Background levels of methane in Mars†at mosphere sl

Science 360, 1093-1096 DOI: 10.1126/science.aaq0131

Citation Report

#	Article	IF	CITATIONS
1	An Overview of the Stratospheric Observatory for Infrared Astronomy Since Full Operation Capability. Journal of Astronomical Instrumentation, 2018, 07, .	0.8	5
2	Philanthropic Space Science: The Breakthrough Initiatives. New Space, 2018, 6, 262-268.	0.4	9
3	Methane on Mars and Habitability: Challenges and Responses. Astrobiology, 2018, 18, 1221-1242.	1.5	50
4	Experimental Evolution to Explore Adaptation of Terrestrial Bacteria to the Martian Environment. Grand Challenges in Biology and Biotechnology, 2018, , 241-265.	2.4	1
5	Mars scientists edge closer to solving methane mystery. Nature, 2018, 563, 18-19.	13.7	0
6	O2 solubility in Martian near-surface environments and implications for aerobic life. Nature Geoscience, 2018, 11, 905-909.	5.4	57
7	Comments on the June 7, 2018, NASA News Release and Papers. Astrobiology, 2018, 18, 841-842.	1.5	1
8	Background levels of methane in Mars' atmosphere show strong seasonal variations. Science, 2018, 360, 1093-1096.	6.0	224
9	Organic molecules on Mars. Science, 2018, 360, 1068-1069.	6.0	13
10	The Methane Diurnal Variation and Microseepage Flux at Gale Crater, Mars as Constrained by the ExoMars Trace Gas Orbiter and Curiosity Observations. Geophysical Research Letters, 2019, 46, 9430-9438.	1.5	31
11	Validation of the HITRAN 2016 and GEISA 2015 line lists using ACE-FTS solar occultation observations. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 236, 106590.	1.1	7
12	Mars: Science Before Settlement. Theology and Science, 2019, 17, 324-331.	0.2	6
13	Potential for Aerobic Methanotrophic Metabolism on Mars. Astrobiology, 2019, 19, 1187-1195.	1.5	9
14	How to Search for Life in Martian Chemical Sediments and Their Fluid and Solid Inclusions Using Petrographic and Spectroscopic Methods. Frontiers in Environmental Science, 2019, 7, .	1.5	23
15	Comparing MSL Curiosity Rover TLS‧AM Methane Measurements With Mars Regional Atmospheric Modeling System Atmospheric Transport Experiments. Journal of Geophysical Research E: Planets, 2019, 124, 2141-2167.	1.5	19
16	Mars Small Spacecraft Studies: Overview. , 2019, , .		6
17	The Chemistry of CO2 and TiO2. Springer Briefs in Molecular Science, 2019, , .	0.1	3
18	Seasonal Variations in Atmospheric Composition as Measured in Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2019, 124, 3000-3024.	1.5	71

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
19	Linewidth broadening factor of an interband cascade laser. Applied Physics Letters, 2019, 115, .	1.5	17
20	Role of the Tenax® Adsorbent in the Interpretation of the EGA and GCâ€MS Analyses Performed With the Sample Analysis at Mars in Gale Crater. Journal of Geophysical Research E: Planets, 2019, 124, 2819-2851.	1.5	13
21	The Search for a Signature of Life on Mars: A Biogeomorphological Approach. Astrobiology, 2019, 19, 1279-1291.	1.5	14
22	Chemical Ionization Mass Spectrometry: Applications for the In Situ Measurement of Nonvolatile Organics at Ocean Worlds. Astrobiology, 2019, 19, 1196-1210.	1.5	9
23	Retrieval and characterization of carbon monoxide (CO) vertical profiles in the Martian atmosphere from observations of PFS/MEX. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 238, 106498.	1.1	6
24	Habitability of Mars: How Welcoming Are the Surface and Subsurface to Life on the Red Planet?. Geosciences (Switzerland), 2019, 9, 361.	1.0	11
25	Effects of UV-organic interaction and martian conditions on the survivability of organics. Icarus, 2019, 323, 33-39.	1.1	9
26	CO2-broadening coefficients in the ν3 fundamental band of methane. Journal of Molecular Spectroscopy, 2019, 360, 1-6.	0.4	5
27	Light on windy nights on Mars: A study of saltation-mediated ionization of argon in a Mars-like atmosphere. Icarus, 2019, 332, 14-18.	1.1	10
28	Aeolian abrasion of rocks as a mechanism to produce methane in the Martian atmosphere. Scientific Reports, 2019, 9, 8229.	1.6	1
29	A Simple Instrument Suite for Characterizing Habitability and Weathering: The Modern Aqueous Habitat Reconnaissance Suite (MAHRS). Astrobiology, 2019, 19, 849-866.	1.5	1
30	Mars atmospheric chemistry simulations with the GEM-Mars general circulation model. Icarus, 2019, 326, 197-224.	1.1	52
31	The potential science and engineering value of samples delivered to Earth by Mars sample return. Meteoritics and Planetary Science, 2019, 54, S3.	0.7	73
32	Methane seasonal cycle at Gale Crater on Mars consistent with regolith adsorption and diffusion. Nature Geoscience, 2019, 12, 321-325.	5.4	24
33	The Search for Life on Mars. , 2019, , 367-381.		4
34	Cancer geneticists tackle troubling ethnic bias in studies. Nature, 2019, 568, 154-155.	13.7	6
35	Solar Occultation FTIR Spectrometry at Mars for Trace Gas Detection: A Sensitivity Study. Earth and Space Science, 2019, 6, 836-860.	1.1	3
36	Mars methane hunt comes up empty, flummoxing scientists. Nature, 2019, 568, 153-154.	13.7	1

ARTICLE IF CITATIONS # No detection of methane on Mars from early ExoMars Trace Gas Orbiter observations. Nature, 2019, 37 13.7 111 568, 517-520. Independent confirmation of a methane spike on Mars and a source region east of Gale Crater. Nature 5.4 Geoscience, 2019, 12, 326-332. A Maximum Subsurface Biomass on Mars from Untapped Free Energy: CO and H₂as 39 1.5 19 Potential Antibiosignatures. Astrobiology, 2019, 19, 655-668. Subsurface Sediment Mobilization in the Southern Chryse Planitia on Mars. Journal of Geophysical Research E: Planets, 2019, 124, 703-720. The Solar System. , 2019, , 1-10. 42 0 Atmospheric Structure., 2019, , 11-29. 45 Aerosol Extinction and Scattering., 2019, , 52-64. 0 Quantitative Spectroscopy., 2019,, 65-77. 46 47 Spectrographs., 2019, , 78-85. 0 Spectroscopic Methods to Study Planetary Atmospheres., 2019, , 86-102. Solar Radiation, Its Absorption in the Atmospheres, and Airglow., 2019, , 103-119. 49 0 Chemical Kinetics., 2019, , 120-139. Photochemical Modeling., 2019, , 140-154. 51 0 Titan., 2019, , 367-442. Triton., 2019, , 443-466. 55 0 Pluto and Charon., 2019, , 467-496. Atmospheric transport of subsurface, sporadic, time-varying methane releases on Mars. Icarus, 2019, 59 7 1.1 325, 39-54. Methane spikes, background seasonality and non-detections on Mars: A geological perspective. Planetary and Space Science, 2019, 168, 52-61.

#	Article	IF	CITATIONS
61	Experimental modeling of subsurface gas traps on Mars. Journal of Physics: Conference Series, 2019, 1400, 022046.	0.3	0
62	The Effect of Bacterial Sulfate Reduction Inhibition on the Production and Stable Isotopic Composition of Methane in Hypersaline Environments. Aquatic Geochemistry, 2019, 25, 237-251.	1.5	4
63	Photochemical Reduction of CO2 on Terrestrial Planets. , 2019, , .		0
64	Grid Mapping the Northern Plains of Mars: A New Overview of Recent Water―and Iceâ€Related Landforms in Acidalia Planitia. Journal of Geophysical Research E: Planets, 2019, 124, 454-482.	1.5	23
65	Formation of Methane and (Per)Chlorates on Mars. ACS Earth and Space Chemistry, 2019, 3, 221-232.	1.2	24
66	Methane on Mars: New insights into the sensitivity of CH4 with the NOMAD/ExoMars spectrometer through its first in-flight calibration. Icarus, 2019, 321, 671-690.	1.1	32
67	UV luminescence characterisation of organics in Mars-analogue substrates. Icarus, 2019, 321, 929-937.	1.1	5
68	Mars Colonization: Beyond Getting There. Global Challenges, 2019, 3, 1800062.	1.8	44
69	The next frontier for planetary and human exploration. Nature Astronomy, 2019, 3, 116-120.	4.2	39
70	The Enigma of Methane on Mars. Advances in Astrobiology and Biogeophysics, 2019, , 253-266.	0.6	6
71	Statistical analysis of Curiosity data shows no evidence for a strong seasonal cycle of martian methane. Icarus, 2020, 336, 113407.	1.1	21
72	Automation of mass spectrometric detection of analytes and related workflows: A review. Talanta, 2020, 208, 120304.	2.9	30
73	Methane release on Early Mars by atmospheric collapse and atmospheric reinflation. Planetary and Space Science, 2020, 181, 104820.	0.9	12
74	Methanogenic Archaea Can Produce Methane in Deliquescence-Driven Mars Analog Environments. Scientific Reports, 2020, 10, 6.	1.6	30
75	DFT study of electronic and redox properties of TiO2 supported on olivine for modelling regolith on Moon and Mars conditions. Planetary and Space Science, 2020, 180, 104760.	0.9	4
76	How to survive winter?. , 2020, , 101-125.		1
77	Vertebrate viruses in polar ecosystems. , 2020, , 126-148.		0
79	Life in the extreme environments of our planet under pressure. , 2020, , 151-183.		Ο

	CITATION R	EPORT	
#	Article	IF	CITATIONS
80	Chemical ecology in the Southern Ocean. , 2020, , 251-278.		1
84	Physiological traits of the Greenland sharkSomniosus microcephalusobtained during the TUNU-Expeditions to Northeast Greenland. , 2020, , 11-41.		0
85	Metazoan adaptation to deep-sea hydrothermal vents. , 2020, , 42-67.		4
86	Extremophiles populating high-level natural radiation areas (HLNRAs) in Iran. , 2020, , 68-86.		1
88	Metazoan life in anoxic marine sediments. , 2020, , 89-100.		0
89	The ecophysiology of responding to change in polar marine benthos. , 2020, , 184-217.		0
90	The Southern Ocean: an extreme environment or just home of unique ecosystems?. , 2020, , 218-233.		1
91	Metabolic and taxonomic diversity in antarctic subglacial environments. , 2020, , 279-296.		2
92	Analytical astrobiology: the search for life signatures and the remote detection of biomarkers through their Raman spectral interrogation. , 2020, , 301-318.		1
93	Adaptation/acclimatisation mechanisms of oxyphototrophic microorganisms and their relevance to astrobiology. , 2020, , 319-342.		0
94	Life at the extremes. , 2020, , 343-354.		0
95	Microorganisms in cryoturbated organic matter of Arctic permafrost soils. , 2020, , 234-250.		0
98	Photochemistry of Methane and Ethane in the Martian Atmosphere. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006491.	1.5	2
100	First observation of the magnetic dipole CO ₂ absorption band at 3.3 <i>μ</i> m in the atmosphere of Mars by the ExoMars Trace Gas Orbiter ACS instrument. Astronomy and Astrophysics, 2020, 639, A142.	2.1	25
101	In Situ UV Measurements by MSL/REMS: Dust Deposition and Angular Response Corrections. Space Science Reviews, 2020, 216, 1.	3.7	17
103	Exploring Carbon Mineral Systems: Recent Advances in C Mineral Evolution, Mineral Ecology, and Network Analysis. Frontiers in Earth Science, 2020, 8, .	0.8	29
104	Curiosity Mars methane measurements are not confused by ozone. Astronomy and Astrophysics, 2020, 641, L3.	2.1	6
105	Dimerization of Uracil in a Simulated Mars-like UV Radiation Environment. Astrobiology, 2020, 20, 1363-1376.	1.5	7

#	Article	IF	CITATIONS
106	Mars Extant Life: What's Next? Conference Report. Astrobiology, 2020, 20, 785-814.	1.5	56
107	Narrow linewidth characteristics of interband cascade lasers. Applied Physics Letters, 2020, 116, .	1.5	13
108	Electrochemical Conversion of CO ₂ and CH ₄ at Subzero Temperatures. ACS Catalysis, 2020, 10, 7464-7474.	5.5	20
109	Hydrogen, Hydrocarbons, and Habitability Across the Solar System. Elements, 2020, 16, 47-52.	0.5	22
110	Deep microbial proliferation at the basalt interface in 33.5–104 million-year-old oceanic crust. Communications Biology, 2020, 3, 136.	2.0	29
111	Simulating Serpentinization as It Could Apply to the Emergence of Life Using the JPL Hydrothermal Reactor. Astrobiology, 2020, 20, 307-326.	1.5	22
112	Rate Equation Modeling of Interband Cascade Lasers on Modulation and Noise Dynamics. IEEE Journal of Quantum Electronics, 2020, 56, 1-9.	1.0	14
113	Mineralogy and geochemistry of sedimentary rocks and eolian sediments in Gale crater, Mars: A review after six Earth years of exploration with Curiosity. Chemie Der Erde, 2020, 80, 125605.	0.8	137
114	Advective Fluxes in the Martian Regolith as a Mechanism Driving Methane and Other Trace Gas Emissions to the Atmosphere. Geophysical Research Letters, 2020, 47, e2019GL085694.	1.5	9
115	Indigenous and exogenous organics and surface–atmosphere cycling inferred from carbon and oxygen isotopes at Gale crater. Nature Astronomy, 2020, 4, 526-532.	4.2	41
117	Comprehensive investigation of Mars methane and organics with ExoMars/NOMAD. Icarus, 2021, 357, 114266.	1.1	27
118	Stability and composition of CH4-rich clathrate hydrates in the present martian subsurface. Icarus, 2021, 353, 114099.	1.1	3
119	Methane on Mars: subsurface sourcing and conflicting atmospheric measurements. , 2021, , 149-174.		2
120	Subsurface robotic exploration for geomorphology, astrobiology and mining during MINAR6 campaign, Boulby Mine, UK: part II (Results and Discussion). International Journal of Astrobiology, 2021, 20, 93-108.	0.9	0
121	Searching for Life on Mars: A Brief Summary. Springer Proceedings in Physics, 2021, , 115-122.	0.1	0
122	Atmospheric trace gas measurements using laser heterodyne spectroscopy. , 2021, , 159-223.		3
123	The role of liquid water in recent surface processes on Mars. , 2021, , 207-261.		1
124	Resolving Martian enigmas, discovering new ones: the case ofÂCuriosity and Gale crater. , 2021, , 1-10.		0

#	Article	IF	CITATIONS
125	A review of the meteor shower hypothesis for methane on Mars. , 2021, , 175-203.		1
126	Herriott cell spot imaging increases the performance of tunable laser spectrometers. Applied Optics, 2021, 60, 1958.	0.9	4
127	Abiotic Formation of Methane and Prebiotic Molecules on Mars and Other Planets. ACS Earth and Space Chemistry, 2021, 5, 1172-1179.	1.2	2
128	Carbonateâ€Phyllosilicate Parageneses and Environments of Aqueous Alteration in Nili Fossae and Mars. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006698.	1.5	7
130	New Insights into the Search for Life on Mars. , 0, , .		0
131	A stringent upper limit of 20 pptv for methane on Mars and constraints on its dispersion outside Gale crater. Astronomy and Astrophysics, 0, , .	2.1	16
132	China's Mars Exploration Mission and Science Investigation. Space Science Reviews, 2021, 217, 1.	3.7	66
133	Choice of Microbial System for In-Situ Resource Utilization on Mars. Frontiers in Astronomy and Space Sciences, 2021, 8, .	1.1	15
137	Transcriptional response to prolonged perchlorate exposure in the methanogen Methanosarcina barkeri and implications for Martian habitability. Scientific Reports, 2021, 11, 12336.	1.6	3
139	Day-night differences in Mars methane suggest nighttime containment at Gale crater. Astronomy and Astrophysics, 2021, 650, A166.	2.1	22
140	Chiral selection, isotopic abundance shifts, and autocatalysis of meteoritic amino acids. Physical Review Research, 2021, 3, .	1.3	4
141	Active Mars: A Dynamic World. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006876.	1.5	17
142	Differential gain and gain compression of an overdamped interband cascade laser. Applied Physics Letters, 2021, 119, .	1.5	3
143	Advances in carbon isotope analysis of trapped methane and volatile hydrocarbons in crystalline rock cores. Rapid Communications in Mass Spectrometry, 2021, 35, e9170.	0.7	3
144	A three-dimensional atmospheric dispersion model for Mars. Progress in Earth and Planetary Science, 2021, 8, .	1.1	4
145	Fluorescence microscope as a core instrument for extraterrestrial-life detection methods. , 2021, , .		0
146	Compact 480-GHz Radiometer Calibration Unit With Specular Reflection Absorber for Atmospheric Remote Sensor On-Board Microsatellite. IEEE Transactions on Terahertz Science and Technology, 2021, 11, 486-494.	2.0	4
147	Heterogeneous Physical Chemistry in the Atmospheres of Earth, Mars, and Venus: Perspectives for Rocky Exoplanets. ACS Earth and Space Chemistry, 2021, 5, 149-162.	1.2	3

#	Article	IF	CITATIONS
149	First detection of ozone in the mid-infrared at Mars: implications for methane detection. Astronomy and Astrophysics, 2020, 639, A141.	2.1	23
150	Miniaturized ring-down spectrometer for CubeSat-based planetary science. Applied Optics, 2019, 58, 1941.	0.9	6
151	Relative intensity noise of a continuous-wave interband cascade laser at room temperature. Optics Letters, 2019, 44, 1375.	1.7	15
152	Diffusivity and solubility of methane in ice Ih. Geochemical Journal, 2019, 53, 83-89.	0.5	2
153	Distinguishing between Wet and Dry Atmospheres of TRAPPIST-1 e and f. Astrophysical Journal, 2020, 901, 126.	1.6	33
154	A Geologically Robust Procedure for Observing Rocky Exoplanets to Ensure that Detection of Atmospheric Oxygen Is a Modern Earth-like Biosignature. Astrophysical Journal Letters, 2020, 898, L17.	3.0	5
155	Astrobiology - an opposing view. Bioinformation, 2018, 14, 346-349.	0.2	2
156	Metagenome-Assembled Genomes from Monte Cristo Cave (Diamantina, Brazil) Reveal Prokaryotic Lineages As Functional Models for Life on Mars. Astrobiology, 2021, , .	1.5	4
157	Interband Cascade Laser-based Dual-Comb Spectroscopy for Methane Sensing. , 2018, , .		0
158	Signaturen des Lebens. , 2019, , 1-114.		0
159	Interferometer with single-axis robot: design, alignment and performance. , 2019, , .		0
160	Spectral Linewidth of a Distributed Feedback Interband Cascade Laser. , 2020, , .		0
163	Sub-threshold linewidth broadening factor of a 3.4l̂1⁄4m interband cascade laser operated at room temperature. , 2020, , .		0
164	Mars Methane Sources in Northwestern Gale Crater Inferred From Back Trajectory Modeling. Earth and Space Science, 2021, 8, e2021EA001915.	1.1	8
167	In situ resource utilisation: The potential for space biomining. Minerals Engineering, 2022, 176, 107288.	1.8	13
168	The Deep Rocky Biosphere: New Geomicrobiological Insights and Prospects. Frontiers in Microbiology, 2021, 12, 785743.	1.5	3
169	Aeolian driven silicate comminution unlikely to be responsible for the rapid loss of Martian methane. Icarus, 2021, 375, 114827.	1.1	0
170	Mars: new insights and unresolved questions. International Journal of Astrobiology, 2021, 20, 394-426.	0.9	19

# 172	ARTICLE Depleted carbon isotope compositions observed at Gale crater, Mars. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	IF 3.3	Citations 33
173	Out of Thin Air? Astrobiology and Atmospheric Chemotrophy. Astrobiology, 2022, , .	1.5	5
174	Reaction of methane and UV-activated perchlorate: Relevance to heterogeneous loss of methane in the atmosphere of Mars. Icarus, 2022, 376, 114832.	1.1	2
175	Carbonate dissolution and replacement by odinite and saponite in the lafayette nakhlite: part of the CO2-CH4 cycle on mars?. Geochimica Et Cosmochimica Acta, 2022, , .	1.6	3
176	The Most Volatile Elements and Compounds. , 2022, , 271-297.		0
177	Atmospheric processes affecting methane on Mars. Icarus, 2022, 382, 114940.	1.1	3
178	Methanogenesis from Mineral Carbonates, a Potential Indicator for Life on Mars. Geosciences (Switzerland), 2022, 12, 138.	1.0	2
179	Obtaining elemental sulfur for Martian sulfur concrete. Journal of Chemical Research, 2022, 46, 174751982210807.	0.6	6
180	Active lithoautotrophic and methane-oxidizing microbial community in an anoxic, sub-zero, and hypersaline High Arctic spring. ISME Journal, 2022, 16, 1798-1808.	4.4	14
181	Mission Overview and Scientific Contributions from the Mars Science Laboratory Curiosity Rover After Eight Years of Surface Operations. Space Science Reviews, 2022, 218, 14.	3.7	25
182	Design and multi-body dynamic analysis of the Archimede space exploration rover. Acta Astronautica, 2022, 194, 229-241.	1.7	6
183	Time-Sensitive Aspects of Mars Sample Return (MSR) Science. Astrobiology, 2021, , .	1.5	10
184	Constraints on Emission Source Locations of Methane Detected by Mars Science Laboratory. Journal of Geophysical Research E: Planets, 2021, 126, .	1.5	5
185	Scientific Value of Including an Atmospheric Sample as Part of Mars Sample Return (MSR). Astrobiology, 2022, 22, S-165-S-175.	1.5	7
188	Seasonality in Mars atmospheric methane driven by microseepage, barometric pumping, and adsorption. Icarus, 2022, 383, 115079.	1.1	2
189	Microbial Communities in Saltpan Sediments Show Tolerance to Mars Analog Conditions, but Susceptibility to Chloride and Perchlorate Toxicity. Astrobiology, 0, , .	1.5	0
190	Database on mineral mediated carbon reduction: implications for future research. International Journal of Astrobiology, 0, , 1-18.	0.9	1
191	Comparative study of methods for detecting extraterrestrial life in the exploration mission of Mars and the solar system. Life Sciences in Space Research, 2022, , .	1.2	4

#	Article	IF	CITATIONS
192	Barometric Pumping Through Fractured Rock: A Mechanism for Venting Deep Methane to Mars' Atmosphere. Geophysical Research Letters, 2022, 49, .	1.5	3
193	Thermochemical sulfate reduction in sedimentary basins and beyond: A review. Chemical Geology, 2022, 607, 121018.	1.4	28
194	Methanol in the RNA world: An astrochemical perspective. Frontiers in Astronomy and Space Sciences, 0, 9, .	1.1	5
195	Extraterrestrial Life Signature Detection Microscopy: Search and Analysis of Cells and Organics on Mars and Other Solar System Bodies. Space Science Reviews, 2022, 218, .	3.7	2
196	Biosignature stability in space enables their use for life detection on Mars. Science Advances, 2022, 8, .	4.7	10
197	Digital panels in the development of graphomotor skills in children from 3 to 5 years old. Ambato Ecuador. , 2022, , .		0
198	Investigation of Absorption Bands around 3.3 \hat{l} ¹ /4m in CRISM Data. Remote Sensing, 2022, 14, 5028.	1.8	0
199	The effect of COH fluids on partial melting of eclogite and lherzolite under moderately oxidizing and reducing conditions. Chemical Geology, 2023, 616, 121219.	1.4	2
200	Winds at the Mars 2020 Landing Site: 1. Near‣urface Wind Patterns at Jezero Crater. Journal of Geophysical Research E: Planets, 2022, 127, .	1.5	9
201	Complex carbonaceous matter in Tissint martian meteorites give insights into the diversity of organic geochemistry on Mars. Science Advances, 2023, 9, .	4.7	4
202	Single-Mode Tunable Interband Cascade Laser Emitting at 3.4 μm With a Wide Tuning Range Over 100 nm. IEEE Photonics Technology Letters, 2023, 35, 309-312.	1.3	4
203	The Fermi Paradox and Astrobiology. , 2023, , 209-266.		0
204	Coupling and interactions across the Martian whole atmosphere system. Nature Geoscience, 2023, 16, 123-132.	5.4	3
205	Detection of organic matter on Mars, results from various Mars missions, challenges, and future strategy: A review. Frontiers in Astronomy and Space Sciences, 0, 10, .	1.1	5
206	å³äºŽæ~国å©ä½"生物å¦ç"ç©¶çš"æ€è€ƒ. Diqiu Kexue - Zhongguo Dizhi Daxue Xuebao/Earth Science - Geosciences, 2022, 47, 4108.	Journal of 0.1	China Unive
207	The ro-vibrational <i>ν</i> 2 mode spectrum of methane investigated by ultrabroadband coherent Raman spectroscopy. Journal of Chemical Physics, 2023, 158, .	1.2	2
208	Mars Simulation Facilities: A Review of Recent Developments, Capabilities and Applications. Journal of the Indian Institute of Science, 0, , .	0.9	1
209	Life in the Cosmos: Paradox of Silence and Self-Awareness. , 0, , .		0

		CITATION REPORT	
#	Article	IF	Citations
210	Trace Gases of Mars Atmosphere. Astrophysics and Space Science Library, 2023, , 171-177.	1.0	0
212	Origin of Methane and Biomolecules from a CO2 Cycle on Terrestrial Planets. Thirty Years of Astronomical Discovery With UKIRT, 2023, , 329-335.	0.3	0