Life's Biological Chemistry: A Destiny or Destination Sta

Chemistry - A European Journal 24, 16708-16715

DOI: 10.1002/chem.201801847

Citation Report

#	Article	IF	CITATIONS
1	Prebiotic Evolution and Self-Assembly of Nucleic Acids. ACS Nano, 2018, 12, 9643-9647.	14.6	13
2	Selective incorporation of proteinaceous over nonproteinaceous cationic amino acids in model prebiotic oligomerization reactions. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16338-16346.	7.1	81
3	Probing complexity: thermodynamics and computational mechanics approaches to origins studies. Interface Focus, 2019, 9, 20190058.	3.0	9
4	Chemical Basis of Biological Homochirality during the Abiotic Evolution Stages on Earth. Symmetry, 2019, 11, 814.	2.2	20
5	Recreating ancient metabolic pathways before enzymes. Bioorganic and Medicinal Chemistry, 2019, 27, 2292-2297.	3.0	24
6	The role of sugar-backbone heterogeneity and chimeras in the simultaneous emergence of RNA and DNA. Nature Chemistry, 2019, 11, 1009-1018.	13.6	71
7	Progress in synthesizing protocells. Experimental Biology and Medicine, 2019, 244, 304-313.	2.4	41
8	Chemistry of Abiotic Nucleotide Synthesis. Chemical Reviews, 2020, 120, 4766-4805.	47.7	123
9	The Hot Spring Hypothesis for an Origin of Life. Astrobiology, 2020, 20, 429-452.	3.0	257
11	Universal motifs and the diversity of autocatalytic systems. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25230-25236.	7.1	54
12	A plausible metal-free ancestral analogue of the Krebs cycle composed entirely of \hat{l}_{\pm} -ketoacids. Nature Chemistry, 2020, 12, 1016-1022.	13.6	72
13	Nonenzymatic Metabolic Reactions and Life's Origins. Chemical Reviews, 2020, 120, 7708-7744.	47.7	154
14	Prebiotic competition and evolution in self-replicating polynucleotides can explain the properties of DNA/RNA in modern living systems. BMC Evolutionary Biology, 2020, 20, 75.	3.2	4
15	Physicochemical Processes That Probably Originated Life. Russian Journal of Bioorganic Chemistry, 2020, 46, 675-691.	1.0	2
16	Chirality: The Backbone of Chemistry as a Natural Science. Symmetry, 2020, 12, 1982.	2.2	13
17	Chemical Origins of Life: Its Engagement with Society. Trends in Chemistry, 2020, 2, 406-409.	8.5	1
18	The Future of Origin of Life Research: Bridging Decades-Old Divisions. Life, 2020, 10, 20.	2.4	63
19	Prebiotic Peptides: Molecular Hubs in the Origin of Life. Chemical Reviews, 2020, 120, 4707-4765.	47.7	189

#	ARTICLE	IF	CITATIONS
20	Prebiotic Phosphorylation and Concomitant Oligomerization of Deoxynucleosides to form DNA. Angewandte Chemie - International Edition, 2021, 60, 10775-10783.	13.8	15
21	Prebiotic Phosphorylation and Concomitant Oligomerization of Deoxynucleosides to form DNA. Angewandte Chemie, 2021, 133, 10870-10878.	2.0	5
22	Spontaneous Deracemizations. Chemical Reviews, 2021, 121, 2147-2229.	47.7	111
23	A Lizardite–HCN Interaction Leading the Increasing of Molecular Complexity in an Alkaline Hydrothermal Scenario: Implications for Origin of Life Studies. Life, 2021, 11, 661.	2.4	5
24	"Minimal metabolism― A key concept to investigate the origins and nature of biological systems. BioEssays, 2021, 43, e2100103.	2.5	11
25	Connecting primitive phase separation to biotechnology, synthetic biology, and engineering. Journal of Biosciences, 2021, 46, 1.	1.1	11
26	Concurrent Prebiotic Formation of Nucleosideâ€Amidophosphates and Nucleosideâ€Triphosphates Potentiates Transition from Abiotic to Biotic Polymerization. Angewandte Chemie - International Edition, 2022, 61, .	13.8	5
27	Concurrent Prebiotic Formation of Nucleosideâ€Amidophosphates and Nucleosideâ€Triphosphates Potentiates Transition from Abiotic to Biotic Polymerization. Angewandte Chemie, 2022, 134, .	2.0	3
28	A materialâ€based panspermia hypothesis: The potential of polymer gels and membraneless droplets. Biopolymers, 2022, , e23486.	2.4	4
29	Cyanide as a primordial reductant enables a protometabolic reductive glyoxylate pathway. Nature Chemistry, 2022, 14, 170-178.	13.6	21
30	Differential Oligomerization of Alpha versus Beta Amino Acids and Hydroxy Acids in Abiotic Proto-Peptide Synthesis Reactions. Life, 2022, 12, 265.	2.4	4
31	Undefining life's biochemistry: implications for abiogenesis. Journal of the Royal Society Interface, 2022, 19, 20210814.	3.4	3
32	Asymptotic burnout and homeostatic awakening: a possible solution to the Fermi paradox?. Journal of the Royal Society Interface, 2022, 19, 20220029.	3.4	11
33	Protometabolism as out-of-equilibrium chemistry. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2022, 380, .	3.4	3
34	CHAPTER 5. Soft Matter Science in Prebiotic Chemistry and the Origins of Life. Chemical Biology, 2022, , 145-164.	0.2	1
35	Prebiotic synthesis of $\hat{l}\pm$ -amino acids and orotate from $\hat{l}\pm$ -ketoacids potentiates transition to extant metabolic pathways. Nature Chemistry, 2022, 14, 1142-1150.	13.6	20
36	Entering the labyrinth: A hypothesis about the emergence of metabolism from protobiotic routes. BioSystems, 2022, 220, 104751.	2.0	3
37	Provenance of life: Chemical autonomous agents surviving through associative learning. Physical Review E, 2022, 106, .	2.1	7

#	Article	IF	CITATIONS
38	Prebiotic synthesis of noncanonical nucleobases under plausible alkaline hydrothermal conditions. Scientific Reports, 2022, 12, .	3.3	5
39	Hydrogen Drives Part of the Reverse Krebs Cycle under Metal or Meteorite Catalysis. Angewandte Chemie, 0, , .	2.0	2
40	Investigations on the Role of Iron (III) and Silica-Iron (III) for DNA Protection Against Highly Intense UV Radiation: Tracking the Connection of Prebiotic Chemistry to Biology. Astrobiology, 2023, 23, 33-42.	3.0	2
41	Hydrogen Drives Part of the Reverse Krebs Cycle under Metal or Meteorite Catalysis. Angewandte Chemie - International Edition, 2022, 61, .	13.8	18
42	Comparative Study of the Adsorption of 1- and 2-Propanol on Ice by Means of Grand Canonical Monte Carlo Simulations. ACS Earth and Space Chemistry, 2023, 7, 850-862.	2.7	1
43	Ringâ€Closure on the Rocks in a Prebiotic Environment. ChemBioChem, 2023, 24, .	2.6	1
44	Exploring the Chemical Space of C ₂ H ₃ NO Isomers and Bimolecular Reactions with Hydrogen Cyanide and Formaldehyde: Insights into the Emergence of Life. ACS Earth and Space Chemistry, 2023, 7, 1739-1752.	2.7	1
45	The fats of the matter: Lipids in prebiotic chemistry and in origin of life studies. Progress in Lipid Research, 2023, 92, 101253.	11.6	0
46	Carbonyl Migration in Uronates Affords a Potential Prebiotic Pathway for Pentose Production. Jacs Au, 2023, 3, 2522-2535.	7.9	1