A novel steam ejector with pressure regulation to optim performance improvement in MED-TVC desalination sy

Energy 158, 305-316 DOI: 10.1016/j.energy.2018.06.028

Citation Report

#	Article	IF	CITATIONS
1	A hybrid cooling system combining self-adaptive single-phase mechanically pumped fluid loop and gravity-immune two-phase spray module. Energy Conversion and Management, 2018, 176, 194-208.	9.2	21
2	A novel steam ejector with pressure regulation to dredge the blocked entrained flow for performance improvement in MED-TVC desalination system. Energy Conversion and Management, 2018, 172, 237-247.	9.2	29
3	Visualization experimental study of the condensing flow regime in the transonic mixing process of desalination-oriented steam ejector. Energy Conversion and Management, 2019, 197, 111849.	9.2	41
4	Performance evaluation and operation optimization of the steam ejector based on modified model. Applied Thermal Engineering, 2019, 163, 114388.	6.0	41
5	Effects of inlet parameters on the supersonic condensation and swirling characteristics of binary natural gas mixture. Energy, 2019, 188, 116082.	8.8	23
6	Study on the performance of a steam ejector with auxiliary entrainment inlet and its application in MED-TVC desalination system. Applied Thermal Engineering, 2019, 159, 113925.	6.0	18
7	Current Advances in Ejector Modeling, Experimentation and Applications for Refrigeration and Heat Pumps. Part 1: Single-Phase Ejectors. Inventions, 2019, 4, 15.	2.5	45
8	Performance of supersonic steam ejectors considering the nonequilibrium condensation phenomenon for efficient energy utilisation. Applied Energy, 2019, 242, 157-167.	10.1	92
9	A combined pressure regulation technology with multi-optimization of the entrainment passage for performance improvement of the steam ejector in MED-TVC desalination system. Energy, 2019, 175, 46-57.	8.8	28
10	Experimental Investigation on Heat Transfer Mechanism of Air-Blast-Spray-Cooling System with a Two-Phase Ejector Loop for Aeronautical Application. Energies, 2019, 12, 3963.	3.1	5
11	Condensation characteristics of natural gas in the supersonic liquefaction process. Energy, 2019, 168, 99-110.	8.8	103
12	A gas-atomized spray cooling system integrated with an ejector loop: Ejector modeling and thermal performance analysis. Energy Conversion and Management, 2019, 180, 106-118.	9.2	77
13	Ejectors on the cutting edge: The past, the present and the perspective. Energy, 2019, 170, 998-1003.	8.8	70
14	Accurate condensing steam flow modeling in the ejector of the solar-driven refrigeration system. Energy, 2020, 212, 118690.	8.8	42
15	Steam ejector performance considering phase transition for multi-effect distillation with thermal vapour compression (MED-TVC) desalination system. Applied Energy, 2020, 279, 115831.	10.1	31
16	Study on energy distribution characteristics of cyclone in Laval nozzle. Chemical Engineering and Processing: Process Intensification, 2020, 157, 108149.	3.6	2
17	Performance of steam ejector with nonequilibrium condensation for multi-effect distillation with thermal vapour compression (MED-TVC) seawater desalination system. Desalination, 2020, 489, 114531.	8.2	41
18	A novel solar integrated distillation and cooling system – Design and analysis. Solar Energy, 2020, 206, 68-83.	6.1	23

CITATION REPORT

#	Article	IF	CITATIONS
19	Optimization of the primary nozzle based on a modified condensation model in a steam ejector. Applied Thermal Engineering, 2020, 171, 115090.	6.0	55
20	Numerical assessment of ejector performance enhancement by means of two-bypass inlets. Applied Thermal Engineering, 2020, 171, 115086.	6.0	16
21	A double-choking theory as an explanation of the evolution laws of ejector performance with various operational and geometrical parameters. Energy Conversion and Management, 2020, 206, 112499.	9.2	28
22	Study on fundamental link between mixing efficiency and entrainment performance of a steam ejector. Energy, 2021, 215, 119128.	8.8	22
23	Mixing process of two streams within a steam ejector from the perspectives of mass, momentum and energy transfer. Applied Thermal Engineering, 2021, 185, 116358.	6.0	17
24	Thermodynamic analysis of a novel solar-driven booster-assisted ejector refrigeration cycle. Solar Energy, 2021, 218, 85-94.	6.1	22
25	The hybridization of thermally-driven desalination processes: The state-of-the-art and opportunities. Desalination, 2021, 506, 115002.	8.2	22
26	Energetic performance analysis of a solar-driven hybrid ejector cooling and humidification-dehumidification desalination system. Energy, 2021, 230, 120849.	8.8	13
27	Experimental Investigation of a Miniature Ejector Using Water as Working Fluid. Journal of Thermal Science and Engineering Applications, 2020, 12, .	1.5	3
28	Study on evolution laws of two-phase choking flow and entrainment performance of steam ejector oriented towards MED-TVC desalination system. Energy, 2022, 242, 122967.	8.8	9
29	Application of Ejector in Solid Oxide Fuel Cell Anode Circulation System. Journal of Thermal Science, 2022, 31, 634-649.	1.9	3
30	A visual mass transfer study in the ejector considering phase change for multi-effect distillation with thermal vapour compression (MED-TVC) desalination system. Desalination, 2022, 532, 115722.	8.2	5
31	Numerical study on carbon dioxide capture in flue gas by converging-diverging nozzle. Fuel, 2022, 320, 123889.	6.4	24
32	Dynamic characteristics analysis of pilot valves with different inlet diameters installed on the main steam valve set. Case Studies in Thermal Engineering, 2022, 34, 102004.	5.7	4
33	Thermodynamic, economic and environmental analyses of novel solar-powered ejector refrigeration systems. Energy Conversion and Management, 2022, 264, 115730.	9.2	19
34	Geometry dimension optimization of a liquid–gas vacuum ejector for MED-TVC system. Applied Thermal Engineering, 2022, 214, 118907.	6.0	4
35	Numerical study on the effect of superheat on the steam ejector internal flow and entropy generation for MED-TVC desalination system. Desalination, 2022, 537, 115874.	8.2	7
36	Numerical study on the condensation characteristics of natural gas in the throttle valve. Journal of Natural Gas Science and Engineering, 2022, 104, 104689.	4.4	6

CITATION REPORT

#	Article	IF	CITATIONS
37	Influence of geometric parameters on the performance of ejector used in aeroengine air system. Thermal Science and Engineering Progress, 2023, 37, 101571.	2.7	2
38	Design and Investigation of a Dynamic Auto-Adjusting Ejector for the MED-TVC Desalination System Driven by Solar Energy. Entropy, 2022, 24, 1815.	2.2	1
39	Numerical study on carbon dioxide removal from the hydrogen-rich stream by supersonic Laval nozzle. International Journal of Hydrogen Energy, 2023, 48, 14299-14321.	7.1	7
40	Research on performance of multi-nozzle ejector for aeroengine air system. Thermal Science and Engineering Progress, 2023, 38, 101651.	2.7	4
41	Investigation of steam ejector parameters under three optimization algorithm using ANN. Applied Thermal Engineering, 2023, 225, 120205.	6.0	7
42	Exergy analysis of thermal desalination processes: a review. Clean Technologies and Environmental Policy, O, , .	4.1	4
43	Parametric investigation and performance optimization of a MED-TVC desalination system based on 1-D ejector modeling. Energy Conversion and Management, 2023, 288, 117131.	9.2	10
44	Enhancing subsonic ejector performance by incorporating a fluidic oscillator as the primary nozzle: a numerical investigation. International Journal of Thermofluids, 2023, 20, 100429.	7.8	5
45	Comparative study on two low-grade heat driven ejection-compression refrigeration cycles with evaporator-condenser and evaporator-subcooler. Thermal Science and Engineering Progress, 2023, 45, 102080.	2.7	1
46	High-order optimization of bicubic parametric convergent curves for carbon capture nozzles in hydrogen-rich fuel. International Journal of Hydrogen Energy, 2023, , .	7.1	0
47	Energy separation and CO2 nonequilibrium condensation effects in the pressure recovery process of hydrogen-rich fuel purification and decarburization. Journal of the Energy Institute, 2023, 111, 101358.	5.3	0
48	Integration model and performance analysis of coupled thermal energy storage and ejector flexibility retrofit for 600 MW thermal power units. Journal of Cleaner Production, 2023, 428, 139337.	9.3	1
49	Performance improvement potential of ejector-based dual-evaporator refrigeration system using photovoltaic modules and nano-refrigerant. Applied Thermal Engineering, 2024, 239, 122102.	6.0	0
50	Research progress on the integration and optimal design of desalination process. Separation and Purification Technology, 2024, 337, 126423.	7.9	0
51	Adjoint optimization of a supersonic ejector for under-expanded, isentropic, and over-expanded primary flow modes. Chemical Engineering Science, 2024, 292, 119979.	3.8	0