Targeting repair pathways with small molecules increas pluripotent stem cells

Nature Communications 9, 2164 DOI: 10.1038/s41467-018-04609-7

Citation Report

CITATION REDORT

#	Article	IF	CITATIONS
1	Simultaneous precise editing of multiple genes in human cells. Nucleic Acids Research, 2019, 47, e116-e116.	6.5	85
2	A transient reporter for editing enrichment (TREE) in human cells. Nucleic Acids Research, 2019, 47, e120-e120.	6.5	33
3	Stimulation of CRISPR-mediated homology-directed repair by an engineered RAD18 variant. Nature Communications, 2019, 10, 3395.	5.8	85
4	Towards clinical application of tissue engineering for erectile penile regeneration. Nature Reviews Urology, 2019, 16, 734-744.	1.9	11
5	A role for alternative end-joining factors in homologous recombination and genome editing in Chinese hamster ovary cells. DNA Repair, 2019, 82, 102691.	1.3	16
6	Improving homology-directed repair efficiency in human stem cells. Methods, 2019, 164-165, 18-28.	1.9	62
7	Orthotopic replacement of T-cell receptor α- and β-chains with preservation of near-physiological T-cell function. Nature Biomedical Engineering, 2019, 3, 974-984.	11.6	112
8	CRISPR Cpf1 proteins: structure, function and implications for genome editing. Cell and Bioscience, 2019, 9, 36.	2.1	124
9	CRISPR-Cas9-Mediated Correction of the G189R-PAX2 Mutation in Induced Pluripotent Stem Cells from a Patient with Focal Segmental Glomerulosclerosis. CRISPR Journal, 2019, 2, 108-120.	1.4	4
10	Altered neuronal migratory trajectories in human cerebral organoids derived from individuals with neuronal heterotopia. Nature Medicine, 2019, 25, 561-568.	15.2	135
11	Therapeutic gene editing in haematological disorders with <scp>CRISPR</scp> /Cas9. British Journal of Haematology, 2019, 185, 821-835.	1.2	32
12	Suppressing the NHEJ pathway by DNA-PKcs inhibitor NU7026 prevents degradation of HBV cccDNA cleaved by CRISPR/Cas9. Scientific Reports, 2019, 9, 1847.	1.6	36
13	Evolution of CRISPR towards accurate and efficient mammal genome engineering. BMB Reports, 2019, 52, 475-481.	1.1	21
14	Advances in genome editing through control of DNA repair pathways. Nature Cell Biology, 2019, 21, 1468-1478.	4.6	271
15	Recent advances in CRISPR/Cas9-mediated knock-ins in mammalian cells. Journal of Biotechnology, 2020, 308, 1-9.	1.9	48
16	Valproic Acid Thermally Destabilizes and Inhibits SpyCas9 Activity. Molecular Therapy, 2020, 28, 2635-2641.	3.7	6
17	Chemogenetic System Demonstrates That Cas9 Longevity Impacts Genome Editing Outcomes. ACS Central Science, 2020, 6, 2228-2237.	5.3	14
18	A Revolution toward Gene-Editing Technology and Its Application to Crop Improvement. International Journal of Molecular Sciences, 2020, 21, 5665.	1.8	62

CITATION REPORT

#	Article	IF	CITATIONS
19	NHEJ inhibitor SCR7 and its different forms: Promising CRISPR tools for genome engineering. Gene, 2020, 763, 144997.	1.0	11
20	Inhibitors of DNA double-strand break repair at the crossroads of cancer therapy and genome editing. Biochemical Pharmacology, 2020, 182, 114195.	2.0	9
21	Enhancement of CRISPR-Cas9 induced precise gene editing by targeting histone H2A-K15 ubiquitination. BMC Biotechnology, 2020, 20, 57.	1.7	7
22	Modulation of DNA double-strand break repair as a strategy to improve precise genome editing. Oncogene, 2020, 39, 6393-6405.	2.6	27
23	Methods Favoring Homology-Directed Repair Choice in Response to CRISPR/Cas9 Induced-Double Strand Breaks. International Journal of Molecular Sciences, 2020, 21, 6461.	1.8	109
24	Methodologies and Challenges for CRISPR/Cas9 Mediated Genome Editing of the Mammalian Brain. Frontiers in Genome Editing, 2020, 2, 602970.	2.7	17
25	Disease modeling and stem cell immunoengineering in regenerative medicine using CRISPR/Cas9 systems. Computational and Structural Biotechnology Journal, 2020, 18, 3649-3665.	1.9	7
26	Improving Precise CRISPR Genome Editing by Small Molecules: Is there a Magic Potion?. Cells, 2020, 9, 1318.	1.8	41
27	High Homology-Directed Repair Using Mitosis Phase and Nucleus Localizing Signal. International Journal of Molecular Sciences, 2020, 21, 3747.	1.8	9
28	Increasing CRISPR/Cas9-mediated homology-directed DNA repair by histone deacetylase inhibitors. International Journal of Biochemistry and Cell Biology, 2020, 125, 105790.	1.2	20
29	Orthotopic T-Cell Receptor Replacement—An "Enabler―for TCR-Based Therapies. Cells, 2020, 9, 1367.	1.8	12
30	Synergistic gene editing in human iPS cells via cell cycle and DNA repair modulation. Nature Communications, 2020, 11, 2876.	5.8	31
31	RSâ€1 enhances CRISPRâ€mediated targeted knockâ€in in bovine embryos. Molecular Reproduction and Development, 2020, 87, 542-549.	1.0	19
32	Technologies and Computational Analysis Strategies for CRISPR Applications. Molecular Cell, 2020, 79, 11-29.	4.5	28
33	Applications of Functional Genomics for Drug Discovery. SLAS Discovery, 2020, 25, 823-842.	1.4	6
34	Adaptation of Human Testicular Niche Cells for Pluripotent Stem Cell and Testis Development Research. Tissue Engineering and Regenerative Medicine, 2020, 17, 223-235.	1.6	8
35	Rational Design of Small Molecules to Enhance Genome Editing Efficiency by Selectively Targeting Distinct Functional States of CRISPR-Cas12a. Bioconjugate Chemistry, 2020, 31, 542-546.	1.8	9
36	Applications and explorations of CRISPR/Cas9 in CAR T-cell therapy. Briefings in Functional Genomics, 2020, 19, 175-182.	1.3	59

#	Article	IF	CITATIONS
37	Haplotyping by CRISPR-mediated DNA circularization (CRISPR-hapC) broadens allele-specific gene editing. Nucleic Acids Research, 2020, 48, e25-e25.	6.5	8
38	Conventional and Molecular Techniques from Simple Breeding to Speed Breeding in Crop Plants: Recent Advances and Future Outlook. International Journal of Molecular Sciences, 2020, 21, 2590.	1.8	241
39	Simple embryo injection of long singleâ€stranded donor templates with the <scp>CRISPR</scp> /Cas9 system leads to homologyâ€directed repair in <scp><i>Xenopus tropicalis</i></scp> and <scp><i>Xenopus laevis</i></scp> . Genesis, 2020, 58, e23366.	0.8	19
40	Modeling Psychiatric Disorder Biology with Stem Cells. Current Psychiatry Reports, 2020, 22, 24.	2.1	25
41	CRISPR-Cas9 based genome editing for defective gene correction in humans and other mammals. Progress in Molecular Biology and Translational Science, 2021, 181, 185-229.	0.9	4
42	Advances and Obstacles in Homology-Mediated Gene Editing of Hematopoietic Stem Cells. Journal of Clinical Medicine, 2021, 10, 513.	1.0	11
43	Enhancing CRISPR deletion via pharmacological delay of DNA-PKcs. Genome Research, 2021, 31, 461-471.	2.4	9
45	Persistence of CRISPR/Cas9 Gene Edited Hematopoietic StemÂCells Following Transplantation: A Systematic Review andÂMeta-Analysis of Preclinical Studies. Stem Cells Translational Medicine, 2021, 10, 996-1007.	1.6	8
46	Low-temperature incubation improves both knock-in and knock-down efficiencies by the CRISPR/Cas9 system in Xenopus laevis as revealed by quantitative analysis. Biochemical and Biophysical Research Communications, 2021, 543, 50-55.	1.0	11
47	Correction of X-CGD patient HSPCs by targeted CYBB cDNA insertion using CRISPR/Cas9 with 53BP1 inhibition for enhanced homology-directed repair. Gene Therapy, 2021, 28, 373-390.	2.3	39
48	Efficient ssODN-Mediated Targeting by Avoiding Cellular Inhibitory RNAs through Precomplexed CRISPR-Cas9/sgRNA Ribonucleoprotein. Stem Cell Reports, 2021, 16, 985-996.	2.3	28
50	Cytosine and adenosine base editing in human pluripotent stem cells using transient reporters for editing enrichment. Nature Protocols, 2021, 16, 3596-3624.	5.5	7
51	Paving the way towards precise and safe CRISPR genome editing. Biotechnology Advances, 2021, 49, 107737.	6.0	19
52	DNA Repair Pathway Choices in CRISPR-Cas9-Mediated Genome Editing. Trends in Genetics, 2021, 37, 639-656.	2.9	126
53	Approaches to Enhance Precise CRISPR/Cas9-Mediated Genome Editing. International Journal of Molecular Sciences, 2021, 22, 8571.	1.8	9
54	Global detection of DNA repair outcomes induced by CRISPR–Cas9. Nucleic Acids Research, 2021, 49, 8732-8742.	6.5	52
55	Small molecule inhibition of ATM kinase increases CRISPR-Cas9 1-bp insertion frequency. Nature Communications, 2021, 12, 5111.	5.8	15
56	Application of CRISPR-Cas9 Editing for Virus Engineering and the Development of Recombinant Viral Vaccines. CRISPR Journal, 2021, 4, 477-490.	1.4	8

ARTICLE IF CITATIONS # CRISPR-Cas Gene Perturbation and Editing in Human Induced Pluripotent Stem Cells. CRISPR Journal, 1.4 5 58 2021, 4, 634-655. Tissue Specific DNA Repair Outcomes Shape the Landscape of Genome Editing. Frontiers in Genetics, 59 1.1 2021, 12, 728520. A non-viral and selection-free COL7A1 HDR approach with improved safety profile for dystrophic 60 2.3 14 epidermolysis bullosa. Molecular Therapy - Nucleic Acids, 2021, 25, 237-250. Optimized design parameters for CRISPR Cas9 and Cas12a homology-directed repair. Scientific Reports, 2021, 11, 19482. A Cas9â€"transcription factor fusion protein enhances homology-directed repair efficiency. Journal of 62 1.6 11 Biological Chemistry, 2021, 296, 100525. Dynamics and competition of CRISPR–Cas9 ribonucleoproteins and AAV donor-mediated NHEJ, MMEJ and 6.5 HDR editing. Nucleic Acids Research, 2021, 49, 969-985. Small molecules for mesenchymal stem cell fate determination. World Journal of Stem Cells, 2019, 11, 67 1.3 34 1084-1103. A high-throughput small molecule screen identifies farrerol as a potentiator of CRISPR/Cas9-mediated 2.8 genome editing. ELife, 2020, 9, . $5\hat{a}$ €²-Modifications improve potency and efficacy of DNA donors for precision genome editing. ELife, 2021, 69 2.8 30 10,. Improvement of the knock-in effciency in the genome of human induced pluripotent stem cells using 0.4 the CRISPR/Cas9 system. Vavilovskii Zhurnal Genetiki I Selektsii, 2019, 22, 1026-1032. A 53BP1 Inhibitory Compound Enhances CRISPR Efficiency for Generating Knock-In Mice. SSRN 72 0 0.4 Electronic Journal, 0, , . Modulating CRISPR/Cas9 genome-editing activity by small molecules. Drug Discovery Today, 2022, 27, 3.2 951-966. Evaluating the feasibility of Cas9 overexpression in 3T3-L1 cells for generation of genetic knock-out 74 1.3 0 adipocyte cell lines. Adipocyte, 2021, 10, 631-645. Improved gRNA secondary structures allow editing of target sites resistant to CRISPR-Cas9 cleavage. 5.8 Nature Communications, 2022, 13, 489. An effective double gene knockâ€in strategy using smallâ€molecule L755507 in the medaka fish (Oryzias) Tj ETQqQ Q 0 rgBT /Overlock 76 CRISPR-based genome editing through the lens of DNA repair. Molecular Cell, 2022, 82, 348-388.

CITATION REPORT

78	Lineage recording in human cerebral organoids. Nature Methods, 2022, 19, 90-99.	9.0	93
79	Rapid genome editing by CRISPR-Cas9-POLD3 fusion. ELife, 2021, 10, .	2.8	11

77

CITATION REPORT

#	Article	IF	CITATIONS
81	Progress in germline stem cell transplantation in mammals and the potential usage. Reproductive Biology and Endocrinology, 2022, 20, 59.	1.4	1
83	Inhibiting nonhomologous end-joining repair would promote the antitumor activity of gemcitabine in nonsmall cell lung cancer cell lines. Anti-Cancer Drugs, 2022, 33, 502-508.	0.7	2
85	CRISPR–Cas9 gene editing induced complex on-target outcomes in human cells. Experimental Hematology, 2022, 110, 13-19.	0.2	6
86	OUP accepted manuscript. FEMS Yeast Research, 2022, , .	1.1	1
87	Advantages and Limitations of Gene Therapy and Gene Editing for Friedreich's Ataxia. Frontiers in Genome Editing, 2022, 4, .	2.7	11
89	Small-molecule enhancers of CRISPR-induced homology-directed repair in gene therapy: A medicinal chemist's perspective. Drug Discovery Today, 2022, 27, 2510-2525.	3.2	4
90	Cas9-induced large deletions and small indels are controlled in a convergent fashion. Nature Communications, 2022, 13, .	5.8	32
91	Examination of the Cell Cycle Dependence of Cytosine and Adenine Base Editors. Frontiers in Genome Editing, 0, 4, .	2.7	6
92	Combining single-cell tracking and omics improves blood stem cell fate regulator identification. Blood, 2022, 140, 1482-1495.	0.6	12
93	Advance trends in targeting homology-directed repair for accurate gene editing: An inclusive review of small molecules and modified CRISPR-Cas9 systems. BioImpacts, 2022, 12, 371-391.	0.7	17
94	Longer metaphase and fewer chromosome segregation errors in modern human than Neanderthal brain development. Science Advances, 2022, 8, .	4.7	26
95	CRISPR-Cas9-directed gene tagging using a single integrase-defective lentiviral vector carrying a transposase-based Cas9 off switch. Molecular Therapy - Nucleic Acids, 2022, 29, 563-576.	2.3	1
96	Robust genome editing via modRNA-based Cas9 or base editor in human pluripotent stem cells. Cell Reports Methods, 2022, 2, 100290.	1.4	4
97	Inferring and perturbing cell fate regulomes in human brain organoids. Nature, 2023, 621, 365-372.	13.7	71
98	Opportunities and challenges with CRISPR-Cas mediated homologous recombination based precise editing in plants and animals. Plant Molecular Biology, 2023, 111, 1-20.	2.0	11
99	CRISPR nuclease off-target activity and mitigation strategies. Frontiers in Genome Editing, 0, 4, .	2.7	14
100	Maximizing the Efficacy of CRISPR/Cas Homology-Directed Repair Gene Targeting. , 0, , .		0
101	Multiparametric and accurate functional analysis of genetic sequence variants using CRISPR-Select.	9.4	7

CITATION REPORT

#	Article	IF	CITATIONS
103	MDM2 antagonists promote CRISPR/Cas9-mediated precise genome editing in sheep primary cells. Molecular Therapy - Nucleic Acids, 2023, 31, 309-323.	2.3	1
104	Targeting DNA repair pathways with B02 and Nocodazole small molecules to improve CRIS-PITCh mediated cassette integration in CHO-K1 cells. Scientific Reports, 2023, 13, .	1.6	0
105	New advances in CRISPR/Cas-mediated precise gene-editing techniques. DMM Disease Models and Mechanisms, 2023, 16, .	1.2	6
106	Proximal binding of dCas9 at a DNA double strand break stimulates homology-directed repair as a local inhibitor of classical non-homologous end joining. Nucleic Acids Research, 2023, 51, 2740-2758.	6.5	2
107	Recent advances in CRISPR-based genome editing technology and its applications in cardiovascular research. Military Medical Research, 2023, 10, .	1.9	5
109	Highâ€efficiency and multilocus targeted integration in CHO cells using CRISPRâ€mediated donor nicking and DNA repair inhibitors. Biotechnology and Bioengineering, 2023, 120, 2419-2440.	1.7	1
116	Advances in bread wheat production through CRISPR/Cas9 technology: a comprehensive review of quality and other aspects. Planta, 2023, 258, .	1.6	2