Highly Stretchable and Biocompatible Strain Sensors Ba Super-Adhesive Self-Healing Hydrogels for Human Mot

ACS Applied Materials & amp; Interfaces 10, 20897-20909

DOI: 10.1021/acsami.8b06475

Citation Report

#	Article	IF	CITATIONS
5	Tough and tissue-adhesive polyacrylamide/collagen hydrogel with dopamine-grafted oxidized sodium alginate as crosslinker for cutaneous wound healing. RSC Advances, 2018, 8, 42123-42132.	1.7	69
6	Spectrally Selective Smart Window with High Near-Infrared Light Shielding and Controllable Visible Light Transmittance. ACS Applied Materials & Interfaces, 2018, 10, 39819-39827.	4.0	136
7	Muscleâ€inspired Highly Anisotropic, Strong, Ion onductive Hydrogels. Advanced Materials, 2018, 30, e1801934.	11.1	408
8	Ultrafast Selfâ€Healing and Injectable Conductive Hydrogel for Strain and Pressure Sensors. Advanced Materials Technologies, 2019, 4, 1900346.	3.0	56
9	Bioadhesive functional hydrogels: Controlled release of catechol species with antioxidant and antiinflammatory behavior. Materials Science and Engineering C, 2019, 105, 110040.	3.8	55
10	Nucleotide-Regulated Tough and Rapidly Self-Recoverable Hydrogels for Highly Sensitive and Durable Pressure and Strain Sensors. Chemistry of Materials, 2019, 31, 5881-5889.	3.2	85
11	High-strength and physical cross-linked nanocomposite hydrogel with clay nanotubes for strain sensor and dye adsorption application. Composites Science and Technology, 2019, 181, 107701.	3.8	42
12	Mussel-Inspired Cell/Tissue-Adhesive, Hemostatic Hydrogels for Tissue Engineering Applications. ACS Omega, 2019, 4, 12647-12656.	1.6	73
13	Highly Stretchable and Self-Healing Strain Sensors Based on Nanocellulose-Supported Graphene Dispersed in Electro-Conductive Hydrogels. Nanomaterials, 2019, 9, 937.	1.9	112
14	Theoretical Model for Prediction of Durable Life of RC Square Piles under Marine Environment. IOP Conference Series: Earth and Environmental Science, 2019, 304, 052100.	0.2	0
15	Multi-stimuli-responsive poly(hydroxyethyl methacrylate-co-N-vinyl pyrrolidone-co-methacrylic) Tj ETQq0 0 0 rgBT Iranian Polymer Journal (English Edition), 2019, 28, 957-967.	/Overlock 1.3	10 Tf 50 34
16	Applications of Highly Stretchable and Tough Hydrogels. Polymers, 2019, 11, 1773.	2.0	24
17	Properties of conductive polymer hydrogels and their application in sensors. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 1606-1621.	2.4	71
18	Highly sensitive and wearable gel-based sensors with a dynamic physically cross-linked structure for strain-stimulus detection over a wide temperature range. Journal of Materials Chemistry C, 2019, 7, 11303-11314.	2.7	65
19	A transparent, stretchable, stable, self-adhesive ionogel-based strain sensor for human motion monitoring. Journal of Materials Chemistry C, 2019, 7, 11244-11250.	2.7	90
20	Bio-Integrated Wearable Systems: A Comprehensive Review. Chemical Reviews, 2019, 119, 5461-5533.	23.0	822
21	Multiple Weak H-Bonds Lead to Highly Sensitive, Stretchable, Self-Adhesive, and Self-Healing Ionic Sensors. ACS Applied Materials & amp; Interfaces, 2019, 11, 7755-7763.	4.0	264
22	An integrated transparent, UV-filtering organohydrogel sensor <i>via</i> molecular-level ion conductive channels. Journal of Materials Chemistry A, 2019, 7, 4525-4535.	5.2	143

#	Article	IF	CITATIONS
23	Synthesis and Properties of Magnetic Selfâ€Healing Polymers: An Effective Method for Improving Interface Compatibility of Doped Functional Polymers. ChemNanoMat, 2019, 5, 642-650.	1.5	7
24	Engineered Bacillus subtilis biofilms as living glues. Materials Today, 2019, 28, 40-48.	8.3	72
25	Stretchable, Injectable, and Self-Healing Conductive Hydrogel Enabled by Multiple Hydrogen Bonding toward Wearable Electronics. Chemistry of Materials, 2019, 31, 4553-4563.	3.2	321
26	Stretchable and self-healable hydrogel-based capacitance pressure and strain sensor for electronic skin systems. Materials Research Express, 2019, 6, 0850b9.	0.8	25
27	A highly flexible tactile sensor with an interlocked truncated sawtooth structure based on stretchable graphene/silver/silicone rubber composites. Journal of Materials Chemistry C, 2019, 7, 8669-8679.	2.7	42
28	Ultrastretchable Wearable Strain and Pressure Sensors Based on Adhesive, Tough, and Self-healing Hydrogels for Human Motion Monitoring. ACS Applied Materials & Interfaces, 2019, 11, 25613-25623.	4.0	161
29	A flexible, adhesive and self-healable hydrogel-based wearable strain sensor for human motion and physiological signal monitoring. Journal of Materials Chemistry B, 2019, 7, 4638-4648.	2.9	223
30	Transparent and conductive amino acid-tackified hydrogels as wearable strain sensors. Chemical Engineering Journal, 2019, 375, 121915.	6.6	96
31	Transparent, Highly Stretchable, Rehealable, Sensing, and Fully Recyclable Ionic Conductors Fabricated by One‧tep Polymerization Based on a Small Biological Molecule. Advanced Functional Materials, 2019, 29, 1902467.	7.8	154
32	Selfâ€Healing Hydrogels: The Next Paradigm Shift in Tissue Engineering?. Advanced Science, 2019, 6, 1801664.	5.6	314
33	Freezing-Tolerant Supramolecular Organohydrogel with High Toughness, Thermoplasticity, and Healable and Adhesive Properties. ACS Applied Materials & Interfaces, 2019, 11, 21184-21193.	4.0	161
34	Polyvinyl Alcohol/Silk Fibroin/Borax Hydrogel Ionotronics: A Highly Stretchable, Self-Healable, and Biocompatible Sensing Platform. ACS Applied Materials & Interfaces, 2019, 11, 23632-23638.	4.0	154
35	Polypyrrole-Doped Conductive Supramolecular Elastomer with Stretchability, Rapid Self-Healing, and Adhesive Property for Flexible Electronic Sensors. ACS Applied Materials & Interfaces, 2019, 11, 18720-18729.	4.0	135
36	Development of Adhesive and Conductive Resilin-Based Hydrogels for Wearable Sensors. Biomacromolecules, 2019, 20, 3283-3293.	2.6	64
37	Synthesis of a novel anti-freezing, non-drying antibacterial hydrogel dressing by one-pot method. Chemical Engineering Journal, 2019, 372, 216-225.	6.6	111
38	Mussel-Inspired Nanocomposite Hydrogel-Based Electrodes with Reusable and Injectable Properties for Human Electrophysiological Signals Detection. ACS Sustainable Chemistry and Engineering, 2019, 7, 7918-7925.	3.2	83
39	Combining High Sensitivity and Dynamic Range: Wearable Thin-Film Composite Strain Sensors of Graphene, Ultrathin Palladium, and PEDOT:PSS. ACS Applied Nano Materials, 2019, 2, 2222-2229.	2.4	58
40	Expanding the DOPA Universe with Genetically Encoded, Musselâ€Inspired Bioadhesives for Material Sciences and Medicine. ChemBioChem, 2019, 20, 2163-2190.	1.3	28

#	Article	IF	CITATIONS
41	Biocompatible, self-wrinkled, antifreezing and stretchable hydrogel-based wearable sensor with PEDOT:sulfonated lignin as conductive materials. Chemical Engineering Journal, 2019, 370, 1039-1047.	6.6	230
42	l-Alanine induced thermally stable self-healing guar gum hydrogel as potential drug vehicle for sustained release of hydrophilic drug. Materials Science and Engineering C, 2019, 99, 1384-1391.	3.8	28
43	Polyacryloyl hydrazide incorporation into ionic hydrogels improves toughness, elasticity, self-healability, adhesive & strain sensing properties. Materials Chemistry Frontiers, 2019, 3, 690-701.	3.2	18
44	A seawaterâ€assisted selfâ€healing metal–catechol polyurethane with tunable mechanical properties. Polymer International, 2019, 68, 1084-1090.	1.6	29
45	A highly stretchable, ultra-tough, remarkably tolerant, and robust self-healing glycerol-hydrogel for a dual-responsive soft actuator. Journal of Materials Chemistry A, 2019, 7, 25969-25977.	5.2	111
46	Natural skin-inspired versatile cellulose biomimetic hydrogels. Journal of Materials Chemistry A, 2019, 7, 26442-26455.	5.2	236
47	Cartilage-inspired hydrogel strain sensors with ultrahigh toughness, good self-recovery and stable anti-swelling properties. Journal of Materials Chemistry A, 2019, 7, 25441-25448.	5.2	111
48	A stretchable, conformable, and biocompatible graphene strain sensor based on a structured hydrogel for clinical application. Journal of Materials Chemistry A, 2019, 7, 27099-27109.	5.2	61
49	Stretchable conductive nanocomposite based on alginate hydrogel and silver nanowires for wearable electronics. APL Materials, 2019, 7, .	2.2	97
50	Bioinspired and Microgel-Tackified Adhesive Hydrogel with Rapid Self-Healing and High Stretchability. Macromolecules, 2019, 52, 72-80.	2.2	76
51	Tough, Adhesive, Self-Healable, and Transparent Ionically Conductive Zwitterionic Nanocomposite Hydrogels as Skin Strain Sensors. ACS Applied Materials & Interfaces, 2019, 11, 3506-3515.	4.0	309
52	Mechanically magnified chitosan-based hydrogel as tissue adhesive and antimicrobial candidate. International Journal of Biological Macromolecules, 2019, 125, 109-115.	3.6	36
53	Preparation of re-entrant and anti-fouling PVDF composite membrane with omniphobicity for membrane distillation. Journal of Membrane Science, 2020, 595, 117563.	4.1	51
54	Super Bulk and Interfacial Toughness of Amylopectin Reinforced PAAm/PVA Doubleâ€Network Hydrogels via Multiple Hydrogen Bonds. Macromolecular Materials and Engineering, 2020, 305, 1900450.	1.7	14
55	Advanced Soft Materials, Sensor Integrations, and Applications of Wearable Flexible Hybrid Electronics in Healthcare, Energy, and Environment. Advanced Materials, 2020, 32, e1901924.	11.1	575
56	A bionic tactile plastic hydrogel-based electronic skin constructed by a nerve-like nanonetwork combining stretchable, compliant, and self-healing properties. Chemical Engineering Journal, 2020, 379, 122271.	6.6	171
57	Bioinspired 2D Nanomaterials for Sustainable Applications. Advanced Materials, 2020, 32, e1902806.	11.1	84
58	Conductive and superhydrophobic F-rGO@CNTs/chitosan aerogel for piezoresistive pressure sensor.	6.6	125 _

#	Article	IF	CITATIONS
59	Polydopamine/polystyrene nanocomposite double-layer strain sensor hydrogel with mechanical, self-healing, adhesive and conductive properties. Materials Science and Engineering C, 2020, 109, 110567.	3.8	45
60	Self-healing conductive hydrogels: preparation, properties and applications. Nanoscale, 2020, 12, 1224-1246.	2.8	286
61	Thermo-responsive shape memory sensors based on tough, remolding and anti-freezing hydrogels. Journal of Materials Chemistry C, 2020, 8, 2326-2335.	2.7	54
62	Tough polyacrylamide-tannic acid-kaolin adhesive hydrogels for quick hemostatic application. Materials Science and Engineering C, 2020, 109, 110649.	3.8	75
63	Sustained protein therapeutics enabled by self-healing nanocomposite hydrogels for non-invasive bone regeneration. Biomaterials Science, 2020, 8, 682-693.	2.6	30
64	Human-tissue-inspired anti-fatigue-fracture hydrogel for a sensitive wide-range human–machine interface. Journal of Materials Chemistry A, 2020, 8, 2074-2082.	5.2	94
65	Development of high-strength, tough, and self-healing carboxymethyl guar gum-based hydrogels for human motion detection. Journal of Materials Chemistry C, 2020, 8, 900-908.	2.7	60
66	Nanocomposite Grafted Stretchable and Conductive Ionic Hydrogels for Use as Soft Electrode in a Wearable Electrocardiogram Monitoring Device. ACS Applied Polymer Materials, 2020, 2, 618-625.	2.0	30
67	Achieving Fast Self-Healing and Reprocessing of Supertough Water-Dispersed "Living―Supramolecular Polymers Containing Dynamic Ditelluride Bonds under Visible Light. ACS Applied Materials & Interfaces, 2020, 12, 6383-6395.	4.0	59
68	Highâ€Performance Flexible Sensors of Selfâ€Healing, Reversibly Adhesive, and Stretchable Hydrogels for Monitoring Large and Subtle Strains. Macromolecular Materials and Engineering, 2020, 305, 1900621.	1.7	19
69	Design and Fabrication of Highly Stretchable and Tough Hydrogels. Polymer Reviews, 2020, 60, 420-441.	5.3	24
70	Musselâ€Inspired Flexible, Wearable, and Selfâ€Adhesive Conductive Hydrogels for Strain Sensors. Macromolecular Rapid Communications, 2020, 41, e1900450.	2.0	67
71	Self-healable transparent polymer/salt hybrid adhesive <i>via</i> a ternary bonding effect. Journal of Materials Chemistry A, 2020, 8, 21812-21823.	5.2	11
72	Dual physically crosslinked nanocomposite hydrogels reinforced by poly(N-vinylpyrrolidone) grafted cellulose nanocrystal with high strength, toughness, and rapid self-recovery. Cellulose, 2020, 27, 9913-9925.	2.4	17
73	Bioinspired tissue-compliant hydrogels with multifunctions for synergistic surgery–photothermal therapy. Journal of Materials Chemistry B, 2020, 8, 10117-10125.	2.9	8
74	Biomimetic epidermal sensors assembled from polydopamine-modified reduced graphene oxide/polyvinyl alcohol hydrogels for the real-time monitoring of human motions. Journal of Materials Chemistry B, 2020, 8, 10549-10558.	2.9	31
75	Antiswelling and Durable Adhesion Biodegradable Hydrogels for Tissue Repairs and Strain Sensors. Langmuir, 2020, 36, 10448-10459.	1.6	37
76	Mussel-Inspired Self-Adhesive, Antidrying, and Antifreezing Poly(acrylic acid)/Bentonite/Polydopamine Hybrid Glycerol-Hydrogel and the Sensing Application. ACS Applied Polymer Materials, 2020, 2, 3094-3106.	2.0	67

#	Article	IF	CITATIONS
77	Seeking Answers from Tradition: Facile Preparation of Durable Adhesive Hydrogel Using Natural Quercetin. IScience, 2020, 23, 101342.	1.9	4
78	Highly Stretchable, Self-Healable, and Adhesive Polyurethane Elastomers Based on Boronic Ester Bonds. ACS Applied Polymer Materials, 2020, 2, 5630-5640.	2.0	49
79	Ultrastretchable, Tough, Antifreezing, and Conductive Cellulose Hydrogel for Wearable Strain Sensor. ACS Applied Materials & Interfaces, 2020, 12, 53247-53256.	4.0	105
80	Design Strategies of Conductive Hydrogel for Biomedical Applications. Molecules, 2020, 25, 5296.	1.7	69
81	A stretchable, self-healing conductive hydrogels based on nanocellulose supported graphene towards wearable monitoring of human motion. Carbohydrate Polymers, 2020, 250, 116905.	5.1	184
82	A highly stretchable and intrinsically self-healing strain sensor produced by 3D printing. Virtual and Physical Prototyping, 2020, 15, 520-531.	5.3	41
83	Biocompatible and Highly Stretchable PVA/AgNWs Hydrogel Strain Sensors for Human Motion Detection. Advanced Materials Technologies, 2020, 5, 2000426.	3.0	83
84	Recent Progress in Selfâ€healing Materials for Sensor Arrays. ChemNanoMat, 2020, 6, 1522-1538.	1.5	12
85	An autonomous self-healing hydrogel with high polydopamine content for improved tensile strength. Journal of Materials Science, 2020, 55, 17255-17265.	1.7	14
86	A Review of Conductive Hydrogel Used in Flexible Strain Sensor. Materials, 2020, 13, 3947.	1.3	121
87	Noble Metal Nanoparticles in Pectin Matrix. Preparation, Film Formation, Property Analysis, and Application in Electrocatalysis. ACS Omega, 2020, 5, 23909-23918.	1.6	9
88	Degradable self-adhesive epidermal sensors prepared from conductive nanocomposite hydrogel. Nanoscale, 2020, 12, 18771-18781.	2.8	44
89	Plant-Inspired Multifunctional Fluorescent Hydrogel: A Highly Stretchable and Recoverable Self-Healing Platform with Water-Controlled Adhesiveness for Highly Effective Antibacterial Application and Data Encryption–Decryption. ACS Applied Materials & Interfaces, 2020, 12, 57686-57694	4.0	14
90	Robust and conductive hydrogel based on mussel adhesive chemistry for remote monitoring of body signals. Friction, 2020, , 1.	3.4	7
91	Protein Gel Phase Transition: Toward Superiorly Transparent and Hysteresisâ€Free Wearable Electronics. Advanced Functional Materials, 2020, 30, 1910080.	7.8	30
92	Mussel-inspired hydrogels: from design principles to promising applications. Chemical Society Reviews, 2020, 49, 3605-3637.	18.7	346
93	Highly Sensitive Strain Sensor Based on a Stretchable and Conductive Poly(vinyl alcohol)/Phytic Acid/NH ₂ -POSS Hydrogel with a 3D Microporous Structure. ACS Applied Materials & Interfaces, 2020, 12, 26496-26508.	4.0	95
94	Self-powered integrated system of a strain sensor and flexible all-solid-state supercapacitor by using a high performance ionic organohydrogel. Materials Horizons, 2020, 7, 2085-2096.	6.4	187

#	Article	IF	CITATIONS
95	Electronic biopolymers: From molecular engineering to functional devices. Chemical Engineering Journal, 2020, 397, 125499.	6.6	55
96	Mussel-inspired sandwich-like nanofibers/hydrogel composite with super adhesive, sustained drug release and anti-infection capacity. Chemical Engineering Journal, 2020, 399, 125668.	6.6	54
97	Conductive Hydrogels—A Novel Material: Recent Advances and Future Perspectives. Journal of Agricultural and Food Chemistry, 2020, 68, 7269-7280.	2.4	60
98	Ultrafast gelling using sulfonated lignin-Fe3+ chelates to produce dynamic crosslinked hydrogel/coating with charming stretchable, conductive, self-healing, and ultraviolet-blocking properties. Chemical Engineering Journal, 2020, 396, 125341.	6.6	130
99	Multi-Responsive Lanthanide-Based Hydrogel with Encryption, Naked Eye Sensing, Shape Memory, Self-Healing, and Antibacterial Activity. ACS Applied Materials & Interfaces, 2020, 12, 28539-28549.	4.0	71
100	A facile strategy for fabricating multifunctional ionogel based electronic skin. Journal of Materials Chemistry C, 2020, 8, 8368-8373.	2.7	55
101	Bioâ€Inspired Stretchable, Adhesive, and Conductive Structural Color Film for Visually Flexible Electronics. Advanced Functional Materials, 2020, 30, 2000151.	7.8	153
102	Developing visible-light-induced dynamic aromatic Schiff base bonds for room-temperature self-healable and reprocessable waterborne polyurethanes with high mechanical properties. Journal of Materials Chemistry A, 2020, 8, 6757-6767.	5.2	65
103	Highly Transparent, Self-Healable, and Adhesive Organogels for Bio-Inspired Intelligent Ionic Skins. ACS Applied Materials & Interfaces, 2020, 12, 15657-15666.	4.0	95
104	Cubic Liquid Crystals of Polyoxometalate-Based Ionic Liquids. Langmuir, 2020, 36, 3471-3481.	1.6	15
105	A flexible semitransparent dual-electrode hydrogel based triboelectric nanogenerator with tough interfacial bonding and high energy output. Journal of Materials Chemistry C, 2020, 8, 5752-5760.	2.7	28
106	Robust Physically Linked Double-Network Ionogel as a Flexible Bimodal Sensor. ACS Applied Materials & Interfaces, 2020, 12, 14272-14279.	4.0	118
107	Highly stretchable and self-healing strain sensors for motion detection in wireless human-machine interface. Nano Energy, 2020, 76, 105064.	8.2	118
108	Ultra-Stretchable, durable and conductive hydrogel with hybrid double network as high performance strain sensor and stretchable triboelectric nanogenerator. Nano Energy, 2020, 76, 105035.	8.2	209
109	Flexible and wearable sensor based on graphene nanocomposite hydrogels. Smart Materials and Structures, 2020, 29, 075027.	1.8	53
110	Advances in Materials for Soft Stretchable Conductors and Their Behavior under Mechanical Deformation. Polymers, 2020, 12, 1454.	2.0	11
111	Synthesis of an un-modified gum arabic and acrylic acid based physically cross-linked hydrogels with high mechanical, self-sustainable and self-healable performance. Materials Science and Engineering C, 2020, 116, 111278.	3.8	39
112	A novel xanthan gum-based conductive hydrogel with excellent mechanical, biocompatible, and self-healing performances. Carbohydrate Polymers, 2020, 247, 116743.	5.1	89

#	Article	IF	CITATIONS
113	Mechanically Robust, Elastic, and Healable Ionogels for Highly Sensitive Ultraâ€Đurable Ionic Skins. Advanced Materials, 2020, 32, e2002706.	11.1	300
114	Humidity-resistive, elastic, transparent ion gel and its use in a wearable, strain-sensing device. Journal of Materials Chemistry A, 2020, 8, 6013-6021.	5.2	38
115	Self-repairing flexible strain sensors based on nanocomposite hydrogels for whole-body monitoring. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 592, 124587.	2.3	35
116	Integrated wearable sensors with bending/stretching selectivity and extremely enhanced sensitivity derived from agarose-based ionic conductor and its 3D-shaping. Chemical Engineering Journal, 2020, 389, 124503.	6.6	16
117	Nucleotide-driven skin-attachable hydrogels toward visual human–machine interfaces. Journal of Materials Chemistry A, 2020, 8, 4515-4523.	5.2	68
118	Two-Dimensional Nanocellulose-Enhanced High-Strength, Self-Adhesive, and Strain-Sensitive Poly(acrylic acid) Hydrogels Fabricated by a Radical-Induced Strategy for a Skin Sensor. ACS Sustainable Chemistry and Engineering, 2020, 8, 3427-3436.	3.2	51
119	Transparent, high-strength, stretchable, sensitive and anti-freezing poly(vinyl alcohol) ionic hydrogel strain sensors for human motion monitoring. Journal of Materials Chemistry C, 2020, 8, 2827-2837.	2.7	118
120	Stretchable, Biocompatible, and Multifunctional Silk Fibroin-Based Hydrogels toward Wearable Strain/Pressure Sensors and Triboelectric Nanogenerators. ACS Applied Materials & Interfaces, 2020, 12, 6442-6450.	4.0	302
121	Constructing self-adhesive and robust functional films on titanium resistant to mechanical damage during dental implanting. Materials Science and Engineering C, 2020, 110, 110688.	3.8	7
122	Stretchable and tough conductive hydrogels for flexible pressure and strain sensors. Journal of Materials Chemistry B, 2020, 8, 3437-3459.	2.9	372
123	Polyelectrolyte complex-based self-healing, fatigue-resistant and anti-freezing hydrogels as highly sensitive ionic skins. Journal of Materials Chemistry A, 2020, 8, 3667-3675.	5.2	170
124	Recent advances in designing conductive hydrogels for flexible electronics. InformaÄnÃ-Materiály, 2020, 2, 843-865.	8.5	150
125	Stretchability enhancement of buckled polypyrrole electrodes for stretchable supercapacitors via engineering substrate surface roughness. Electrochimica Acta, 2020, 343, 136099.	2.6	17
126	Polydiacetylene hydrogel self-healing capacitive strain sensor. Journal of Materials Chemistry C, 2020, 8, 6034-6041.	2.7	53
127	High strength, antifreeze, and moisturizing conductive hydrogel for humanâ€notion detection. Polymer, 2020, 196, 122469.	1.8	50
128	Antibacterial, Self-Adhesive, Recyclable, and Tough Conductive Composite Hydrogels for Ultrasensitive Strain Sensing. ACS Applied Materials & Interfaces, 2020, 12, 22225-22236.	4.0	134
129	Superelastic, Sensitive, and Low Hysteresis Flexible Strain Sensor Based on Wave-Patterned Liquid Metal for Human Activity Monitoring. ACS Applied Materials & Interfaces, 2020, 12, 22200-22211.	4.0	152
130	Musselâ€Inspired Hydrogels for Selfâ€Adhesive Bioelectronics. Advanced Functional Materials, 2020, 30, 1909954	7.8	285

			0
#	ARTICLE	IF	CITATIONS
131	Strain Sensor with High Sensitivity. Macromolecular Chemistry and Physics, 2020, 221, 2000054.	1.1	26
132	Supramolecularly Mediated Robust, Antiâ€Fatigue, and Strainâ€Sensitive Macromolecular Microsphere Composite Hydrogels. Macromolecular Materials and Engineering, 2020, 305, 2000080.	1.7	19
133	High-performance ionic conductive poly(vinyl alcohol) hydrogels for flexible strain sensors based on a universal soaking strategy. Materials Chemistry Frontiers, 2021, 5, 315-323.	3.2	51
134	One-pot synthesis of multi-functional cellulose-based ionic conductive organohydrogel with low-temperature strain sensitivity. Carbohydrate Polymers, 2021, 251, 117019.	5.1	27
135	A Highlyâ€Adhesive and Selfâ€Healing Elastomer for Bioâ€Interfacial Electrode. Advanced Functional Materials, 2021, 31, .	7.8	91
136	Multifunctional conductive hydrogel-based flexible wearable sensors. TrAC - Trends in Analytical Chemistry, 2021, 134, 116130.	5.8	207
137	MXene-composited highly stretchable, sensitive and durable hydrogel for flexible strain sensors. Chinese Chemical Letters, 2021, 32, 2021-2026.	4.8	66
138	Design of Janus particles based on silica@polystyrene and their compatibilization on poly(<i>p</i> â€dioxanone)/poly(lactic acid) composites. Journal of Applied Polymer Science, 2021, 138, 50269.	1.3	1
139	Superwetting membranes: from controllable constructions to efficient separations. Journal of Materials Chemistry A, 2021, 9, 1395-1417.	5.2	46
140	Salt-mediated triple shape-memory ionic conductive polyampholyte hydrogel for wearable flexible electronics. Journal of Materials Chemistry A, 2021, 9, 1048-1061.	5.2	78
141	Ultrastretchable, self-adhesive, strain-sensitive and self-healing GO@DA/Alginate/P(AAc-co-AAm) multifunctional hydrogels via mussel-inspired chemistry. Carbohydrate Polymers, 2021, 254, 117316.	5.1	34
142	Mussel-inspired adhesive and conductive hydrogel with tunable mechanical properties for wearable strain sensors. Journal of Colloid and Interface Science, 2021, 585, 420-432.	5.0	81
143	Thin Ag films adhesive onto flexible substrates with excellent properties for multiâ€application. Journal of Applied Polymer Science, 2021, 138, 49806.	1.3	3
144	Freezing-tolerant, widely detectable and ultra-sensitive composite organohydrogel for multiple sensing applications. Journal of Materials Chemistry C, 2021, 9, 10127-10137.	2.7	46
145	Bioinspired, nucleobase-driven, highly resilient, and fast-responsive antifreeze ionic conductive hydrogels for durable pressure and strain sensors. Journal of Materials Chemistry A, 2021, 9, 20703-20713.	5.2	55
146	Hydrogel: Diversity of Structures and Applications in Food Science. Food Reviews International, 2021, 37, 313-372.	4.3	81
147	Polydopamine-coated cellulose nanocrystal as functional filler to fabricate nanocomposite hydrogel with controllable performance in response to near-infrared light. Cellulose, 2021, 28, 2255-2271.	2.4	23
148	Polysaccharide-tackified composite hydrogel for skin-attached sensors. Journal of Materials Chemistry C, 2021, 9, 3343-3351.	2.7	38

#	Article	IF	CITATIONS
149	Highly stretchable, transparent and conductive double-network ionic hydrogels for strain and pressure sensors with ultrahigh sensitivity. Journal of Materials Chemistry C, 2021, 9, 3635-3641.	2.7	59
150	High toughness fully physical cross-linked double network organohydrogels for strain sensors with anti-freezing and anti-fatigue properties. Materials Advances, 2021, 2, 6655-6664.	2.6	22
151	A review of the properties and applications of bioadhesive hydrogels. Polymer Chemistry, 2021, 12, 3721-3739.	1.9	78
152	An amylopectin-enabled skin-mounted hydrogel wearable sensor. Journal of Materials Chemistry B, 2021, 9, 1082-1088.	2.9	43
153	Mussel-inspired hydrogels as tough, self-adhesive and conductive bioelectronics: a review. Soft Matter, 2021, 17, 8786-8804.	1.2	17
154	A highly conductive hydrogel driven by phytic acid towards a wearable sensor with freezing and dehydration resistance. Journal of Materials Chemistry A, 2021, 9, 22615-22625.	5.2	80
155	Highly Stretchable, Transparent, and Self-Adhesive Ionic Conductor for High-Performance Flexible Sensors. ACS Applied Polymer Materials, 2021, 3, 1610-1617.	2.0	38
156	A Multifunctional, Self-Healing, Self-Adhesive, and Conductive Sodium Alginate/Poly(vinyl alcohol) Composite Hydrogel as a Flexible Strain Sensor. ACS Applied Materials & Interfaces, 2021, 13, 11344-11355.	4.0	208
157	Selfâ€Healing Soft Sensors: From Material Design to Implementation. Advanced Materials, 2021, 33, e2004190.	11.1	106
158	Ultraâ€5ensitive and Stretchable Ionic Skins for Highâ€Precision Motion Monitoring. Advanced Functional Materials, 2021, 31, 2010199.	7.8	60
159	Topologically Enhanced Dual-Network Hydrogels with Rapid Recovery for Low-Hysteresis, Self-Adhesive Epidemic Electronics. ACS Applied Materials & Interfaces, 2021, 13, 12531-12540.	4.0	53
160	Melanin-Inspired Conductive Hydrogel Sensors with Ultrahigh Stretchable, Self-Healing, and Photothermal Capacities. ACS Applied Polymer Materials, 2021, 3, 1899-1911.	2.0	48
161	A review on recent advances in gel adhesion and their potential applications. Journal of Molecular Liquids, 2021, 325, 115254.	2.3	33
162	Intelligent Patches for Wound Management: In Situ Sensing and Treatment. Analytical Chemistry, 2021, 93, 4687-4696.	3.2	28
163	ROMP synthesis of gallol-containing polymer hydrogels for in situ fabrication of AuNPs and AgNPs composites as recyclable catalysts for the degradation of 4-nitrophenol. Polymer, 2021, 219, 123539.	1.8	18
164	A Stretchable, Self-Healable Triboelectric Nanogenerator as Electronic Skin for Energy Harvesting and Tactile Sensing. Materials, 2021, 14, 1689.	1.3	38
165	A plant-inspired long-lasting adhesive bilayer nanocomposite hydrogel based on redox-active Ag/Tannic acid-Cellulose nanofibers. Carbohydrate Polymers, 2021, 255, 117508.	5.1	77
166	Highly Stretchable, Adhesive, Biocompatible, and Antibacterial Hydrogel Dressings for Wound Healing. Advanced Science, 2021, 8, 2003627.	5.6	291

#	Article	IF	CITATIONS
167	Preparation of silver nanoparticles by solid-state redox route from hydroxyethyl cellulose for antibacterial strain sensor hydrogel. Carbohydrate Polymers, 2021, 257, 117665.	5.1	34
168	Musselâ€inspired polymer materials derived from nonphytogenic and phytogenic catechol derivatives and their applications. Polymer International, 2021, 70, 1209-1224.	1.6	12
169	Environment Tolerant Conductive Nanocomposite Organohydrogels as Flexible Strain Sensors and Power Sources for Sustainable Electronics. Advanced Functional Materials, 2021, 31, 2101696.	7.8	179
170	Recent Advances in Design Strategies for Tough and Stretchable Hydrogels. ChemPlusChem, 2021, 86, 601-611.	1.3	17
171	Recent advances in wet adhesives: Adhesion mechanism, design principle and applications. Progress in Polymer Science, 2021, 116, 101388.	11.8	251
172	Flexible Polydopamine Bioelectronics. Advanced Functional Materials, 2021, 31, 2103391.	7.8	102
173	Skin-inspired nanofibrillated cellulose-reinforced hydrogels with high mechanical strength, long-term antibacterial, and selfâ€recovery ability for wearable strain/pressure sensors. Carbohydrate Polymers, 2021, 261, 117894.	5.1	48
174	Biocompatible Autonomic Selfâ€healing PVAâ€TA Hydrogel with High Mechanical Strength. Macromolecular Chemistry and Physics, 2021, 222, 2100061.	1.1	21
175	Transparent, Conductive Hydrogels with High Mechanical Strength and Toughness. Polymers, 2021, 13, 2004.	2.0	13
176	Controlling the Morphology of Dynamic Thia-Michael Networks to Target Pressure-Sensitive and Hot Melt Adhesives. ACS Applied Materials & Interfaces, 2021, 13, 27471-27480.	4.0	24
177	Review on Bio-inspired Materials with Nanotechnology Applications in Medical Devices. Journal of Physics: Conference Series, 2021, 1948, 012227.	0.3	2
178	Renewable tannic acid based self-healing polyurethane with dynamic phenol-carbamate network: Simultaneously showing robust mechanical properties, reprocessing ability and shape memory. Polymer, 2021, 228, 123860.	1.8	29
179	Highly Stretchable, Self-Healable, Freezing-Tolerant, and Transparent Polyacrylic Acid/Nanochitin Composite Hydrogel for Self-Powered Multifunctional Sensors. ACS Sustainable Chemistry and Engineering, 2021, 9, 9209-9220.	3.2	76
180	Multifunctional Biosensors Made with Self-Healable Silk Fibroin Imitating Skin. ACS Applied Materials & Interfaces, 2021, 13, 33371-33382.	4.0	27
181	Polyacrylamide/Chitosan-Based Conductive Double Network Hydrogels with Outstanding Electrical and Mechanical Performance at Low Temperatures. ACS Applied Materials & Interfaces, 2021, 13, 34942-34953.	4.0	63
183	Hydrogen-bonded network enables polyelectrolyte complex hydrogels with high stretchability, excellent fatigue resistance and self-healability for human motion detection. Composites Part B: Engineering, 2021, 217, 108901.	5.9	44
184	A Review of Conductive Carbon Materials for 3D Printing: Materials, Technologies, Properties, and Applications. Materials, 2021, 14, 3911.	1.3	34
185	Synthesis and Fabrication of Supramolecular Polydimethylsiloxane-Based Nanocomposite Elastomer for Versatile and Intelligent Sensing. Industrial & Engineering Chemistry Research, 2021, 60, 10419-10430.	1.8	5

#	Article	IF	CITATIONS
186	The Manufacture of Unbreakable Bionics via Multifunctional and Selfâ€Healing Silk–Graphene Hydrogels. Advanced Materials, 2021, 33, e2100047.	11.1	87
187	Ultra‧ensitive and Ultra‧tretchable Strain Sensors Based on Emulsion Gels with Broad Operating Temperature. Chemistry - A European Journal, 2021, 27, 13161-13171.	1.7	5
188	Self-Healing, Self-Adhesive Silk Fibroin Conductive Hydrogel as a Flexible Strain Sensor. ACS Applied Materials & Interfaces, 2021, 13, 40013-40031.	4.0	146
189	Silver nanoparticles prepared by solid-state redox route from HEC for conductive, long-term durable and recycling artificial soft electronics. Polymer, 2021, 229, 123974.	1.8	4
190	Antibacterial Dual Network Hydrogels for Sensing and Human Health Monitoring. Advanced Healthcare Materials, 2021, 10, e2101089.	3.9	69
191	High strength PVA/poly (AACA-co-DMC) hydrogels self-healing in both alkali and acid solutions. Journal of Dispersion Science and Technology, 0, , 1-10.	1.3	0
192	Muscleâ€Inspired MXene Conductive Hydrogels with Anisotropy and Lowâ€Temperature Tolerance for Wearable Flexible Sensors and Arrays. Advanced Functional Materials, 2021, 31, 2105264.	7.8	171
193	A High Strength Hydrogel with a Core–Shell Structure Simultaneously Serving as Strain Sensor and Solar Water Evaporator. Macromolecular Materials and Engineering, 2021, 306, 2100309.	1.7	9
194	Ultrastretchable, Highly Transparent, Self-Adhesive, and 3D-Printable Ionic Hydrogels for Multimode Tactical Sensing. Chemistry of Materials, 2021, 33, 6731-6742.	3.2	48
195	<scp>PVA</scp> / <scp>SA</scp> / <scp>MXene</scp> dualâ€network conductive hydrogel for wearable sensor to monitor human motions. Journal of Applied Polymer Science, 2022, 139, 51627.	1.3	44
196	An all-natural strategy for versatile interpenetrating network hydrogels with self-healing, super-adhesion and high sensitivity. Chemical Engineering Journal, 2021, 420, 129736.	6.6	34
197	Rational engineering and applications of functional bioadhesives in biomedical engineering. Biotechnology Journal, 2021, 16, e2100231.	1.8	9
198	Sundew-Inspired Adhesive Hydrogel Threads through Reversible Complexation of Polyphenol and Boronic Acid. Applied Sciences (Switzerland), 2021, 11, 8591.	1.3	2
199	A multifunctional nanocellulose-based hydrogel for strain sensing and self-powering applications. Carbohydrate Polymers, 2021, 268, 118210.	5.1	40
200	Highly antifouling double network hydrogel based on poly(sulfobetaine methacrylate) and sodium alginate with great toughness. Journal of Materials Science and Technology, 2021, 85, 235-244.	5.6	25
201	Anti-freezing, water-retaining, conductive, and strain-sensitive hemicellulose/polypyrrole composite hydrogels for flexible sensors. Journal of Materials Research and Technology, 2021, 14, 555-566.	2.6	34
202	Chitosan-driven skin-attachable hydrogel sensors toward human motion and physiological signal monitoring. Carbohydrate Polymers, 2021, 268, 118240.	5.1	57
203	Performance of Polydopamine Complex and Mechanisms in Wound Healing. International Journal of Molecular Sciences, 2021, 22, 10563.	1.8	23

#	Article	IF	CITATIONS
204	A Zwitterionic-Aromatic Motif-Based ionic skin for highly biocompatible and Glucose-Responsive sensor. Journal of Colloid and Interface Science, 2021, 600, 561-571.	5.0	21
205	Hydrogen-bonding-assisted toughening of hierarchical carboxymethyl cellulose hydrogels for biomechanical sensing. Carbohydrate Polymers, 2021, 269, 118252.	5.1	15
206	A biomimetic skin-like sensor with multiple sensory capabilities based on hybrid ionogel. Sensors and Actuators A: Physical, 2021, 330, 112855.	2.0	8
207	Recent advancements in self-healing composite elastomers for flexible strain sensors: Materials, healing systems, and features. Sensors and Actuators A: Physical, 2021, 329, 112800.	2.0	32
208	Biomimetic nanocomposite hydrogel networks for robust wet adhesion to tissues. Composites Part B: Engineering, 2021, 222, 109071.	5.9	29
209	Highly sensitive and wearable self-powered sensors based on a stretchable hydrogel comprising dynamic hydrogen bond and dual coordination bonds. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 628, 127336.	2.3	18
210	Lignin nanofiller-reinforced composites hydrogels with long-lasting adhesiveness, toughness, excellent self-healing, conducting, ultraviolet-blocking and antibacterial properties. Composites Part B: Engineering, 2021, 225, 109316.	5.9	44
211	Biomaterials- and biostructures Inspired high-performance flexible stretchable strain sensors: A review. Chemical Engineering Journal, 2021, 425, 129949.	6.6	65
212	Tissue-adhesive, stretchable, and self-healable hydrogels based on carboxymethyl cellulose-dopamine/PEDOT:PSS via mussel-inspired chemistry for bioelectronic applications. Chemical Engineering Journal, 2021, 426, 130847.	6.6	51
213	Mussel-inspired self-adhesive hydrogels by conducting free radical polymerization in both aqueous phase and micelle phase and their applications in flexible sensors. Journal of Colloid and Interface Science, 2022, 607, 431-439.	5.0	38
214	One-pot freezing-thawing preparation of cellulose nanofibrils reinforced polyvinyl alcohol based ionic hydrogel strain sensor for human motion monitoring. Carbohydrate Polymers, 2022, 275, 118697.	5.1	54
215	A highly stretchable and anti-freezing silk-based conductive hydrogel for application as a self-adhesive and transparent ionotronic skin. Journal of Materials Chemistry C, 0, , .	2.7	38
216	Bioinspired 3D Printable, Self-Healable, and Stretchable Hydrogels with Multiple Conductivities for Skin-like Wearable Strain Sensors. ACS Applied Materials & Interfaces, 2021, 13, 2952-2960.	4.0	125
217	Nanotechnology-enabled polymer-based flexible electronics and their potential applications. , 2021, , 321-340.		1
218	Conductive hydrogel-based flexible strain sensors with superior chemical stability and stretchability for mechanical sensing in corrosive solvents. New Journal of Chemistry, 2021, 45, 4647-4657.	1.4	16
219	Dopamine-Triggered Hydrogels with High Transparency, Self-Adhesion, and Thermoresponse as Skinlike Sensors. ACS Nano, 2021, 15, 1785-1794.	7.3	190
220	Advances in biomedical applications of self-healing hydrogels. Materials Chemistry Frontiers, 2021, 5, 4368-4400.	3.2	51
221	Stimuli-responsive polydopamine-based smart materials. Chemical Society Reviews, 2021, 50, 8319-8343.	18.7	262

#	Article	IF	CITATIONS
222	Highly tough supramolecular double network hydrogel electrolytes for an artificial flexible and low-temperature tolerant sensor. Journal of Materials Chemistry A, 2020, 8, 6776-6784.	5.2	220
223	Highly Stretchable, Elastic, and Sensitive MXene-Based Hydrogel for Flexible Strain and Pressure Sensors. Research, 2020, 2020, 2038560.	2.8	121
224	Design of ultra-stretchable, highly adhesive and self-healable hydrogels <i>via</i> tannic acid-enabled dynamic interactions. Materials Horizons, 2021, 8, 3409-3416.	6.4	76
225	Development of Conductive Hydrogels for Fabricating Flexible Strain Sensors. Small, 2022, 18, e2101518.	5.2	188
226	A review on the features, performance and potential applications of hydrogel-based wearable strain/pressure sensors. Advances in Colloid and Interface Science, 2021, 298, 102553.	7.0	82
227	The preparation of dual cross-linked high strain composite gel with manifold excellent properties and its application as a strain sensor. Composites Science and Technology, 2022, 217, 109110.	3.8	13
228	Mussel-inspired Polymers: Recent Trends. Current Applied Polymer Science, 2019, 3, 30-63.	0.2	1
229	Resistance Tuning of Soft Strain Sensor Based on Saline Concentration and Volume Changes. Lecture Notes in Computer Science, 2020, , 49-52.	1.0	0
230	Underwater and wet adhesion strategies for hydrogels in biomedical applications. Chemical Engineering Journal, 2022, 431, 133372.	6.6	51
231	A Highly Conductive, Self-Recoverable, and Strong Eutectogel of a Deep Eutectic Solvent with Polymer Crystalline Domain Regulation. ACS Applied Materials & Interfaces, 2021, 13, 54409-54416.	4.0	44
232	Self-Healing Silicone Elastomer with Stable and High Adhesion in Harsh Environments. Langmuir, 2021, 37, 13696-13702.	1.6	17
233	Design and performance of an ultra-sensitive and super-stretchable hydrogel for artificial skin. Journal of Materials Chemistry C, 2021, 9, 17042-17049.	2.7	16
234	Mussel-inspired adhesive gelatin–polyacrylamide hydrogel wound dressing loaded with tetracycline hydrochloride to enhance complete skin regeneration. Soft Matter, 2022, 18, 662-674.	1.2	17
235	Ultra-fast preparation of multifunctional conductive hydrogels with high mechanical strength, self-healing and self-adhesive properties based on Tara Tannin-Fe3+ dynamic redox system for strain sensors applications. Polymer, 2022, 240, 124513.	1.8	49
236	High-strength, biocompatible and multifunctional hydrogel sensor based on dual physically cross-linked network. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 635, 128091.	2.3	12
237	Amylopectin based hydrogel strain sensor with good biocompatibility, high toughness and stable anti-swelling in multiple liquid media. European Polymer Journal, 2022, 164, 110981.	2.6	26
238	Supramolecular Adhesive Hydrogels for Tissue Engineering Applications. Chemical Reviews, 2022, 122, 5604-5640.	23.0	238
239	Molecular Rationale for the Design of Instantaneous, Strain-Tolerant Polymeric Adhesive in a Stretchable Underwater Human–Machine Interface. ACS Nano, 2022, 16, 1368-1380.	7.3	19

#	Article	IF	Citations
240	Stretchable Hydrogels with Low Hysteresis and High Fracture Toughness for Flexible Electronics. Macromolecular Rapid Communications, 2022, 43, e2100716.	2.0	9
241	Stretchable, self-healing and adhesive sodium alginate-based composite hydrogels as wearable strain sensors for expansion–contraction motion monitoring. Soft Matter, 2022, 18, 1644-1652.	1.2	22
242	Adhesive, Antibacterial, Conductive, Anti-UV, Self-Healing, and Tough Collagen-Based Hydrogels from a Pyrogallol-Ag Self-Catalysis System. ACS Applied Materials & Interfaces, 2022, 14, 8728-8742.	4.0	28
243	Anti-freezing and self-healing nanocomposite hydrogels based on poly(vinyl alcohol) for highly sensitive and durable flexible sensors. Chemical Engineering Journal, 2022, 436, 135243.	6.6	62
244	Silk Fibroin-Based Hydrogel for Multifunctional Wearable Sensors. Journal of Renewable Materials, 2022, 10, 1-18.	1.1	0
245	A self-healing, recyclable and conductive gelatin/nanofibrillated cellulose/Fe ³⁺ hydrogel based on multi-dynamic interactions for a multifunctional strain sensor. Materials Horizons, 2022, 9, 1412-1421.	6.4	53
246	Temperature-regulated Hybrid Protein Hydrogel for Recyclable Extraction of Uranium from Seawater. ACS Applied Polymer Materials, 2022, 4, 2189-2196.	2.0	5
247	Stretchable, Adhesive, Self-Healable, and Conductive Hydrogel-Based Deformable Triboelectric Nanogenerator for Energy Harvesting and Human Motion Sensing. ACS Applied Materials & Interfaces, 2022, 14, 9126-9137.	4.0	83
248	Preparation of renewable gallic acid-based self-healing waterborne polyurethane with dynamic phenol–carbamate network: toward superior mechanical properties and shape memory function. Journal of Materials Science, 2022, 57, 5679-5696.	1.7	9
249	Musselâ€inspired chitosanâ€based hydrogel sensor with <scp>pH</scp> â€responsive and adjustable adhesion, toughness and selfâ€healing capability. Polymers for Advanced Technologies, 2022, 33, 1867-1880.	1.6	11
250	Ultradurable Noncovalent Cross-Linked Hydrogels with Low Hysteresis and Robust Elasticity for Flexible Electronics. Chemistry of Materials, 2022, 34, 3311-3322.	3.2	46
251	Hypersensitized Strain Sensors Based on Conductive Hydrogels with Excellent Conductivity and Good Mechanical Properties. ACS Sustainable Chemistry and Engineering, 2022, 10, 4425-4437.	3.2	19
252	Application of conductive polymer hydrogels in flexible electronics. Journal of Polymer Science, 2022, 60, 2635-2662.	2.0	25
253	Preparation of MPASPâ€PAA/Fe ³⁺ Composite Conductive Hydrogel with Physical and Chemical Double Crosslinking Structure and Its Application in Flexible Strain Sensors. Macromolecular Chemistry and Physics, 2022, 223, .	1.1	5
254	Recognition of Material Surfaces with Smart Gloves Based on Machine Learning. , 2021, , .		1
255	Nature-Inspired Hydrogel Network for Efficient Tissue-Specific Underwater Adhesive. ACS Applied Materials & Interfaces, 2021, 13, 59761-59771.	4.0	26
256	A Packaged and Reusable Hydrogel Strain Sensor with Conformal Adhesion to Skin for Human Motions Monitoring. Advanced Materials Interfaces, 2022, 9, .	1.9	7
257	MXene-based composite double-network multifunctional hydrogels as highly sensitive strain sensors. Journal of Materials Chemistry C, 2022, 10, 7604-7613.	2.7	49

#	Article	IF	CITATIONS
258	Biocompatible Conductive Hydrogels: Applications in the Field of Biomedicine. International Journal of Molecular Sciences, 2022, 23, 4578.	1.8	28
259	Wearable Tissue Adhesive Ternary Hydrogel of <i>N</i> -(2-Hydroxyl) Propyl-3-trimethyl Ammonium Chitosan, Tannic Acid, and Polyacrylamide. Industrial & Engineering Chemistry Research, 2022, 61, 5502-5513.	1.8	10
260	Wearable Flexible Sensors for Human Motion Detection with Self-Healing, Tough Guar Gum-Hydrogels of GO-P4VPBA/PDA Janus Nanosheets. ACS Applied Polymer Materials, 2022, 4, 3394-3407.	2.0	9
261	Supramolecular topology controlled self-healing conformal hydrogels for stable human–machine interfaces. Journal of Materials Chemistry C, 2022, 10, 8077-8088.	2.7	16
262	Ultrastretchable, self-healable and adhesive composite organohydrogels with a fast response for human–machine interface applications. Journal of Materials Chemistry C, 2022, 10, 8266-8277.	2.7	36
263	A mussel-inspired high bio-content thermosetting polyimine polymer with excellent adhesion, flame retardancy, room-temperature self-healing and diverse recyclability. Journal of Materials Chemistry A, 2022, 10, 11363-11374.	5.2	23
264	Preparation of Hemicellulose Nanoparticle-Containing Ionic Hydrogels with High Strength, Self-Healing, and UV Resistance and Their Applications as Strain Sensors and Asymmetric Pressure Sensors. Biomacromolecules, 2022, 23, 2272-2279.	2.6	13
265	Structures, properties, and applications of zwitterionic polymers. ChemPhysMater, 2022, 1, 294-309.	1.4	33
266	Design of a DNAâ€Based Double Network Hydrogel for Electronic Skin Applications. Advanced Materials Technologies, 2022, 7, .	3.0	11
267	A Repeatable Self-Adhesive Liquid-Free Double-Network Ionic Conductor with Tunable Multifunctionality. ACS Applied Materials & Interfaces, 2022, 14, 22418-22425.	4.0	12
267 269	A Repeatable Self-Adhesive Liquid-Free Double-Network Ionic Conductor with Tunable Multifunctionality. ACS Applied Materials & amp; Interfaces, 2022, 14, 22418-22425. A multifunctional MXene-assembled anhydrous gel electronics. Journal of Colloid and Interface Science, 2022, 623, 1151-1159.	4.0 5.0	12 9
267 269 270	A Repeatable Self-Adhesive Liquid-Free Double-Network Ionic Conductor with Tunable Multifunctionality. ACS Applied Materials & amp; Interfaces, 2022, 14, 22418-22425. A multifunctional MXene-assembled anhydrous gel electronics. Journal of Colloid and Interface Science, 2022, 623, 1151-1159. A self-healing nanocomposite hydrogel electrolyte for rechargeable aqueous Zn-MnO2 battery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 647, 129195.	4.0 5.0 2.3	12 9 7
267 269 270 271	A Repeatable Self-Adhesive Liquid-Free Double-Network Ionic Conductor with Tunable Multifunctionality. ACS Applied Materials & amp; Interfaces, 2022, 14, 22418-22425.A multifunctional MXene-assembled anhydrous gel electronics. Journal of Colloid and Interface Science, 2022, 623, 1151-1159.A self-healing nanocomposite hydrogel electrolyte for rechargeable aqueous Zn-MnO2 battery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 647, 129195.A biocompatible, self-adhesive, and stretchable photonic crystal sensor for underwater motion detection. Journal of Materials Chemistry C, 2022, 10, 9025-9034.	4.0 5.0 2.3 2.7	12 9 7 16
267 269 270 271 272	A Repeatable Self-Adhesive Liquid-Free Double-Network Ionic Conductor with Tunable Multifunctionality. ACS Applied Materials & amp; Interfaces, 2022, 14, 22418-22425.A multifunctional MXene-assembled anhydrous gel electronics. Journal of Colloid and Interface Science, 2022, 623, 1151-1159.A self-healing nanocomposite hydrogel electrolyte for rechargeable aqueous Zn-MnO2 battery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 647, 129195.A biocompatible, self-adhesive, and stretchable photonic crystal sensor for underwater motion detection. Journal of Materials Chemistry C, 2022, 10, 9025-9034.Self-healing hydrogel with multiple dynamic interactions for multifunctional epidermal sensor. Applied Surface Science, 2022, 598, 153803.	 4.0 5.0 2.3 2.7 3.1 	12 9 7 16 22
267 269 270 271 272 273	A Repeatable Self-Adhesive Liquid-Free Double-Network Ionic Conductor with Tunable Multifunctionality. ACS Applied Materials & amp; Interfaces, 2022, 14, 22418-22425.A multifunctional MXene-assembled anhydrous gel electronics. Journal of Colloid and Interface Science, 2022, 623, 1151-1159.A self-healing nanocomposite hydrogel electrolyte for rechargeable aqueous Zn-MnO2 battery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 647, 129195.A biocompatible, self-adhesive, and stretchable photonic crystal sensor for underwater motion detection. Journal of Materials Chemistry C, 2022, 10, 9025-9034.Self-healing hydrogel with multiple dynamic interactions for multifunctional epidermal sensor. Applied Surface Science, 2022, 598, 153803.Smart Antifreeze Hydrogels with Abundant Hydrogen Bonding for Conductive Flexible Sensors. Gels, 2022, 8, 374.	 4.0 5.0 2.3 2.7 3.1 2.1 	12 9 7 16 22 11
267 269 270 271 272 273	A Repeatable Self-Adhesive Liquid-Free Double-Network Ionic Conductor with Tunable Multifunctionality. ACS Applied Materials & amp; Interfaces, 2022, 14, 22418-22425.A multifunctional MXene-assembled anhydrous gel electronics. Journal of Colloid and Interface Science, 2022, 623, 1151-1159.A self-healing nanocomposite hydrogel electrolyte for rechargeable aqueous Zn-MnO2 battery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 647, 129195.A biocompatible, self-adhesive, and stretchable photonic crystal sensor for underwater motion detection. Journal of Materials Chemistry C, 2022, 10, 9025-9034.Self-healing hydrogel with multiple dynamic interactions for multifunctional epidermal sensor. Applied Surface Science, 2022, 598, 153803.Smart Antifreeze Hydrogels with Abundant Hydrogen Bonding for Conductive Flexible Sensors. Gels, 2022, 8, 374.Antifreezing and Nondrying Sensors of Ionic Hydrogels with a Double-Layer Structure for Highly Sensitive Motion Monitoring. ACS Applied Materials & amp; Interfaces, 2022, 14, 30256-30267.	 4.0 5.0 2.3 2.7 3.1 2.1 4.0 	12 9 7 16 22 11
267 270 271 272 273 273	A Repeatable Self-Adhesive Liquid-Free Double-Network Ionic Conductor with Tunable Multifunctionality. ACS Applied Materials & amp; Interfaces, 2022, 14, 22418-22425. A multifunctional MXene-assembled anhydrous gel electronics. Journal of Colloid and Interface Science, 2022, 623, 1151-1159. A self-healing nanocomposite hydrogel electrolyte for rechargeable aqueous Zn-MnO2 battery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 647, 129195. A biocompatible, self-adhesive, and stretchable photonic crystal sensor for underwater motion detection. Journal of Materials Chemistry C, 2022, 10, 9025-9034. Self-healing hydrogel with multiple dynamic interactions for multifunctional epidermal sensor. Applied Surface Science, 2022, 598, 153803. Smart Antifreeze Hydrogels with Abundant Hydrogen Bonding for Conductive Flexible Sensors. Gels, 2022, 8, 374. Antifreezing and Nondrying Sensors of Ionic Hydrogels with a Double-Layer Structure for Highly Sensitive Motion Monitoring. ACS Applied Materials & amp; Interfaces, 2022, 14, 30256-30267. Muscle-Mimetic Highly Tough, Conductive, and Stretchable Poly(ionic liquid) Liquid Crystalline lonogels with Ultrafast Self-Healing, Super Adhesive, and Remarkable Shape Memory Properties. ACS Applied Materials & amp; Interfaces, 2022, 14, 29261-29272.	 4.0 5.0 2.3 2.7 3.1 2.1 4.0 4.0 	12 9 7 16 22 11 19

ARTICLE IF CITATIONS Wearable Sweat Biosensors on Sports Analysis., 0, 1, . 2 277 Bioinspired aligned wrinkling dressings for monitoring joint motion and promoting joint wound 278 2.6 healing. Biomaterials Science, 2022, 10, 5146-5157. A stretchable and zigzag structured hydrogel for highly sensitive strain sensors. Materials Letters, 279 1.3 4 2022, 325, 132835. Cartilage-bone inspired the construction of soft-hard composite material with excellent interfacial 280 binding performance and low friction for artificial joints. Friction, 2023, 11, 1177-1193. Multifunctional hydrogels of polyvinyl alcohol/polydopamine functionalized with carbon 281 0.9 6 nanomaterials as flexible sensors. Materials Today Communications, 2022, 32, 103906. Conductive hydrogel dressings based on cascade reactions with photothermal effect for monitoring and treatment of diabetic wounds. Composites Part B: Engineering, 2022, 242, 110098. Simultaneous realization of antifouling, self-healing, and strong substrate adhesion via a bioinspired 283 6.6 25 self-stratification strategy. Chemical Engineering Journal, 2022, 449, 137875. Robust hydrogel adhesives for emergency rescue and gastric perforation repair. Bioactive Materials, 284 8.6 2023, 19, 703-716. Musselâ€inspired biomaterials: From chemistry to clinic. Bioengineering and Translational Medicine, 285 3.9 26 2022, 7, . Hydrophobic and Stable Graphene-Modified Organohydrogel Based Sensitive, Stretchable, and Self-Healable Strain Sensors for Human-Motion Detection in Various Scenarios. , 2022, 4, 1616-1629. End-to-end design of wearable sensors. Nature Reviews Materials, 2022, 7, 887-907. 287 23.3 311 Strong Tough Poly Acrylicâ€<i>co</i>â€acrylamide Hydrogels via a Synergistic Effect of Fiber and 288 1.7 Metalã€Ligand Bónds as Flexible Strain Sensors. Macromolecular Materials and Engineering, 2022, 307, . Synthesis and properties of an efficient self-healing material based on Eucommia ulmoides gum. 290 2.5 3 Industrial Crops and Products, 2022, 187, 115385. A self-adhesive and low-temperature-tolerant strain sensor based on organohydrogel for extreme ice 6.6 and snow motion monitoring. Chemical Engineering Journal, 2023, 451, 138675. A 3D printable, highly stretchable, self-healing hydrogel-based sensor based on polyvinyl 292 alcohol/sodium tetraborate/sodium alginate for human motion monitoring. International Journal of 3.6 17 Biological Macromolecules, 2022, 219, 1216-1226. Lignin-silver triggered multifunctional conductive hydrogels for skinlike sensor applications. International Journal of Biological Macromolecules, 2022, 221, 1282-1293. Soft self-healing resistive-based sensors inspired by sensory transduction in biological systems. 294 2.36 Applied Materials Today, 2022, 29, 101638. Injectable and fast gelling hyaluronate hydrogels with rapid self-healing ability for spinal cord injury 295 5.1 repair. Carbohydrate Polymers, 2022, 298, 120081.

ARTICLE IF CITATIONS Redox-induced thermocells for low-grade heat harvesting: mechanism, progress, and their 296 5.2 11 applications. Journal of Materials Chemistry A, 2022, 10, 20730-20755. MXene reinforced organohydrogels with ultra-stability, high sensitivity and anti-freezing ability for 2.7 flexible strain sensors. Journal of Materials Chemistry C, 2022, 10, 11914-11923. Hydrophobically Associated Functionalized CNT-Reinforced Double-Network Hydrogels as Advanced 298 2.0 27 Flexible Strain Sensors. ACS Applied Polymer Materials, 2022, 4, 7397-7407. Stretchable and tough tannic acid-modified graphene oxide/ polyvinyl alcohol conductive hydrogels for strain and pressure sensors. AIP Advances, 2022, 12, . Carbon Dotsâ€Based Ultrastretchable and Conductive Hydrogels for Highâ€Performance Tactile Sensors 300 5.2 37 and Selfâ€Powered Electronic Skin. Small, 2023, 19, . Poly(vinyl Alcohol) (PVA)-Based Hydrogel Scaffold with Isotropic Ultratoughness Enabled by Dynamic Amine–Catechol Interactions. Chemistry of Materials, 2022, 34, 8613-8628. 3.2 Ultrastretchable, Self-Healable, and Tissue-Adhesive Hydrogel Dressings Involving Nanoscale Tannic Acid/Ferric Ion Complexes for Combating Bacterial Infection and Promoting Wound Healing. ACS Applied Materials & amp; Interfaces, 2022, 14, 43010-43025. 302 4.0 33 Probing and Manipulating Noncovalent Interactions in Functional Polymeric Systems. Chemical Reviews, 2022, 122, 14594-14678. 23.0 74 Near-infrared light-responsive and antibacterial injectable hydrogels with antioxidant activity based 304 on a Dopamine-functionalized Gellan Gum for wound healing. International Journal of Pharmaceutics, 7 2.6 2022, 627, 122257. High-Sensitivity Flexible Sensor Based on Biomimetic Strain-Stiffening Hydrogel. ACS Applied Materials & Interfaces, 2022, 14, 47148-47156. Conductive Polymers-Based Sensors., 2022, , 275-347. 306 0 Bio-macromolecular design roadmap towards tough bioadhesives. Chemical Society Reviews, 2022, 51, 18.7 9127-9173. A facile strategy for fabricating self-healable, adhesive and highly sensitive flexible ionogel-based 308 2.7 4 sensors. Journal of Materials Chemistry C, 2022, 10, 17309-17320. Mussel-Inspired Reversible Molecular Adhesion for Fabricating Self-Healing Materials. Langmuir, 2022, 309 1.6 38, 12999-13008. Flexible, adhesive, strainâ€sensitive, and skinâ€matchable hydrogel strain sensors for human motion and 310 1.6 1 handwritten signal monitoring. Polymers for Advanced Technologies, 2023, 34, 430-440. Mussel-inspired adhesive zwitterionic composite hydrogel with antioxidant and antibacterial properties for wound healing. Colloids and Surfaces B: Biointerfaces, 2022, 220, 112914. Limonene-thioctic acid-ionic liquid polymer: A self-healing and antibacterial material for movement 312 2.56 detection sensor. Industrial Crops and Products, 2022, 189, 115802. Highly stretchable and self-adhesive ionically cross-linked double-network conductive hydrogel sensor for electronic skin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 2.3 656, 130363.

#	Article	IF	CITATIONS
314	Preparation of a nanocomposite hydrogel with high adhesion, toughness, and inherent antibacterial properties by a one-pot method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 656, 130368.	2.3	2
315	Chitosan-Based Self-Healable and Adhesive Hydrogels for Flexible Strain Sensor Application. ACS Applied Polymer Materials, 2022, 4, 9176-9185.	2.0	12
316	Matrix-Assisted <i>In Situ</i> Polymerization of a 3D Conductive Hydrogel Structure. ACS Applied Materials & amp; Interfaces, 2022, 14, 52516-52523.	4.0	3
317	An antioxidant and antibacterial polydopamine-modified thermo-sensitive hydrogel dressing for <i>Staphylococcus aureus</i> -infected wound healing. Nanoscale, 2023, 15, 644-656.	2.8	19
318	Mussel-inspired chemistry in producing mechanically robust and bioactive hydrogels as skin dressings. Materials Today Chemistry, 2023, 27, 101272.	1.7	3
319	Cellulose nanocrystals boosted hydrophobic association in dual network polymer hydrogels as advanced flexible strain sensor for human motion detection. Journal of the Mechanical Behavior of Biomedical Materials, 2023, 138, 105610.	1.5	22
320	A sandwiched patch toward leakage-free and anti-postoperative tissue adhesion sealing of intestinal injuries. Bioactive Materials, 2023, 24, 112-123.	8.6	7
321	Self-Adhesive and Conductive Dual-Network Polyacrylamide Hydrogels Reinforced by Aminated Lignin, Dopamine, and Biomass Carbon Aerogel for Ultrasensitive Pressure Sensor. ACS Applied Materials & Interfaces, 2022, 14, 54127-54140.	4.0	12
322	Review on Recent Developments in Bioinspired-Materials for Sustainable Energy and Environmental Applications. Sustainability, 2022, 14, 16931.	1.6	5
323	Microfluidics and Lab-on-a-Chip for Biomedical Applications. , 2023, , 263-283.		0
323 324	Microfluidics and Lab-on-a-Chip for Biomedical Applications. , 2023, , 263-283. A facilely prepared notch-insensitive nanocomposite organohydrogel-based flexible wearable device for long-term outdoor human motion monitoring and recognition. Journal of Materials Chemistry C, 2023, 11, 2316-2327.	2.7	0
323 324 325	Microfluidics and Lab-on-a-Chip for Biomedical Applications. , 2023, , 263-283. A facilely prepared notch-insensitive nanocomposite organohydrogel-based flexible wearable device for long-term outdoor human motion monitoring and recognition. Journal of Materials Chemistry C, 2023, 11, 2316-2327. An ion-terminated hyperbranched polymer towards multipurpose adhesive with record-high bonding strength and sensitive stress-sensing. Journal of Materials Chemistry A, 2023, 11, 2443-2451.	2.7 5.2	0 7 6
323324325326	 Microfluidics and Lab-on-a-Chip for Biomedical Applications. , 2023, , 263-283. A facilely prepared notch-insensitive nanocomposite organohydrogel-based flexible wearable device for long-term outdoor human motion monitoring and recognition. Journal of Materials Chemistry C, 2023, 11, 2316-2327. An ion-terminated hyperbranched polymer towards multipurpose adhesive with record-high bonding strength and sensitive stress-sensing. Journal of Materials Chemistry A, 2023, 11, 2443-2451. An electrode universal and self-healable integrated supercapacitor fabricated by physical adsorption based on mussel-inspired highly adhesive gel electrolyte. Journal of Industrial and Engineering Chemistry, 2023, 	2.7 5.2 2.9	0 7 6 2
 323 324 325 326 327 	Microfluidics and Lab-on-a-Chip for Biomedical Applications. , 2023, , 263-283. A facilely prepared notch-insensitive nanocomposite organohydrogel-based flexible wearable device for long-term outdoor human motion monitoring and recognition. Journal of Materials Chemistry C, 2023, 11, 2316-2327. An ion-terminated hyperbranched polymer towards multipurpose adhesive with record-high bonding strength and sensitive stress-sensing. Journal of Materials Chemistry A, 2023, 11, 2443-2451. An electrode universal and self-healable integrated supercapacitor fabricated by physical adsorption based on mussel-inspired highly adhesive gel electrolyte. Journal of Industrial and Engineering Chemistry, 2023, Ionic conductive hydrogels formed through hydrophobic association for flexible strain sensing. Sensors and Actuators A: Physical, 2023, 350, 114148.	2.7 5.2 2.9 2.0	0 7 6 2 21
 323 324 325 326 327 328 	Microfluidics and Lab-on-a-Chip for Biomedical Applications. , 2023, , 263-283. A facilely prepared notch-insensitive nanocomposite organohydrogel-based flexible wearable device for long-term outdoor human motion monitoring and recognition. Journal of Materials Chemistry C, 2023, 11, 2316-2327. An ion-terminated hyperbranched polymer towards multipurpose adhesive with record-high bonding strength and sensitive stress-sensing. Journal of Materials Chemistry A, 2023, 11, 2443-2451. An electrode universal and self-healable integrated supercapacitor fabricated by physical adsorption based on mussel-inspired highly adhesive gel electrolyte. Journal of Industrial and Engineering Chemistry, 2023, , . Ionic conductive hydrogels formed through hydrophobic association for flexible strain sensing. Sensors and Actuators A: Physical, 2023, 350, 114148. A conformable, durable, adhesive welded fiber mate for on-skin strain sensing. Chemical Engineering Journal, 2023, 457, 141233.	2.7 5.2 2.9 2.0 6.6	0 7 6 2 21 8
 323 324 325 326 327 328 329 	Microfluidics and Lab-on-a-Chip for Biomedical Applications. , 2023, , 263-283. A facilely prepared notch-insensitive nanocomposite organohydrogel-based flexible wearable device for long-term outdoor human motion monitoring and recognition. Journal of Materials Chemistry C, 2023, 11, 2316-2327. An ion-terminated hyperbranched polymer towards multipurpose adhesive with record-high bonding strength and sensitive stress-sensing. Journal of Materials Chemistry A, 2023, 11, 2443-2451. An electrode universal and self-healable integrated supercapacitor fabricated by physical adsorption based on mussel-inspired highly adhesive gel electrolyte. Journal of Industrial and Engineering Chemistry, 2023, , . Ionic conductive hydrogels formed through hydrophobic association for flexible strain sensing. Sensors and Actuators A: Physical, 2023, 350, 114148. A conformable, durable, adhesive welded fiber mate for on-skin strain sensing. Chemical Engineering Journal, 2023, 457, 141233. Polydopamine-Reinforced Hemicellulose-Based Multifunctional Flexible Hydrogels for Human Movement Sensing and Self-Powered Transdermal Drug Delivery. ACS Applied Materials & amp; Interfaces, 2023, 15, 5883-5896.	2.7 5.2 2.9 2.0 6.6 4.0	0 7 6 2 21 8 8
 323 324 325 326 327 328 329 330 	Microfluidics and Lab-on-a-Chip for Biomedical Applications. , 2023, , 263-283. A facilely prepared notch-insensitive nanocomposite organohydrogel-based flexible wearable device for long-term outdoor human motion monitoring and recognition. Journal of Materials Chemistry C, 2023, 11, 2316-2327. An ion-terminated hyperbranched polymer towards multipurpose adhesive with record-high bonding strength and sensitive stress-sensing. Journal of Materials Chemistry A, 2023, 11, 2443-2451. An electrode universal and self-healable integrated supercapacitor fabricated by physical adsorption based on mussel-inspired highly adhesive gel electrolyte. Journal of Industrial and Engineering Chemistry, 2023, , . Ionic conductive hydrogels formed through hydrophobic association for flexible strain sensing. Sensors and Actuators A: Physical, 2023, 350, 114148. A conformable, durable, adhesive welded fiber mate for on-skin strain sensing. Chemical Engineering Journal, 2023, 457, 141233. Polydopamine-Reinforced Hemicellulose-Based Multifunctional Flexible Hydrogels for Human Movement Sensing and Self-Powered Transdermal Drug Delivery. ACS Applied Materials & amp; Interfaces, 2023, 15, 5883-5896. PSS-dispersed dopamine triggered formation of PAA adhesive hydrogel as flexible wearable sensors. RSC Advances, 2023, 13, 7561-7568.	2.7 5.2 2.9 2.0 6.6 4.0	0 7 6 2 21 8 8 29 3

#	Article	IF	CITATIONS
332	A tough conductive hydrogel with triple physical cross-linking, pH-Responsive swelling behaviors, and excellent strain sensitivity. Polymer, 2023, 273, 125887.	1.8	2
333	Fabrication of a SAPNI/I-Ti3C2Tx 3D structure hybrid for the enhancement of higher barrier and self-passivation coatings. Journal of Alloys and Compounds, 2023, 946, 169371.	2.8	3
334	Long-term antibacterial activity by synergistic release of biosafe lysozyme and chitosan from LBL-structured nanofibers. Carbohydrate Polymers, 2023, 312, 120791.	5.1	8
335	Bacillus subtilis-based biofilms. , 2022, , 93-104.		1
336	Bioinspired Selfâ€healing Soft Electronics. Advanced Functional Materials, 2023, 33, .	7.8	25
337	Antibacterial hydrogel dressings and their applications in wound treatment. , 2023, , 153-185.		0
338	Sustainable and Tough MXene Hydrogel Based on Interlocked Structure for Multifunctional Sensing. ACS Sustainable Chemistry and Engineering, 2023, 11, 4177-4186.	3.2	7
339	High-Sensitivity Composite Dual-Network Hydrogel Strain Sensor and Its Application in Intelligent Recognition and Motion Monitoring. ACS Applied Polymer Materials, 2023, 5, 2628-2638.	2.0	6
340	Bioinspired anti-freezing 3D-printable conductive hydrogel microfibers for highly-sensitive and wide-range detection of ultralow and high strains. Green Chemical Engineering, 2024, 5, 132-143.	3.3	2
341	Advances of Mussel-Inspired Nanocomposite Hydrogels in Biomedical Applications. Biomimetics, 2023, 8, 128.	1.5	5
342	Ag/Poly(<i>N</i> -isopropylacrylamide)-laponite Hydrogel Surface-Enhanced Raman Membrane Substrate for Rapid Separation, Concentration and Detection of Hydrophilic Compounds in Complex Sample All-in-One. Analytical Chemistry, 2023, 95, 6399-6409.	3.2	2
343	Recent Advancements in Physiological, Biochemical, and Multimodal Sensors Based on Flexible Substrates: Strategies, Technologies, and Integrations. ACS Applied Materials & Interfaces, 2023, 15, 21721-21745.	4.0	5
352	Stimuli-responsive and Self-healing Multicomponent Hydrogels for Biomedical Applications. , 2023, , 578-603.		0
353	Fabrication and Structural Design of MXene-Based Hydrogels. , 2023, , 61-81.		0
358	Cellulose-Based Ionic Conductor: An Emerging Material toward Sustainable Devices. Chemical Reviews, 2023, 123, 9204-9264.	23.0	30
364	Conductive hydrogels for bioelectronics: molecular structures, design principles, and operation mechanisms. Journal of Materials Chemistry C, 2023, 11, 10785-10808.	2.7	1