Modeling wet headwater stream networks across multi Appalachian Highlands

Earth Surface Processes and Landforms 43, 2762-2778 DOI: 10.1002/esp.4431

Citation Report

#	Article	IF	CITATIONS
1	Topographic Controls on the Extension and Retraction of Flowing Streams. Geophysical Research Letters, 2019, 46, 2084-2092.	4.0	75
2	Quantifying spatiotemporal variation in headwater stream length using flow intermittency sensors. Environmental Monitoring and Assessment, 2019, 191, 226.	2.7	54
3	Classifying Streamflow Duration: The Scientific Basis and an Operational Framework for Method Development. Water (Switzerland), 2020, 12, 2545.	2.7	18
4	The Stream Length Duration Curve: A Tool for Characterizing the Time Variability of the Flowing Stream Length. Water Resources Research, 2020, 56, e2020WR027282.	4.2	34
5	Channel cross-section analysis for automated stream head identification. Environmental Modelling and Software, 2020, 132, 104809.	4.5	6
6	Intraseasonal Drainage Network Dynamics in a Headwater Catchment of the Italian Alps. Water Resources Research, 2020, 56, e2019WR025563.	4.2	48
7	Reconstructing Spatiotemporal Dynamics in Hydrological State Along Intermittent Rivers. Water (Switzerland), 2021, 13, 493.	2.7	4
8	Controls on Streamflow Densities in Semiarid Rocky Mountain Catchments. Water (Switzerland), 2021, 13, 521.	2.7	8
9	Timeâ€lapse visualization of spatial and temporal patterns of stream network dynamics. Hydrological Processes, 2021, 35, e14053.	2.6	5
10	Intermittent rivers and ephemeral streams: Perspectives for critical zone science and research on socioâ€ecosystems. Wiley Interdisciplinary Reviews: Water, 2021, 8, e1523.	6.5	31
11	Monitoring and Modeling Drainage Network Contraction and Dry Down in Mediterranean Headwater Catchments. Water Resources Research, 2021, 57, e2020WR028741.	4.2	19
12	Predicting probabilities of streamflow intermittency across a temperate mesoscale catchment. Hydrology and Earth System Sciences, 2020, 24, 5453-5472.	4.9	14
13	Identifying Controls on Nitrate Sources and Flowpaths in a Forested Catchment Using a Hydropedological Framework. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	3.0	5
14	Assessing discharge periodicity in mountain catchments using classified environmental conditions (Tatra Mountains, Poland). Journal of Mountain Science, 2022, 19, 16-32.	2.0	1
15	Event controls on intermittent streamflow in a temperate climate. Hydrology and Earth System Sciences, 2022, 26, 2671-2696.	4.9	1
16	Ephemeral Stream Network Extraction from Lidarâ€Derived Elevation and Topographic Attributes in Urban and Forested Landscapes. Journal of the American Water Resources Association, 0, , .	2.4	3
17	Technical note: Analyzing river network dynamics and the active length–discharge relationship using water presence sensors. Hydrology and Earth System Sciences, 2022, 26, 3497-3516.	4.9	7
18	Measuring zero water level in stream reaches: A comparison of an imageâ€based versus a conventional method. Hydrological Processes, 2022, 36, .	2.6	5

#	Article	IF	CITATIONS
19	Predictions and drivers of sub-reach-scale annual streamflow permanence for the upper Missouri River basin: 1989–2018. Journal of Hydrology X, 2022, 17, 100138.	1.6	2
20	Eco-hydrological modelling of channel network dynamics—part 1: stochastic simulation of active stream expansion and retraction. Royal Society Open Science, 2022, 9, .	2.4	8
21	Explaining changes in rainfall–runoff relationships during and after Australia's Millennium Drought: a community perspective. Hydrology and Earth System Sciences, 2022, 26, 6073-6120.	4.9	13
22	Predicting probabilities of late summer surface flow presence in a glaciated mountainous headwater region. Hydrological Processes, 2023, 37, .	2.6	3
23	Dynamics of streamflow permanence in a headwater network: Insights from catchment-scale model simulations. Journal of Hydrology, 2023, 620, 129422.	5.4	7
24	Estimating streamflow permanence with the watershed Erosion Prediction Project Model: Implications for surface water presence modeling and data collection. Journal of Hydrology, 2023, 622, 129747.	5.4	0
25	Integrating spatially-and temporally-heterogeneous data on river network dynamics using graph theory. IScience, 2023, 26, 107417.	4.1	1
26	Carbon Biogeochemistry and Export Governed by Flow in a Nonâ€Perennial Stream. Water Resources Research, 2023, 59, .	4.2	0
27	Evapotranspiration and groundwater inputs control the timing of diel cycling of stream drying during low-flow periods. Frontiers in Water, 0, 5, .	2.3	0
28	Modeling the distribution of headwater streams using topoclimatic indices, remote sensing and machine learning Journal of Hydrology X, 2023, 21, 100165.	1.6	0
29	Characterizing Spaceâ€Time Channel Network Dynamics in a Mediterranean Intermittent Catchment of Central Italy Combining Visual Surveys and Cameras. Water Resources Research, 2024, 60, .	4.2	0
30	Stream Network Dynamics of Nonâ€Perennial Rivers: Insights From Integrated Surfaceâ€Subsurface Hydrological Modeling of Two Virtual Catchments. Water Resources Research, 2024, 60, .	4.2	0
31	High-resolution automated detection of headwater streambeds for large watersheds. Hydrology and Earth System Sciences, 2024, 28, 1027-1040.	4.9	0

CITATION REPORT