Organic matter preserved in 3-billion-year-old mudstor

Science 360, 1096-1101 DOI: 10.1126/science.aas9185

Citation Report

#	Article	IF	CITATIONS
2	Metabolic fingerprints of Serratia liquefaciens under simulated Martian conditions using Biolog GN2 microarrays. Scientific Reports, 2018, 8, 15721.	1.6	5
3	Catalytic/Protective Properties of Martian Minerals and Implications for Possible Origin of Life on Mars. Life, 2018, 8, 56.	1.1	38
4	Hunting for microbial life throughout the solar system. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11348-11350.	3.3	3
5	Biological Homochirality on the Earth, or in the Universe? A Selective Review. Symmetry, 2018, 10, 749.	1.1	26
6	Philanthropic Space Science: The Breakthrough Initiatives. New Space, 2018, 6, 262-268.	0.4	9
7	Methane on Mars and Habitability: Challenges and Responses. Astrobiology, 2018, 18, 1221-1242.	1.5	50
8	Syndepositional precipitation of calcium sulfate in Gale Crater, Mars. Terra Nova, 2018, 30, 431-439.	0.9	35
9	Survivability of 1 hloronapthalene During Simulated Early Diagenesis: Implications for Chlorinated Hydrocarbon Detection on Mars. Journal of Geophysical Research E: Planets, 2018, 123, 2790-2802.	1.5	6
10	Experimental Evolution to Explore Adaptation of Terrestrial Bacteria to the Martian Environment. Grand Challenges in Biology and Biotechnology, 2018, , 241-265.	2.4	1
11	Organic synthesis on Mars by electrochemical reduction of CO ₂ . Science Advances, 2018, 4, eaat5118.	4.7	61
12	Operational Conditions and In Situ Resources for Mars Surface Exploration. New Space, 2018, 6, 320-334.	0.4	2
13	Major Volatiles Evolved From Eolian Materials in Gale Crater. Geophysical Research Letters, 2018, 45, 10,240.	1.5	19
14	The Microbial Community of a Terrestrial Anoxic Inter-Tidal Zone: A Model for Laboratory-Based Studies of Potentially Habitable Ancient Lacustrine Systems on Mars. Microorganisms, 2018, 6, 61.	1.6	7
15	Comments on the June 7, 2018, NASA News Release and Papers. Astrobiology, 2018, 18, 841-842.	1.5	1
16	Perchlorateâ€Driven Combustion of Organic Matter During Pyrolysisâ€Gas Chromatographyâ€Mass Spectrometry: Implications for Organic Matter Detection on Earth and Mars. Journal of Geophysical Research E: Planets, 2018, 123, 1901-1909.	1.5	12
17	Effects of Organic Compounds on Dissolution of the Phosphate Minerals Chlorapatite, Whitlockite, Merrillite, and Fluorapatite: Implications for Interpreting Past Signatures of Organic Compounds in Rocks, Soils and Sediments. Astrobiology, 2018, 18, 1543-1558.	1.5	3
18	Solid State Photochemistry of Hydroxylated Naphthalenes on Minerals: Probing Polycyclic Aromatic Hydrocarbon Transformation Pathways under Astrochemically-Relevant Conditions. ACS Earth and Space Chemistry, 2018, 2, 977-1000.	1.2	16
19	Organic molecules on Mars. Science, 2018, 360, 1068-1069.	6.0	13

#	Article	IF	CITATIONS
20	Integrated chemiluminescence-based lab-on-chip for detection of life markers in extraterrestrial environments. Biosensors and Bioelectronics, 2019, 123, 195-203.	5.3	31
21	The Methane Diurnal Variation and Microseepage Flux at Gale Crater, Mars as Constrained by the ExoMars Trace Gas Orbiter and Curiosity Observations. Geophysical Research Letters, 2019, 46, 9430-9438.	1.5	31
22	Recovery of Fatty Acids from Mineralogic Mars Analogs by TMAH Thermochemolysis for the Sample Analysis at Mars Wet Chemistry Experiment on the Curiosity Rover. Astrobiology, 2019, 19, 522-546.	1.5	33
23	Geoscience for Understanding Habitability in the Solar System and Beyond. Space Science Reviews, 2019, 215, 1.	3.7	14
24	How to Search for Life in Martian Chemical Sediments and Their Fluid and Solid Inclusions Using Petrographic and Spectroscopic Methods. Frontiers in Environmental Science, 2019, 7, .	1.5	23
25	The Photochemistry on Space Station (PSS) Experiment: Organic Matter under Mars-like Surface UV Radiation Conditions in Low Earth Orbit. Astrobiology, 2019, 19, 1037-1052.	1.5	16
26	Enceladus: First Observed Primordial Soup Could Arbitrate Origin-of-Life Debate. Astrobiology, 2019, 19, 1263-1278.	1.5	26
27	Detectability of biosignatures in a low-biomass simulation of martian sediments. Scientific Reports, 2019, 9, 9706.	1.6	19
28	<i>In Situ</i> Geochronology on Mars and the Development of Future Instrumentation. Astrobiology, 2019, 19, 1303-1314.	1.5	15
29	Paleo-Rock-Hosted Life on Earth and the Search on Mars: A Review and Strategy for Exploration. Astrobiology, 2019, 19, 1230-1262.	1.5	62
30	Attenuation of Ultraviolet Radiation in Rocks and Minerals: Implications for Mars Science. Journal of Geophysical Research E: Planets, 2019, 124, 2599-2612.	1.5	31
31	Organic sulfur was integral to the Archean sulfur cycle. Nature Communications, 2019, 10, 4556.	5.8	28
32	Investigating the Effect of Perchlorate on Flight-like Gas Chromatography–Mass Spectrometry as Performed by MOMA on board the ExoMars 2020 Rover. Astrobiology, 2019, 19, 1339-1352.	1.5	7
34	The Enduring Legacy of Aristotle: The Battle over Life as Self-Organization or (Genetic-Based) Reproduction. , 2019, , 8-32.		0
35	Why Life Cannot Be Defined. , 2019, , 33-62.		0
36	What Is a Scientific Theory?. , 2019, , 63-81.		0
37	How Scientific Theories Develop. , 2019, , 82-104.		0
38	Challenges for a Universal Theory of Life. , 2019, , 105-131.		0

#	Article	IF	CITATIONS
39	Rethinking the Traditional Paradigm for Life: Lessons from the World of Microbes. , 2019, , 132-160.		0
40	Artificial Life: Could ALife Solve theNÂ=Â1N=1 Problem?. , 2019, , 161-171.		0
41	Searching for Extraterrestrial Life Without a Definition or Universal Theory of Life. , 2019, , 172-194.		1
42	A Shadow Biosphere: Alien Microbes on Earth?. , 2019, , 195-216.		0
46	Habitability of Mars: How Welcoming Are the Surface and Subsurface to Life on the Red Planet?. Geosciences (Switzerland), 2019, 9, 361.	1.0	11
47	Effects of UV-organic interaction and martian conditions on the survivability of organics. Icarus, 2019, 323, 33-39.	1.1	9
48	Calculating risk and payoff in planetary exploration and life detection missions. Advances in Space Research, 2019, 64, 944-956.	1.2	16
49	Decline of giant impacts on Mars by 4.48 billion years ago and an early opportunity for habitability. Nature Geoscience, 2019, 12, 522-527.	5.4	25
50	Aeolian abrasion of rocks as a mechanism to produce methane in the Martian atmosphere. Scientific Reports, 2019, 9, 8229.	1.6	1
51	Extraterrestrial organic matter preserved in 3.33â€ ⁻ Ga sediments from Barberton, South Africa. Geochimica Et Cosmochimica Acta, 2019, 258, 207-225.	1.6	21
52	Microbial Communities in Sediments From Four Mildly Acidic Ephemeral Salt Lakes in the Yilgarn Craton (Australia) – Terrestrial Analogs to Ancient Mars. Frontiers in Microbiology, 2019, 10, 779.	1.5	15
53	Effects of Oxygen-Containing Salts on the Detection of Organic Biomarkers on Mars and in Terrestrial Analog Soils. Astrobiology, 2019, 19, 711-721.	1.5	24
54	Microbiology and Nitrogen Cycle in the Benthic Sediments of a Glacial Oligotrophic Deep Andean Lake as Analog of Ancient Martian Lake-Beds. Frontiers in Microbiology, 2019, 10, 929.	1.5	22
55	Exploring, Mapping, and Data Management Integration of Habitable Environments in Astrobiology. Frontiers in Microbiology, 2019, 10, 147.	1.5	3
56	The potential science and engineering value of samples delivered to Earth by Mars sample return. Meteoritics and Planetary Science, 2019, 54, S3.	0.7	73
57	Sulfur K-Edge X-ray Absorption Spectroscopy of Aryl and Aryl–Alkyl Sulfides. Journal of Physical Chemistry A, 2019, 123, 2861-2866.	1.1	4
58	Indigenous Organicâ€Oxidized Fluid Interactions in the Tissint Mars Meteorite. Geophysical Research Letters, 2019, 46, 3090-3098.	1.5	25
59	Organics in the solar system. Research in Astronomy and Astrophysics, 2019, 19, 049.	0.7	2

#	Article	IF	CITATIONS
60	Radiolysis of Macromolecular Organic Material in Marsâ€Relevant Mineral Matrices. Journal of Geophysical Research E: Planets, 2019, 124, 3257-3266.	1.5	30
61	Contrasting Regional Soil Alteration Across the Topographic Dichotomy of Mars. Geophysical Research Letters, 2019, 46, 13668-13677.	1.5	8
62	A Subcritical Water Extractor Prototype for Potential Astrobiology Spaceflight Missions. Earth and Space Science, 2019, 6, 2443-2460.	1.1	16
63	A look back: The drilling campaign of the Curiosity rover during the Mars Science Laboratory's Prime Mission. Icarus, 2019, 319, 1-13.	1.1	19
64	UV luminescence characterisation of organics in Mars-analogue substrates. Icarus, 2019, 321, 929-937.	1.1	5
65	Planetary Protection and the astrobiological exploration of Mars: Proactive steps in moving forward. Advances in Space Research, 2019, 63, 1491-1497.	1.2	11
66	The next frontier for planetary and human exploration. Nature Astronomy, 2019, 3, 116-120.	4.2	39
67	The Sedimentary Cycle on Early Mars. Annual Review of Earth and Planetary Sciences, 2019, 47, 91-118.	4.6	59
68	Analytical strategy for representative subsampling of Ramanâ€based robotic planetary exploration missions: The case study of solid dispersions of βâ€carotene and <i>L</i> â€cysteine in gypsum. Journal of Raman Spectroscopy, 2020, 51, 1624-1635.	1.2	5
69	Geological appraisals of core samples using the ExoMars 2020 rover instrumentation. Planetary and Space Science, 2020, 180, 104743.	0.9	4
70	Mass spectrometry and planetary exploration: A brief review and future projection. Journal of Mass Spectrometry, 2020, 55, e4454.	0.7	57
71	Infrared Spectroscopic Detection of Biosignatures at Lake TÃrez, Spain: Implications for Mars. Astrobiology, 2020, 20, 15-25.	1.5	7
72	Methane release on Early Mars by atmospheric collapse and atmospheric reinflation. Planetary and Space Science, 2020, 181, 104820.	0.9	12
73	First Detections of Dichlorobenzene Isomers and Trichloromethylpropane from Organic Matter Indigenous to Mars Mudstone in Gale Crater, Mars: Results from the Sample Analysis at Mars Instrument Onboard the Curiosity Rover. Astrobiology, 2020, 20, 292-306.	1.5	50
74	Mawrth Vallis, Mars: A Fascinating Place for Future <i>In Situ</i> Exploration. Astrobiology, 2020, 20, 199-234.	1.5	18
75	An Optical Model for Quantitative Raman Microspectroscopy. Applied Spectroscopy, 2020, 74, 684-700.	1.2	16
76	The Search for Chiral Asymmetry as a Potential Biosignature in our Solar System. Chemical Reviews, 2020, 120, 4660-4689.	23.0	156
77	Organic Records of Early Life on Mars: The Role of Iron, Burial, and Kinetics on Preservation. Astrobiology, 2020, 20, 53-72.	1.5	16

#	Article	IF	CITATIONS
78	Highâ€Temperature HCl Evolutions From Mixtures of Perchlorates and Chlorides With Waterâ€Bearing Phases: Implications for the SAM Instrument in Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006173.	1.5	6
79	How to survive winter?. , 2020, , 101-125.		1
80	Vertebrate viruses in polar ecosystems. , 2020, , 126-148.		0
82	Life in the extreme environments of our planet under pressure. , 2020, , 151-183.		0
83	Chemical ecology in the Southern Ocean. , 2020, , 251-278.		1
85	Oceans, Lakes, and Stromatolites on Mars. Advances in Astronomy, 2020, 2020, 1-15.	0.5	6
88	Physiological traits of the Greenland sharkSomniosus microcephalusobtained during the TUNU-Expeditions to Northeast Greenland. , 2020, , 11-41.		0
89	Metazoan adaptation to deep-sea hydrothermal vents. , 2020, , 42-67.		4
90	Extremophiles populating high-level natural radiation areas (HLNRAs) in Iran. , 2020, , 68-86.		1
92	Metazoan life in anoxic marine sediments. , 2020, , 89-100.		0
93	The ecophysiology of responding to change in polar marine benthos. , 2020, , 184-217.		0
94	The Southern Ocean: an extreme environment or just home of unique ecosystems?. , 2020, , 218-233.		1
95	Metabolic and taxonomic diversity in antarctic subglacial environments. , 2020, , 279-296.		2
96	Analytical astrobiology: the search for life signatures and the remote detection of biomarkers through their Raman spectral interrogation. , 2020, , 301-318.		1
97	Adaptation/acclimatisation mechanisms of oxyphototrophic microorganisms and their relevance to astrobiology. , 2020, , 319-342.		0
98	Life at the extremes. , 2020, , 343-354.		0
99	Microorganisms in cryoturbated organic matter of Arctic permafrost soils. , 2020, , 234-250.		0
102	Experimental Coupling of a MEMS Gas Chromatograph and a Mass Spectrometer for Organic Analysis in Space Environments. ACS Earth and Space Chemistry, 2020, 4, 1718-1729.	1.2	8

#	Article	IF	CITATIONS
103	Theoretical investigation of protonated thiophene and two of its nitrile substituted derivatives (2-cyanothiophene and 3-cyanothiophene). Physical Chemistry Chemical Physics, 2020, 22, 24735-24743.	1.3	1
104	Astrobiology and Planetary Sciences in Mexico. Cuatro Cielnegas Basin: an Endangered Hyperdiverse Oasis, 2020, , 31-74.	0.4	3
105	Mars 2020 Mission Overview. Space Science Reviews, 2020, 216, 1.	3.7	239
108	Organic Matter Preservation in Ancient Soils of Earth and Mars. Life, 2020, 10, 113.	1.1	23
109	Evidence for a Diagenetic Origin of Vera Rubin Ridge, Gale Crater, Mars: Summary and Synthesis of <i>Curiosity</i> 's Exploration Campaign. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006527.	1.5	69
110	Investigating the biological potential of galactic cosmic ray-induced radiation-driven chemical disequilibrium in the Martian subsurface environment. Scientific Reports, 2020, 10, 11646.	1.6	6
111	Metabolomics as an Emerging Tool in the Search for Astrobiologically Relevant Biomarkers. Astrobiology, 2020, 20, 1251-1261.	1.5	16
112	Cometary Glycolaldehyde as a Source of pre-RNA Molecules. Astrobiology, 2020, 20, 1377-1388.	1.5	16
113	Evaluating Biosignatures for Life Detection. Astrobiology, 2020, 20, 1236-1250.	1.5	10
114	Diagenesis of Vera Rubin Ridge, Gale Crater, Mars, From Mastcam Multispectral Images. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006322.	1.5	33
115	Boron and Lithium in Calcium Sulfate Veins: Tracking Precipitation of Diagenetic Materials in Vera Rubin Ridge, Gale Crater. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006301.	1.5	8
116	Constraining the preservation of organic compounds in Mars analog nontronites after exposure to acid and alkaline fluids. Scientific Reports, 2020, 10, 15097.	1.6	15
117	Fingerprinting molecular and isotopic biosignatures on different hydrothermal scenarios of Iceland, an acidic and sulfur-rich Mars analog. Scientific Reports, 2020, 10, 21196.	1.6	15
118	Inhabited subsurface wet smectites in the hyperarid core of the Atacama Desert as an analog for the search for life on Mars. Scientific Reports, 2020, 10, 19183.	1.6	21
119	Testing the capabilities of the Mars Organic Molecule Analyser (MOMA) chromatographic columns for the separation of organic compounds on Mars. Planetary and Space Science, 2020, 186, 104903.	0.9	9
120	Geological alteration of organic macromolecules by irradiation: Implication for organic matter occurrence on Mars. Geology, 2020, 48, 713-717.	2.0	18
121	Mars Regolith Simulant Ameliorated by Compost as in situ Cultivation Substrate Improves Lettuce Growth and Nutritional Aspects. Plants, 2020, 9, 628.	1.6	26
122	The Hypopiezotolerant Bacterium, Serratia liquefaciens, Failed to Grow in Mars Analog Soils under Simulated Martian Conditions at 7 hPa. Life, 2020, 10, 77.	1.1	3

#	Article	IF	CITATIONS
123	A look back, part II: The drilling campaign of the Curiosity rover during the Mars Science Laboratory's second and third martian years. Icarus, 2020, 350, 113885.	1.1	4
124	Organic chemistry on a cool and wet young Mars. Nature Astronomy, 2020, 4, 446-447.	4.2	4
125	Molecular structure, IR, Raman and UV–VIS spectra of 2-cyanothiophene and 3-cyanothiophene: A comparative quantum chemical investigation. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 239, 118393.	2.0	6
126	Constraints on the Mineralogy and Geochemistry of Vera Rubin Ridge, Gale Crater, Mars, From Mars Science Laboratory Sample Analysis at Mars Evolved Gas Analyses. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006309.	1.5	32
127	Influence of Calcium Perchlorate on Organics Under SAM‣ike Pyrolysis Conditions: Constraints on the Nature of Martian Organics. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006359.	1.5	11
128	Detection of Reduced Sulfur on Vera Rubin Ridge by Quadratic Discriminant Analysis of Volatiles Observed During Evolved Gas Analysis. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006304.	1.5	25
129	Impact-induced amino acid formation on Hadean Earth and Noachian Mars. Scientific Reports, 2020, 10, 9220.	1.6	25
130	Stromatolites as Biosignatures of Atmospheric Oxygenation: Carbonate Biomineralization and UV-C Resilience in a Geitlerinema sp Dominated Culture. Frontiers in Microbiology, 2020, 11, 948.	1.5	18
131	A facile synthesis of mesoporous Mo–Al oxides for desulfurization of dibenzothiophene in the extractive catalytic oxidative desulfurization system. Reaction Kinetics, Mechanisms and Catalysis, 2020, 130, 363-379.	0.8	9
132	Hydrogen, Hydrocarbons, and Habitability Across the Solar System. Elements, 2020, 16, 47-52.	0.5	22
133	Biomolecules from Fossilized Hot Spring Sinters: Implications for the Search for Life on Mars. Astrobiology, 2020, 20, 537-551.	1.5	24
134	Mars Rover Techniques and Lower/Middle Cambrian Microbialites from South Australia: Construction, Biofacies, and Biogeochemistry. Astrobiology, 2020, 20, 637-657.	1.5	2
135	Testing Flight-like Pyrolysis Gas Chromatography–Mass Spectrometry as Performed by the Mars Organic Molecule Analyzer Onboard the ExoMars 2020 Rover on Oxia Planum Analog Samples. Astrobiology, 2020, 20, 415-428.	1.5	10
136	Sluggish hydrodynamic escape of early martian atmosphere with reduced chemical compositions. Icarus, 2020, 345, 113740.	1.1	10
137	Paleolakes in the Northwest Hellas Region, Mars: Implications for the Regional Geologic History and Paleoclimate. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006196.	1.5	13
138	The Importance of Phobos Sample Return for Understanding the Mars-Moon System. Space Science Reviews, 2020, 216, 1.	3.7	45
139	Detection of Potential Lipid Biomarkers in Oxidative Environments by Raman Spectroscopy and Implications for the ExoMars 2020-Raman Laser Spectrometer Instrument Performance. Astrobiology, 2020, 20, 405-414.	1.5	5
140	What Is Life—and When Do We Search for It on Other Worlds. Astrobiology, 2020, 20, 163-166.	1.5	12

#	Article	IF	CITATIONS
141	Thiophenes on Mars: Biotic or Abiotic Origin?. Astrobiology, 2020, 20, 552-561.	1.5	20
142	Ultradeep Microbial Communities at 4.4 km within Crystalline Bedrock: Implications for Habitability in a Planetary Context. Life, 2020, 10, 2.	1.1	33
143	Mineralogy and geochemistry of sedimentary rocks and eolian sediments in Gale crater, Mars: A review after six Earth years of exploration with Curiosity. Chemie Der Erde, 2020, 80, 125605.	0.8	137
144	Indigenous and exogenous organics and surface–atmosphere cycling inferred from carbon and oxygen isotopes at Gale crater. Nature Astronomy, 2020, 4, 526-532.	4.2	41
145	The Limits, Capabilities, and Potential for Life Detection with MinION Sequencing in a Paleochannel Mars Analog. Astrobiology, 2020, 20, 375-393.	1.5	16
146	Reevaluation of Perchlorate in Gale Crater Rocks Suggests Geologically Recent Perchlorate Addition. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006156.	1.5	10
147	In-situ preservation of nitrogen-bearing organics in Noachian Martian carbonates. Nature Communications, 2020, 11, 1988.	5.8	23
148	New Paths for Survivability of Organic Material in the Martian Subsurface. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006370.	1.5	0
149	Influence of the nature of the gas phase on the degradation of RNA during fossilization processes. Applied Clay Science, 2020, 191, 105616.	2.6	8
151	Fatty Acid Preservation in Modern and Relict Hot-Spring Deposits in Iceland, with Implications for Organics Detection on Mars. Astrobiology, 2021, 21, 60-82.	1.5	8
152	Methane on Mars: subsurface sourcing and conflicting atmospheric measurements. , 2021, , 149-174.		2
153	Astrobiology: An Overview. , 2021, , 737-757.		0
154	Sulfur Ice Astrochemistry: A Review of Laboratory Studies. Space Science Reviews, 2021, 217, 1.	3.7	22
155	Resolving Martian enigmas, discovering new ones: the case ofÂCuriosity and Gale crater. , 2021, , 1-10.		0
156	Life on Mars: Clues, Evidence or Proof?. , 0, , .		1
157	Artificial Maturation of Iron- and Sulfur-Rich Mars Analogues: Implications for the Diagenetic Stability of Biopolymers and Their Detection with Pyrolysis–Gas Chromatography–Mass Spectrometry. Astrobiology, 2021, 21, 199-218.	1.5	5
158	Mesoarchaean acidic volcanic lakes: A critical ecological niche in early land colonisation. Earth and Planetary Science Letters, 2021, 556, 116725.	1.8	6
159	Chemolithotrophy on the Noachian Martian breccia NWA 7034 via experimental microbial biotransformation. Communications Earth & Environment, 2021, 2, .	2.6	14

#	Article	IF	CITATIONS
160	Formation of Thiophene under Simulated Volcanic Hydrothermal Conditions on Earth—Implications for Early Life on Extraterrestrial Planets?. Life, 2021, 11, 149.	1.1	3
161	A Low-Pressure, N2/CO2 Atmosphere Is Suitable for Cyanobacterium-Based Life-Support Systems on Mars. Frontiers in Microbiology, 2021, 12, 611798.	1.5	33
162	Classification of the Biogenicity of Complex Organic Mixtures for the Detection of Extraterrestrial Life, 2021, 11, 234.	1.1	12
163	Degradation of Amino Acids on Mars by UV Irradiation in the Presence of Chloride and Oxychlorine Salts. Astrobiology, 2021, 21, 793-801.	1.5	5
164	OrganiCam: a lightweight time-resolved laser-induced luminescence imager and Raman spectrometer for planetary organic material characterization. Applied Optics, 2021, 60, 3753.	0.9	3
165	A Review of Sample Analysis at Mars-Evolved Gas Analysis Laboratory Analog Work Supporting the Presence of Perchlorates and Chlorates in Gale Crater, Mars. Minerals (Basel, Switzerland), 2021, 11, 475.	0.8	14
166	Pyrolysis of Oxalate, Acetate, and Perchlorate Mixtures and the Implications for Organic Salts on Mars. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006803.	1.5	20
167	Minimum Units of Habitability and Their Abundance in the Universe. Astrobiology, 2021, 21, 481-489.	1.5	6
168	Radiolytic Degradation of Soil Carbon from the Mojave Desert by ⁶⁰ Co Gamma Rays: Implications for the Survival of Martian Organic Compounds Due to Cosmic Radiation. Astrobiology, 2021, 21, 381-393.	1.5	5
169	Analytical Chemistry in Astrobiology. Analytical Chemistry, 2021, 93, 5981-5997.	3.2	7
170	An experimental study of photo-oxidation of Fe(II): Implications for the formation of Fe(III) (hydro)oxides on early Mars and Earth. Geochimica Et Cosmochimica Acta, 2021, 299, 35-51.	1.6	16
171	The Biological Study of Lifeless Worlds and Environments. Astrobiology, 2021, 21, 490-504.	1.5	5
173	Taxonomic Characterization and Microbial Activity Determination of Cold-Adapted Microbial Communities in Lava Tube Ice Caves from Lava Beds National Monument, a High-Fidelity Mars Analogue Environment. Astrobiology, 2021, 21, 613-627.	1.5	10
174	Perseverance's Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) Investigation. Space Science Reviews, 2021, 217, 1.	3.7	94
175	Extraction and Separation of Chiral Amino Acids for Life Detection on Ocean Worlds Without Using Organic Solvents or Derivatization. Astrobiology, 2021, 21, 575-586.	1.5	9
176	New Insights into the Search for Life on Mars. , 0, , .		0
177	Impact of UV Radiation on the Raman Signal of Cystine: Implications for the Detection of S-rich Organics on Mars. Astrobiology, 2021, 21, 566-574.	1.5	8
178	Detection and Degradation of Adenosine Monophosphate in Perchlorate-Spiked Martian Regolith Analog, by Deep-Ultraviolet Spectroscopy. Astrobiology, 2021, 21, 511-525.	1.5	10

#	Article	IF	CITATIONS
179	Interactions Between Iron Sulfide Minerals and Organic Carbon: Implications for Biosignature Preservation and Detection. Astrobiology, 2021, 21, 587-604.	1.5	5
180	Quantifying Preservation Potential: Lipid Degradation in a Mars-Analog Circumneutral Iron Deposit. Astrobiology, 2021, 21, 638-654.	1.5	4
181	Pyrolysis of Carboxylic Acids in the Presence of Iron Oxides: Implications for Life Detection on Missions to Mars. Astrobiology, 2021, 21, 673-691.	1.5	5
182	Choice of Microbial System for In-Situ Resource Utilization on Mars. Frontiers in Astronomy and Space Sciences, 2021, 8, .	1.1	15
183	Searching for biosignatures in sedimentary rocks from early Earth and Mars. Nature Reviews Earth & Environment, 2021, 2, 490-506.	12.2	24
184	宇宙ã«ãš̃ã'ã,‹ç"Ÿå'1⁄2å†å€™æŽ¢æŸ». Bunseki Kagaku, 2021, 70, 309-326.	0.1	1
185	Origin of Life on Mars: Suitability and Opportunities. Life, 2021, 11, 539.	1.1	18
186	Precise equilibrium structure determination of thiophene (<i>c</i> -C4H4S) by rotational spectroscopy—Structure of a five-membered heterocycle containing a third-row atom. Journal of Chemical Physics, 2021, 154, 244310.	1.2	20
187	Brine-driven destruction of clay minerals in Gale crater, Mars. Science, 2021, 373, 198-204.	6.0	52
188	Chiral selection, isotopic abundance shifts, and autocatalysis of meteoritic amino acids. Physical Review Research, 2021, 3, .	1.3	4
189	Life on Mars: Independent Genesis or Common Ancestor?. Astrobiology, 2021, 21, 802-812.	1.5	3
190	Distribution characteristics of lipids from salt sediments in Qaidam Basin and their astrobiological significance. Science China Earth Sciences, 0, , 1.	2.3	0
191	A Proposed Geobiology-Driven Nomenclature for Astrobiological <i>In Situ</i> Observations and Sample Analyses. Astrobiology, 2021, 21, 954-967.	1.5	6
192	Searching for life on Mars and its moons. Science, 2021, 373, 742-742.	6.0	13
193	Transformation of Cyanobacterial Biomolecules by Iron Oxides During Flash Pyrolysis: Implications for Mars Life-Detection Missions. Astrobiology, 2021, 21, 1363-1386.	1.5	2
194	A Review of the Phyllosilicates in Gale Crater as Detected by the CheMin Instrument on the Mars Science Laboratory, Curiosity Rover. Minerals (Basel, Switzerland), 2021, 11, 847.	0.8	23
195	Fluorescence microscope as a core instrument for extraterrestrial-life detection methods. , 2021, , .		0
196	Preservation and Distributions of Covalently Bound Polyaromatic Hydrocarbons in Ancient Biogenic Kerogens and Insoluble Organic Macromolecules. Astro <u>biology, 2021, 21, 1049-1075.</u>	1.5	5

#	Article	IF	CITATIONS
197	Evaluation of miniaturized Raman spectrometers for planetary exploration: From aromatics to amino acids. Icarus, 2021, 366, 114533.	1.1	2
198	Accessing the Subsurface Biosphere Within Rocks Undergoing Active Lowâ€Temperature Serpentinization in the Samail Ophiolite (Oman Drilling Project). Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006315.	1.3	27
200	The Lake St. Martin impact structure (Manitoba, Canada): A simulated rover exploration of a sulfate-bearing impact crater. Planetary and Space Science, 2021, 208, 105336.	0.9	3
201	Mars' atmospheric neon suggests volatile-rich primitive mantle. Icarus, 2021, 370, 114685.	1.1	7
202	Heterogeneous Physical Chemistry in the Atmospheres of Earth, Mars, and Venus: Perspectives for Rocky Exoplanets. ACS Earth and Space Chemistry, 2021, 5, 149-162.	1.2	3
203	Comparison of stepwise and single-step pyrolysis GC/MS for natural complex macromolecular organic matter. Analytical Sciences, 2022, 38, 113-121.	0.8	2
204	Sulfur Kβ X-ray emission spectroscopy: comparison with sulfur K-edge X-ray absorption spectroscopy for speciation of organosulfur compounds. Physical Chemistry Chemical Physics, 2021, 23, 4500-4508.	1.3	18
205	Astrobiology: An Overview. , 2020, , 1-17.		1
207	A prospective microwave plasma source for <i>in situ</i> spaceflight applications. Journal of Analytical Atomic Spectrometry, 2020, 35, 2740-2747.	1.6	8
209	Benzoic Acid as the Preferred Precursor for the Chlorobenzene Detected on Mars: Insights from the Unique Cumberland Analog Investigation. Planetary Science Journal, 2020, 1, 41.	1.5	12
210	Experimental clues for detecting biosignatures on Mars. Geochemical Perspectives Letters, 0, , 28-33.	1.0	17
211	Perseverance rover reveals an ancient delta-lake system and flood deposits at Jezero crater, Mars. Science, 2021, 374, 711-717.	6.0	86
212	Planetary Mass Spectrometry for Agnostic Life Detection in the Solar System. Frontiers in Astronomy and Space Sciences, 2021, 8, .	1.1	19
213	Fungal Biomarkers Stability in Mars Regolith Analogues after Simulated Space and Mars-like Conditions. Journal of Fungi (Basel, Switzerland), 2021, 7, 859.	1.5	6
214	Geomorphologic exploration targets at the Zhurong landing site in the southern Utopia Planitia of Mars. Earth and Planetary Science Letters, 2021, 576, 117199.	1.8	26
215	Mars 2020 sample cleanliness molecular transport model. , 2018, , .		0
216	Astrobiology: An Overview. , 2019, , 1-17.		0
217	Characterization of Organic Compounds Using Moma Flight-Like Instrumentation in Preparation of the Upcoming Exomars Rover Mission. , 2019, , .		0

# 218	ARTICLE Future planetary instrument capabilities made possible by micro- and nanotechnology. , 2019, , .	IF	CITATIONS
219	Organic molecules revealed in Mars's Bagnold Dunes by Curiosity's derivatization experiment. Nature Astronomy, 2022, 6, 129-140.	4.2	29
220	A Multiplex Immunosensor for Detecting Perchlorate-Reducing Bacteria for Environmental Monitoring and Planetary Exploration. Frontiers in Microbiology, 2020, 11, 590736.	1.5	2
222	Hyperfine structures of 2-cyanothiophene and 3-cyanothiophene: A quantum chemical study. Molecular Astrophysics, 2020, 21, 100099.	1.7	0
224	Hydrogen Production from Alteration of Chicxulub Crater Impact Breccias: Potential Energy Source for a Subsurface Microbial Ecosystem. Astrobiology, 2021, 21, 1547-1564.	1.5	4
225	Bacterial Growth in Brines Formed by the Deliquescence of Salts Relevant to Cold Arid Worlds. Astrobiology, 2022, 22, 104-115.	1.5	9
227	UV Irradiation and Near Infrared Characterization of Laboratory Mars Soil Analog Samples. Frontiers in Astronomy and Space Sciences, 2020, 7, .	1.1	8
228	Extensive jarosite deposits formed through auto-combustion and weathering of pyritiferous mudstone, Smoking Hills (Ingniryuat), Northwest Territories, Canadian Arctic – A potential Mars analogue. Chemical Geology, 2022, 587, 120634.	1.4	7
229	On biosignatures for Mars. International Journal of Astrobiology, 2021, 20, 377-393.	0.9	11
230	Abiotic (Entry Type: Short Entry). , 2022, , 1-2.		0
231	The SuperCam infrared spectrometer for the perseverance rover of the Mars2020 mission. Icarus, 2022, 373, 114773.	1.1	19
232	False biosignatures on Mars: anticipating ambiguity. Journal of the Geological Society, 2022, 179, .	0.9	20
233	Mars: new insights and unresolved questions. International Journal of Astrobiology, 2021, 20, 394-426.	0.9	19
234	Mars Science Laboratory. , 2022, , 1-5.		0
235	The Potential for Lunar and Martian Regolith Simulants to Sustain Plant Growth: A Multidisciplinary Overview. Frontiers in Astronomy and Space Sciences, 2022, 8, .	1.1	22
236	Seeding the Solar System with Life: Mars, Venus, Earth, Moon, Protoplanets. Open Astronomy, 2020, 29, 124-157.	0.2	2
237	Mars: Life, Subglacial Oceans, Abiogenic Photosynthesis, Seasonal Increases and Replenishment of Atmospheric Oxygen. Open Astronomy, 2020, 29, 189-209.	0.2	2
238	Perseverance Rover and Its Search for Life On Mars. Communications of the Byurakan Astrophysical Observatory, 0, , 464-469.	0.0	Ο

#	Article	IF	CITATIONS
239	Depleted carbon isotope compositions observed at Gale crater, Mars. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	33
240	Study of the Stability of Gly·MgSO ₄ ·5H ₂ O under Simulated Martian Conditions by <i>In Situ</i> Raman Spectroscopy. Astrobiology, 2022, 22, 75-86.	1.5	3
241	Physical and chemical mechanisms that impact the detection, identification, and quantification of organic matter and the survival of microorganisms on the Martian surface – a review. International Journal of Astrobiology, 2022, 21, 356-379.	0.9	3
242	Organic synthesis associated with serpentinization and carbonation on early Mars. Science, 2022, 375, 172-177.	6.0	32
243	Aeolian driven oxidant and hydrogen generation in Martian regolith: The role of mineralogy and abrasion temperature. Earth and Planetary Science Letters, 2022, 579, 117361.	1.8	4
244	Indigenous carbon-rich matter associated with unusual aqueous alteration features in Nakhla: Complex formation and preservation history. Geochimica Et Cosmochimica Acta, 2022, 320, 41-78.	1.6	1
245	Geochemical Exploration. , 2022, , 346-369.		0
246	The Most Volatile Elements and Compounds. , 2022, , 271-297.		0
247	Review and prospect on portable mass spectrometer for recent applications. Vacuum, 2022, 199, 110889.	1.6	19
248	Astrobiological Potential of Fe/Mg Smectites with Special Emphasis on Jezero Crater, Mars 2020 Landing Site. Astrobiology, 2022, , .	1.5	1
249	Laboratory experiment of ATP measurement using Mars soil simulant: as a method for extraterrestrial life detection. Analytical Sciences, 2022, 38, 725-730.	0.8	2
250	MEMS GC Column Performance for Analyzing Organics and Biological Molecules for Future Landed Planetary Missions. Frontiers in Astronomy and Space Sciences, 2022, 9, .	1.1	5
251	Toward Detecting Polycyclic Aromatic Hydrocarbons on Planetary Objects with ORIGIN. Planetary Science Journal, 2022, 3, 43.	1.5	5
252	Mineral Matrix Effects on Pyrolysis Products of Kerogens Infer Difficulties in Determining Biological Provenance of Macromolecular Organic Matter at Mars. Astrobiology, 2022, 22, 520-540.	1.5	6
254	Oligotrophic Growth of Nitrate-Dependent Fe2+-Oxidising Microorganisms Under Simulated Early Martian Conditions. Frontiers in Microbiology, 2022, 13, 800219.	1.5	4
255	Analytical Chemistry Throughout This Solar System. Annual Review of Analytical Chemistry, 2022, 15, 197-219.	2.8	2
256	Obtaining elemental sulfur for Martian sulfur concrete. Journal of Chemical Research, 2022, 46, 174751982210807.	0.6	6
257	Mission Overview and Scientific Contributions from the Mars Science Laboratory Curiosity Rover After Eight Years of Surface Operations. Space Science Reviews, 2022, 218, 14.	3.7	25

#	Article	IF	CITATIONS
258	Constraints on the formation of carbonates and lowâ€grade metamorphic phases in the Martian crust as a function of H ₂ O O ₂ fluids. Meteoritics and Planetary Science, 2022, 57, 77-104.	0.7	2
259	Time-Sensitive Aspects of Mars Sample Return (MSR) Science. Astrobiology, 2021, , .	1.5	10
260	Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR). Astrobiology, 2022, 22, S-112-S-164.	1.5	7
261	The Scientific Importance of Returning Airfall Dust as a Part of Mars Sample Return (MSR). Astrobiology, 2022, 22, S-176-S-185.	1.5	5
262	Determining the "Biosignature Threshold―for Life Detection on Biotic, Abiotic, or Prebiotic Worlds. Astrobiology, 2022, 22, 481-493.	1.5	16
263	Mars as a time machine to Precambrian Earth. Journal of the Geological Society, 2022, 179, .	0.9	1
264	Methods and limitations of stable isotope measurements via direct elution of chromatographic peaks using gas chromotography-Orbitrap mass spectrometry. International Journal of Mass Spectrometry, 2022, 477, 116848.	0.7	12
270	Oxidized and Reduced Sulfur Observed by the Sample Analysis at Mars (SAM) Instrument Suite on the Curiosity Rover Within the Clen Torridon Region at Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2022, 127, .	1.5	6
271	Planetary Nebulae as Sources of Chemical Enrichment of the Galaxy. Frontiers in Astronomy and Space Sciences, 2022, 9, .	1.1	0
272	Formamide-Based Post-impact Thermal Prebiotic Synthesis in Simulated Craters: Intermediates, Products and Mechanism. Frontiers in Astronomy and Space Sciences, 2022, 9, .	1.1	2
273	Life detection in space: Current methods and future technologies. , 2022, , 221-253.		0
274	Habitability in the Solar System beyond the Earth and the search for life. , 2022, , 167-177.		2
275	Sulfur isotopes as biosignatures for Mars and Europa exploration. Journal of the Geological Society, 0, , jgs2021-134.	0.9	3
276	Rapid Radiolytic Degradation of Amino Acids in the Martian Shallow Subsurface: Implications for the Search for Extinct Life. Astrobiology, 2022, 22, 1099-1115.	1.5	17
277	Evolved Gas Analyses of Sedimentary Rocks From the Glen Torridon Clayâ€Bearing Unit, Gale Crater, Mars: Results From the Mars Science Laboratory Sample Analysis at Mars Instrument Suite. Journal of Geophysical Research E: Planets, 2022, 127, .	1.5	12
278	Burial and Exhumation of Sedimentary Rocks Revealed by the Base Stimson Erosional Unconformity, Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2022, 127, .	1.5	3
279	Exploring the Shallow Subsurface of Mars with the Ma_MISS Spectrometer on the ExoMars Rover Rosalind Franklin. Planetary Science Journal, 2022, 3, 142.	1.5	9
280	Solid phase extraction on reverse phase chromatographic media subjected to stresses expected for extraterrestrial implementation. Analyst, The, 2022, 147, 3514-3524.	1.7	2

#	Article	IF	CITATIONS
281	Organic carbon concentrations in 3.5-billion-year-old lacustrine mudstones of Mars. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	14
282	Journal of Astrobiology, 0, , 1-18.	0.9	1
	The Curiosity Dever's Exploration of Clan Terridon, Cale Crater, Marci An Overview of the Compaign		
283	and Scientific Results. Journal of Geophysical Research E: Planets, 2023, 128, .	1.5	27
	Detection of Organic Carbon in Mars? Analog Paleosols With Thermal and Evolved Cas Analysis		
284	Journal of Geophysical Research E: Planets, 2022, 127, .	1.5	4
286	Identifying biosignatures on Planetary Surfaces with Laser-based Mass Spectrometry. , 2022, , .		1
	<i>In Situ</i> Identification of Paleoarchean Biosignatures Using Colocated Perseverance Rover		
287	Analyses: Perspectives for <i>In Situ</i> Mars Science and Sample Return. Astrobiology, 2022, 22, 1143-1163.	1.5	7
	Epigmatic Issues and Widening Implications of Research on Martian Clay Minerals, ACS Farth and Space		
288	Chemistry, 0, , .	1.2	3
	Biomarkers in the Atacama Desert along the moisture gradient and the denth in the hyperarid zone		
289	Phosphatase activity as trace of microbial activity. International Journal of Astrobiology, 0, , 1-23.	0.9	3
	Diagnostic biosignature transformation under simulated martian radiation in organic-rich		
290	sedimentary rocks. Frontiers in Astronomy and Space Sciences, 0, 9, .	1.1	1
	Detection of Biosignatures by Capillary Electrophoresis Mass Spectrometry in the Presence of Salts		
291	Relevant to Ocean Worlds Missions. Astrobiology, 2022, 22, 914-925.	1.5	11
	Methanol in the RNA world: An astrochemical perspective. Frontiers in Astronomy and Space Sciences.		_
292	0,9,.	1.1	5
293	Biosignature stability in space enables their use for life detection on Mars. Science Advances, 2022, 8, .	4.7	10
	Unsymmetric monothiooxalamides from S8, bromodifluoro reagents and anilines: Synthesis and		_
294	applications. , 2022, 3, 100026.		1
005	Sedimentary Organics in Glen Torridon, Gale Crater, Mars: Results From the SAM Instrument Suite and		
295	Supporting Laboratory Analyses. Journal of Geophysical Research E: Planets, 2022, 127, .	1.5	11
001	Spectral Detection of Nanophase Iron Minerals Produced by Fe(III)-Reducing Hyperthermophilic		2
296	Crenarchaea. Astrobiology, 2023, 23, 43-59.	1.5	3
0.05	Prebiotic reactions in a Mars analog iron mineral system: Effects of nitrate, nitrite, and ammonia on		
-297	amino acid formation. Geochimica Et Cosmochimica Acta, 2022, 336, 469-479.	1.6	3
000	Deep-UV Raman Spectroscopy of Carbonaceous Precambrian Microfossils: Insights into the Search for		4
298	Past Life on Mars. Astrobiology, 2022, 22, 1239-1254.	1.5	4
000	Mineralogy of a Possible Ancient Lakeshore in the Sutton Island Member of Mt. Sharp, Gale Crater,	1.5	
299	Mars, From Mastcam Multispectral Images. Journal of Geophysical Research E: Planets, 2022, 127, .	1.5	6

	CITATION	REPORT	
щ		IF	CITATIONS
#	ARTICLE	IF	CHAHONS
300	Preliminary design of Martian Moons eXploration (MMX). Acta Astronautica, 2023, 202, 715-728.	1.7	11
301	Life Underground: Investigating Microbial Communities and Their Biomarkers in Marsâ€Analog Lava Tubes at Craters of the Moon National Monument and Preserve. Journal of Geophysical Research E: Planets, 2022, 127, .	1.5	5
302	Using Organic Contaminants to Constrain the Terrestrial Journey of the Martian Meteorite Lafayette. Astrobiology, 2022, 22, 1351-1362.	1.5	0
303	Biomarkers in Extreme Environments on Earth and the Search for Extraterrestrial Life in Our Solar System. Elements, 2022, 18, 100-106.	0.5	1
304	From science questions to Solar System exploration. , 2023, , 65-175.		0
305	A Deep Ultraviolet Raman and Fluorescence Spectral Library of 51 Organic Compounds for the SHERLOC Instrument Onboard Mars 2020. Astrobiology, 2023, 23, 1-23.	1.5	9
306	Constraining Alteration Processes Along the Siccar Point Group Unconformity, Gale Crater, Mars: Results From the Sample Analysis at Mars Instrument. Journal of Geophysical Research E: Planets, 2022, 127, .	1.5	3
307	Abiotic. , 2022, , 1-2.		0
308	Preservation of Organic Matter in Aqueous Deposits and Soils Across the Marsâ€Analog Qaidam Basin, NW China: Implications for Biosignature Detection on Mars. Journal of Geophysical Research E: Planets, 2022, 127, .	1.5	3
309	"Freezing―Thermophiles: From One Temperature Extreme to Another. Microorganisms, 2022, 10, 2417.	1.6	3
310	Aqueous alteration processes in Jezero crater, Mars—implications for organic geochemistry. Science, 2022, 378, 1105-1110.	6.0	42
311	Reflectance of Jezero Crater Floor: 1. Data Processing and Calibration of the Infrared Spectrometer (IRS) on SuperCam. Journal of Geophysical Research E: Planets, 2023, 128, .	1.5	3
312	Complex carbonaceous matter in Tissint martian meteorites give insights into the diversity of organic geochemistry on Mars. Science Advances, 2023, 9, .	4.7	4
313	The photochemical evolution of polycyclic aromatic hydrocarbons and nontronite clay on early Earth and Mars. Icarus, 2023, 394, 115437.	1.1	2
314	Biosignatures Preserved in Carbonate Nodules from the Western Qaidam Basin, NW China: Implications for Life Detection on Mars. Astrobiology, 0, , .	1.5	7
315	Liquid water lake under ice in Mars's southern hemisphere—Possibility of subsurface biosphere and life. , 2023, , 453-522.		0
316	Cas Chromatography Fingerprint of Martian Amino Acids before Analysis of Return Samples. Chemosensors, 2023, 11, 76.	1.8	0
317	Changes in the Raman and Fluorescence Spectroscopic Signatures of Irradiated Organicâ€Mineral Mixtures: Implications for Molecular Biosignature Detection on Mars. Journal of Geophysical Research E: Planets, 2023, 128, .	1.5	3

		15	2
#	ARTICLE	IF	CITATIONS
318	The Fermi Paradox and Astrobiology. , 2023, , 209-266.		0
319	Comparison of tetramethylammonium hydroxide (TMAH), trimethylsulfonium hydroxide (TMSH), and trimethylphenylammonium hydroxide (TMPAH) thermochemolysis for in situ space analysis of organic molecules in planetary environments. Talanta, 2023, 257, 124283.	2.9	3
320	A potential application for life-related organics detection on Mars by diffuse reflectance infrared spectroscopy. Heliyon, 2023, 9, e13560.	1.4	0
321	Detection of organic matter on Mars, results from various Mars missions, challenges, and future strategy: A review. Frontiers in Astronomy and Space Sciences, 0, 10, .	1.1	5
322	Self-Similar Patterns from Abiotic Decarboxylation Metabolism through Chemically Oscillating Reactions: A Prebiotic Model for the Origin of Life. Life, 2023, 13, 551.	1.1	2
323	Life on Mars, can we detect it?. Nature Communications, 2023, 14, .	5.8	1
324	Dark microbiome and extremely low organics in Atacama fossil delta unveil Mars life detection limits. Nature Communications, 2023, 14, .	5.8	11
325	å³äºŽæ~囼2å®ä¼2"生物å¦ç"ç©¶çš"æ€è€ƒ. Diqiu Kexue - Zhongguo Dizhi Daxue Xuebao/Earth Science - Geosciences, 2022, 47, 4108.	Journal of	⁻ China Unive
326	An Overview of Lipid Biomarkers in Terrestrial Extreme Environments with Relevance for Mars Exploration. Astrobiology, 2023, 23, 563-604.	1.5	7
327	Deciphering the Origin of Abiotic Organic Compounds on Earth: Review and Future Prospects. Acta Geologica Sinica, 2023, 97, 288-308.	0.8	0
328	Decomposition of Benzene during Impacts in N ₂ -dominated Atmospheres. Astrophysical Journal, 2023, 945, 149.	1.6	2
329	Thermal Stability of (Bio)Carbonates: A Potential Signature for Detecting Life on Mars?. Astrobiology, 2023, 23, 359-371.	1.5	0
330	Rational ignorance in the search for extra-terrestrial life. New Astronomy Reviews, 2023, 96, 101675.	5.2	0
337	Tianwen-1 releasing first colored global map of Mars. Science China: Physics, Mechanics and Astronomy, 2023, 66, .	2.0	0
338	Habitability of the Solar System. , 2023, , 1241-1247.		0
339	Mars Science Laboratory. , 2023, , 1802-1806.		0

18