Chemical warfare between leafcutter ant symbionts and

Nature Communications 9, 2208 DOI: 10.1038/s41467-018-04520-1

Citation Report

#	Article	IF	CITATIONS
1	A Visual Guide for Studying Behavioral Defenses to Pathogen Attacks in Leaf-Cutting Ants. Journal of Visualized Experiments, 2018, , .	0.2	7
2	Soluble Compounds of Filamentous Fungi Harm the Symbiotic Fungus of Leafcutter Ants. Current Microbiology, 2018, 75, 1602-1608.	1.0	7
3	Four is a crowd. Nature Reviews Microbiology, 2018, 16, 454-454.	13.6	0
4	Foraging Macrotermes natalensis Fungus-Growing Termites Avoid a Mycopathogen but Not an Entomopathogen. Insects, 2019, 10, 185.	1.0	10
5	The molecular phylogenetics of <i>Trachymyrmex</i> Forel ants and their fungal cultivars provide insights into the origin and coevolutionary history of †higherâ€attine' ant agriculture. Systematic Entomology, 2019, 44, 939-956.	1.7	50
6	Resisting Antimicrobial Resistance: Lessons from Fungus Farming Ants. Trends in Ecology and Evolution, 2019, 34, 974-976.	4.2	8
7	Corpse management of the invasive Argentine ant inhibits growth of pathogenic fungi. Scientific Reports, 2019, 9, 7593.	1.6	6
8	More pieces to a huge puzzle: Two new Escovopsis species from fungus gardens of attine ants. MycoKeys, 2019, 46, 97-118.	0.8	8
9	Antibiotics: past, present and future. Current Opinion in Microbiology, 2019, 51, 72-80.	2.3	1,012
10	Antifungal potential of secondary metabolites involved in the interaction between citrus pathogens. Scientific Reports, 2019, 9, 18647.	1.6	35
11	The evolution of abdominal microbiomes in fungusâ€growing ants. Molecular Ecology, 2019, 28, 879-899.	2.0	25
12	<i>In Situ</i> Activation and Heterologous Production of a Cryptic Lantibiotic from an African Plant Ant-Derived <i>Saccharopolyspora</i> Species. Applied and Environmental Microbiology, 2020, 86, .	1.4	22
13	Chemical Mediators at the Bacterial-Fungal Interface. Annual Review of Microbiology, 2020, 74, 267-290.	2.9	46
14	Genome Sequence of Trichoderma lixii MUT3171, A Promising Strain for Mycoremediation of PAH-Contaminated Sites. Microorganisms, 2020, 8, 1258.	1.6	18
15	Chemical warfare between fungus-growing ants and their pathogens. Current Opinion in Chemical Biology, 2020, 59, 172-181.	2.8	33
16	Ecology and genomics of Actinobacteria: new concepts for natural product discovery. Nature Reviews Microbiology, 2020, 18, 546-558.	13.6	188
17	The ecosystem services provided by social insects: traits, management tools and knowledge gaps. Biological Reviews, 2020, 95, 1418-1441.	4.7	60
18	How Do Leaf-Cutting Ants Recognize Antagonistic Microbes in Their Fungal Crops?. Frontiers in Ecology and Evolution, 2020, 8, .	1.1	20

CITATION REPORT

#	Article	IF	CITATIONS
19	Lack of fungal cultivar fidelity and low virulence of Escovopsis trichodermoides. Fungal Ecology, 2020, 45, 100944.	0.7	6
20	The need to innovate sample collection and library generation in microbial drug discovery: a focus on academia. Natural Product Reports, 2021, 38, 292-300.	5.2	16
21	The chemical ecology of the fungus-farming termite symbiosis. Natural Product Reports, 2022, 39, 231-248.	5.2	28
22	Defensive Microbiomes: A Widespread Phenomenon in Nature. Advances in Environmental Microbiology, 2021, , 497-512.	0.1	0
23	Immunity and survival response of Atta cephalotes (Hymenoptera: Myrmicinae) workers to Metarhizium anisopliae infection: Potential role of their associated microbiota. PLoS ONE, 2021, 16, e0247545.	1.1	1
24	Antifungals, arthropods and antifungal resistance prevention: lessons from ecological interactions. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20202716.	1.2	6
25	Chemical Exchanges between Multilateral Symbionts. Organic Letters, 2021, 23, 1648-1652.	2.4	16
27	Polyene-Producing Streptomyces spp. From the Fungus-Growing Termite Macrotermes barneyi Exhibit High Inhibitory Activity Against the Antagonistic Fungus Xylaria. Frontiers in Microbiology, 2021, 12, 649962.	1.5	11
28	Re-wiring the regulation of the formicamycin biosynthetic gene cluster to enable the development of promising antibacterial compounds. Cell Chemical Biology, 2021, 28, 515-523.e5.	2.5	16
30	Host Susceptibility Modulates Escovopsis Pathogenic Potential in the Fungiculture of Higher Attine Ants. Frontiers in Microbiology, 2021, 12, 673444.	1.5	9
31	Ammonia Production by Streptomyces Symbionts of Acromyrmex Leaf-Cutting Ants Strongly Inhibits the Fungal Pathogen Escovopsis. Microorganisms, 2021, 9, 1622.	1.6	8
32	Fungi inhabiting attine ant colonies: reassessment of the genus Escovopsis and description of Luteomyces and Sympodiorosea gens. nov IMA Fungus, 2021, 12, 23.	1.7	8
33	Competition-based screening helps to secure the evolutionary stability of a defensive microbiome. BMC Biology, 2021, 19, 205.	1.7	10
38	Advancements in capturing and mining mass spectrometry data are transforming natural products research. Natural Product Reports, 2021, 38, 2066-2082.	5.2	38
39	The fungal root endophyte <i>Serendipita vermifera</i> displays inter-kingdom synergistic beneficial effects with the microbiota in <i>Arabidopsis thaliana</i> and barley. ISME Journal, 2022, 16, 876-889.	4.4	22
40	Structures and absolute configurations of butenolide derivatives from the isopod-associated fungus Pidoplitchkoviella terricola. Phytochemistry, 2022, 193, 112981.	1.4	3
41	11 New Avenues Toward Drug Discovery in Fungi. , 2020, , 267-295.		0
42	Interactions among Escovopsis, Antagonistic Microfungi Associated with the Fungus-Growing Ant Symbiosis. Journal of Fungi (Basel, Switzerland), 2021, 7, 1007.	1.5	3

	CHARLON	LITATION REPORT		
# 43	ARTICLE Molecular networking in infectious disease models. Methods in Enzymology, 2022, 663, 341-375.	IF 0.4	Citations	
44	Phorid parasitoids of the leafâ€cutting ant <i>Atta laevigata</i> in the Atlantic Forest: occurrence, parasitism rate, and host size. Entomologia Experimentalis Et Applicata, 2022, 170, 495-504.	0.7	4	
45	Effects of Trichoderma strigosellum in Eucalyptus urophylla Development and Leaf-Cutting Ant Behavior. Journal of Fungi (Basel, Switzerland), 2022, 8, 15.	1.5	5	
46	Characterisation of the symbionts in the Mediterranean fruit fly gut. Microbial Genomics, 2022, 8, .	1.0	3	
47	Bacterial Associates of a Desert Specialist Fungus-Growing Ant Antagonize Competitors with a Nocamycin Analog. ACS Chemical Biology, 2022, 17, 1824-1830.	1.6	6	
48	Microbial polyketides and their roles in insect virulence: from genomics to biological functions. Natural Product Reports, 0, , .	5.2	2	
49	Hygienic behavior and antimicrobial peptide expression of the leaf-cutting ant Atta cephalotes (Hymenoptera, Formicidae) to Metharhizium anisopliae. Journal of Hymenoptera Research, 0, 91, 335-356.	0.8	1	
50	The secret life of insect-associated microbes and how they shape insect–plant interactions. FEMS Microbiology Ecology, 2022, 98, .	1.3	21	
51	ActinoBase: tools and protocols for researchers working on Streptomyces and other filamentous actinobacteria. Microbial Genomics, 2022, 8, .	1.0	2	
52	Title is missing!. , 2022, , .		0	
53	Research progress on ant symbiotic microorganisms. Scientia Sinica Vitae, 2022, 52, 1212-1225.	0.1	0	
54	The â€~emodin family' of fungal natural products–amalgamating a century of research with recent genomics-based advances. Natural Product Reports, 2023, 40, 174-201.	5.2	9	
56	Antifungal metabolites, their novel sources, and targets to combat drug resistance. Frontiers in Microbiology, 0, 13, .	1.5	6	
57	Genomic diversification of the specialized parasite of the fungus-growing ant symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	4	
58	Production of Escovopsis weberi (Ascomycota: Hypocreales) Mycelial Pellets and Their Effects on Leaf-Cutting Ant Fungal Gardens. Pathogens, 2023, 12, 330.	1.2	2	
59	New trends in synthetic drugs and natural products targeting 20S proteasomes in cancers. Bioorganic Chemistry, 2023, 133, 106427.	2.0	5	
60	Ants/Nest-Associated Fungi and Their Specialized Metabolites: Taxonomy, Chemistry, and Bioactivity. Revista Brasileira De Farmacognosia, 0, , .	0.6	0	
62	Activation of Secondary Metabolite Production in Fungi. , 2023, , 241-273.		0	

ARTICLE

IF CITATIONS