systems using IoT. Energy Nexus, 2022, 7, 100124.	3.3	70
118	Application of hyperspectral imaging systems and artificial intelligence for quality assessment of fruit, vegetables and mushrooms: A review. Biosystems Engineering, 2022, 222, 156-176.	1.9	43
119	The application and benefits of digital technologies for agri-food value chain: Evidence from an emerging country. Revista De Administracao Mackenzie, 2022, 23, .	0.2	1
120	Policy Gaps Related to Sustainability in Hungarian Agribusiness Development. Agronomy, 2022, 12, 2084.	1.3	8
121	Dimensions of digital transformation in the context of modern agriculture. Sustainable Production and Consumption, 2022, 34, 613-637.	5.7	16
122	Drivers of Farmers' Intention to Use the Digital Agricultural Management System: Integrating Theory of Planned Behavior and Behavioral Economics. Frontiers in Psychology, 0, 13, .	1.1	0
123	Framing the response to IoT in agriculture: A discourse analysis. Agricultural Systems, 2023, 204, 103557.	3.2	7
124	Farming futures: Perspectives of Irish agricultural stakeholders on data sharing and data governance. Agriculture and Human Values, 2023, 40, 565-580.	1.7	4
125	Trends in Science and Technological Development of market Foodnet in the Russia in Conditions of Geopolitical Turbulence. Scientific Research and Development Economics, 2022, 10, 8-15.	0.1	0
126	Post-Pandemic IT: Digital Transformation and Sustainability. Sustainability, 2022, 14, 15275.	1.6	11
127	Digital transformation and pollution emission of enterprises: Evidence from China's micro-enterprises. Energy Reports, 2023, 9, 552-567.	2.5	29
128	Investigation of static and dynamic characteristics of electromagnetic sensor. IOP Conference Series: Earth and Environmental Science, 2022, 1112, 012004.	0.2	0

#	Article	IF	CITATIONS
129	Implementation of relevant fourth industrial revolution innovations across the supply chain of fruits and vegetables: A short update on Traceability 4.0. Food Chemistry, 2023, 409, 135303.	4.2	13
130	Precision farming technologies in vegetable growing. OvoÅi Rossii, 2022, , 40-45.	0.1	0
131	FORMATION OF INFORMATION SUPPORT SYSTEM FOR THE MANAGEMENT OF AGRICULTURAL ENTERPRISES. Economics & Education, 2022, 7, 6-11.	0.0	2
132	An interdisciplinary approach to artificial intelligence in agriculture. NJAS Impact in Agricultural and Life Sciences, 2023, 95, .	0.4	9
133	Contested definitions of digital agri-food system transformation: A webpage and network analysis. International Journal of Food Design, 2023, 8, 35-60.	0.6	2
134	"How can we?―the need to direct research in digital agriculture towards capacities. Journal of Rural Studies, 2023, 100, 103003.	2.1	2
135	Peculiarities and prospects of ICT in agricultural business. International Journal of Environmental Studies, 2023, 80, 299-306.	0.7	1
136	Spatial and temporal effects of China's digital economy on rural revitalization. Frontiers in Energy Research, 0, 11, .	1.2	2
137	Digital technologies in local agri-food systems: Opportunities for a more interoperable digital farmgate sector. Frontiers in Sustainability, 0, 4, .	1.3	2
138	A configuration approach to explain corporate environmental responsibility behavior of the emerging economies firms at industry 4.0. Journal of Cleaner Production, 2023, 395, 136383.	4.6	5
139	Examining the Spatial Effect of "Smartness―on the Relationship between Agriculture and Regional Development: The Case of Greece. Land, 2023, 12, 541.	1.2	1
140	Identifying barriers to big data analytics adoption in circular agri-food supply chains: a case study in Turkey. Environmental Science and Pollution Research, 2023, 30, 52304-52320.	2.7	5
141	Advanced biosensing technologies for monitoring of agriculture pests and diseases: A review. Journal of Semiconductors, 2023, 44, 023104.	2.0	10
142	A paradigm shift in sustainable use of natural resources and their ecosystem services., 2023,, 3-31.		0
143	The Impact of Digitalization on the Telecommunications Sector ESG Transformation. Lecture Notes in Information Systems and Organisation, 2023, , 181-192.	0.4	1
150	Evaluation of Cultivated Land Productivity Based on theÂPerspective of Big Data. , 2023, , 533-539.		0
153	Land Productivity Evaluation Based on Data Mining. , 2023, , .		0
154	A Combined Multi-objective and Multi Criteria Decision Making Approach for Wireless Sensors Location in Agriculture 4.0. Communications in Computer and Information Science, 2023, , 366-382.	0.4	0

#	Article	IF	CITATIONS
157	Nanotechnology for Precision Farming and Smart Delivery Systems., 2023, , 161-176.		0
164	Smart Agriculture: Transforming Agriculture withÂTechnology. Communications in Computer and Information Science, 2024, , 362-376.	0.4	0
169	Spatial experiment identification (SPEX-ID)., 2023,,.		0
172	Sensor Node-Based Smart Irrigation System with IoT Framework. , 2023, , .		0
177	Role of environmental sustainability for climate change adaptations. , 2024, , 23-32.		0
178	Data Analytics in Agriculture. , 2024, , 519-539.		0
181	Mechanization of livestock farms. , 2024, , 207-242.		0
182	IoT-Empowered Precision Agricultural Multi-rotor Drones: A Revolutionary Approach for Sustainable Farming. , 2023, , .		O